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According to the EU Water Framework Directive, phytoplankton should be included for 

assessment of the ecological status of lakes. Phytoplankton respond rapidly to environmental 

changes and are a particularly good indicator of nutrient loads. In this large-scale study, it 

was examined whether the properties in the catchment area can be used to explain the vari-

ation of phytoplankton and total phosphorus (TP) in lakes. A large number of variables were 

investigated through statistical analysis, in particular if the already established linear rela-

tionship between phytoplankton and TP in lakes can be improved.  

The study used measured values for total biovolume phytoplankton (tot bio), Plankton 

Trophic Index (PTI) and TP for 487 lakes (represented by 523 waterbodies) in south of Swe-

den. The lakes associated catchment properties were calculated and analysed through vari-

ous Geographical Information System (GIS) tools. Each catchment was described regarding 

land use, soil properties (texture and chemistry), soil distribution, climate and lake proper-

ties. In total 59 variables produced with GIS were evaluated from available map data and 

national soil surveys together with 34 lake variables. All variables were used in Principal 

Components Analysis (PCA) whereas the 59 catchment variables together with some lake 

variables were used for other analysis. For each dependent variable (tot bio, PTI and TP) 

several statistical models were created, and important catchment variables were identified 

using Partial Least Squares (PLS) analysis. Important variables identified in PLS were then 

included in multiple regressions. 

Result shows that the share of agricultural land in the catchment area is positively corre-

lated with phytoplankton (tot bio and PTI) and TP. For phytoplankton models without TP as 

explanatory variable, a few catchment variables could explain variation of PTI up to 48 % 

while tot bio could be explained to a lower extent (33 %). The degree of explanation and 

variables included differed depending on selected statistical model. While TP alone was the 

strongest explaining variable for both tot bio (66 %) and PTI (56 %). However, TP together 

with the share of agricultural land significantly improved the explanation of PTI to 65 %. 

For the lake TP, catchment properties could statistically explain 55 % of the variation in the 

TP concentration. In summary, TP was shown to correlate positively with specific soil prop-

erties of both non-agricultural and agricultural areas of studied catchments. Higher TP con-

centration could also be expected in lakes with larger share of agricultural land and urban 

area and smaller water body area. The results also show that catchment properties derived 

from continuous map data had a higher explanation of the studied lakes’ tot bio, PTI and TP 

compared to result from field sample point data collected in national soil surveys.  

The relationship between catchment properties and water quality is important to under-

stand and catchment properties can help to describe the lake phytoplankton and phosphorus 

levels, which then should be taken into account when developing assessment criteria for 

lakes.  

Keywords: phytoplankton, total phosphorus, catchment, soil properties, land use, agricul-

ture, water framework directive, ecological status 

Abstract 
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Enligt EU:s vattendirektiv ska växtplankton inkluderas vid bedömningar av sjöars ekolo-

giska status. Växtplankton reagerar snabbt på miljöförändringar och ger särskilt bra indikat-

ion på näringsbelastning. I denna storskaliga studie undersöktes om egenskaper i avrinnings-

området kan användas för att förklara sjöars växtplankton och totalfosfor (TP). Genom stat-

istisk analys av ett stort antal variabler testades också om förklaringsgraden av det redan 

kända linjära sambandet mellan växtplankton och TP i sjöar kan förbättras.  

I studien användes uppmätta värden av växtplanktons totala biovolym (tot bio), plank-

tontrofiskt index (PTI) och TP för 487 sjöar (sammantaget 523 vattenförekomster) i södra 

Sverige. Sjöarnas tillhörande egenskaper i avrinningsområdet togs fram och analyserades 

genom olika Geografisk Informations System (GIS) verktyg. Varje avrinningsområde besk-

revs utifrån dess markanvändning, markegenskaper (textur och kemi), jordartsfördelning, 

klimat och sjöegenskaper. Sammanlagt utvärderades 59 variabler framtagna med GIS från 

befintliga kartdata och nationella markundersökningar tillsammans med 34 sjövariabler. 

Alla variabler användes vid principalkomponentanalys (PCA) och för övrig statistisk analys 

användes de 59 avrinningsområdes variablerna tillsammans med några sjövariabler. Flera 

statistiska modeller skapades för varje beroende variabel (tot bio, PTI och TP) där viktiga 

avrinningsområdes variabler identifierades med hjälp av Partial Least Squares (PLS) analys. 

De viktigaste variablerna från PLS analysen användes sedan i multipla regressioner för att 

ta fram statistiskt signifikanta förklarande variabler för variationen hos växtplankton och TP.  

Andel jordbruksmark i avrinningsområdet visade ett positivt samband till växtplankton 

(tot bio and PTI) och TP. Ett fåtal avrinningsområdes variabler kunde tillsammans utan TP 

förklara variationen av PTI upp till 48 % medan tot bio kunde förklaras till en lägre grad (33 

%). Beroende på vald statistisk modell, skiljde sig förklaringsgrad och de ingående variab-

lerna delvis åt. Det bör nämnas att det linjära sambandet mellan TP och växtplankton var 

mycket starkt och förklarade variationen hos tot bio till 66 % och PTI till 56 %. TP tillsam-

mans med andelen jordbruksmark i avrinningsområdet gav dock en signifikant ökad förkla-

ringsgrad av PTI (65 %). För sjöarnas TP kunde egenskaperna i avrinningsområdet statistiskt 

förklara 55 % av variationerna i halterna. Sammanfattningsvis visade TP positivt samband 

till vissa markegenskaper på så väl jordbruksmark som övrig mark för de studerade sjöarnas 

avrinningsområden. Höga halter av TP förväntas även i sjöar med hög andel jordbruksmark 

och tätort. Sjöar med mindre yta på vattenförekomsten förväntas också ha högre TP. Studi-

ens resultat visar även att egenskaper i avrinningsområdet framtagna från kartdata hade en 

högre förklaringsgrad för de studerade sjöarnas tot bio, PTI och TP jämfört med resultat från 

provpunktsdata som samlades inom de nationella markundersökningarna.  

Slutsatsen från denna studie är att sambandet mellan land och vatten är viktigt att förstå 

för att kunna beskriva en sjös fosfornivåer och växtplankton, vilket bör tas i beaktan vid 

utveckling av bedömningsgrunder för sjöar. 

Nyckelord: växtplankton, totalfosfor, avrinningsområde, markegenskaper, markanvänd-

ning, jordbruk, vattendirektivet, ekologisk status 

Sammanfattning 
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Övergödning av sjöar och vattendrag är idag ett globalt miljöproblem som orsakas av en 

ökad tillförsel av näringsämnen, framförallt kväve och fosfor, vilket påverkar såväl ekosy-

stem som vattenkvalitén. En ökad näringstillförsel leder ofta till ökad tillväxt av växtplank-

ton eftersom de kan ta upp näringsämnen direkt från vattnet. Växtplanktons snabba respons 

på näringsbelastning gör de till en bra indikator. För att skapa en långsiktig och hållbar för-

valtning av sötvatten i EU infördes vattendirektivet med syfte att skydda och hindra försäm-

ring av Europas vattenresurser. Målet är att alla vattenförekomster, sjöar och vattendrag, ska 

uppnå minst god vattenstatus till 2021. Vid bedömningen av sjöars ekologiska status ingår 

fyra biologiska kvalitetsfaktorer där växtplankton används som indikator på övergödning. I 

Sverige behöver mer än 7200 sjöar (de över 50 ha) förvaltas och övervakas enligt vattendi-

rektivet vilket är en resurskrävande process både tidsmässigt och ekonomiskt. Därför är för-

bättringar av befintliga bedömningsgrunder och metoder för klassificering av sjöars status 

viktiga.  

I denna studie undersöktes om egenskaper i sjöns avrinningsområde från olika typer av 

kartor kan användas för att förklara och uppskatta växtplanktonförekomst, nivåer och sam-

mansättning, samt halter av totalfosfor. Fördelen med att använda kartdata är att det är billi-

gare, när man inte behöver åka ut till varje sjö för att ta prover. Fosfor har länge varit känt 

som begränsande näringsämne för tillväxt i sjöar och uppmätt halt av totalfosfor används för 

att uppskatta mängden växtplankton. I studien ingick ett stort antal sjöar (487 stycken) i 

södra Sverige med uppmätta värden av totalfosfor och två växtplanktonparametrar: plank-

tontrofiskt index (PTI) och växtplanktons totala biovolym. PTI baseras på indikatorarter för 

växtplankton, med indikatorvärden som visar om de är känsliga eller toleranta för närings-

belastning. Befintliga kartdata och markundersökningar användes för att beskriva varje av-

rinningsområde utifrån markanvändning, markegenskaper (textur och kemiska sammansätt-

ning), jordartsfördelning och klimat. Hänsyn togs även till ett antal sjöegenskaper som ex-

empelvis sjöns area och position. 

Studiens resultat visar att andelen jordbruksmark i avrinningsområdet har positivt sam-

band till sjöns växtplankton och totalfosfor. Högre halter av totalfosfor, en större totalvolym 

av växtplankton och arter toleranta för näringsbelastning förväntas därmed i sjöar med mer 

jordbruksmark. Ett urval av egenskaperna i avrinningsområdet visades tillsammans kunna 

förklara variationen av PTI upp till 48 % medan den totala volymen av växtplankton kunde 

förklaras till en lägre grad (33 %). Sjöns uppmätta totalfosforhalt förklarar dock starkast 

variationen i totala volymen av växtplankton (66 %) och PTI (56 %). Däremot kan sjöns 

totala fosfor tillsammans med andelen jordbruksmark öka förklaringsgraden av PTI till 65 

%. För de studerade sjöarna kunde variationen av totalfosforhalterna förklaras till 55 % av 

egenskaper i avrinningsområdet. 

Slutsatsen är att både växtplankton och totalfosfor i sjöar till stor utsträckning kan upp-

skattas av avrinningsområdets egenskaper från befintliga kartdata, vilket bör beaktas vid ut-

veckling av bedömningsgrunder för sjöar.  

Populärvetenskaplig Sammanfattning  
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1.1 Eutrophication 

Eutrophication is considered as a global problem for both freshwater and marine 

systems causing negative impact on and consequences for ecosystems and water 

quality (Smith 2003; Smith & Schindler 2009). Eutrophication occurs when a wa-

terbody gets an increased supply of minerals and nutrients compared to its natural 

state, where the potential of eutrophication depends on the available nutrients (No-

votny & Olem 1994). The effects of increase in loads of nutrients, nitrogen (N) and 

phosphorus (P), lead to a whole set of effects on the ecosystem. Firstly, it results in 

an increased primary production, especially of phytoplankton (Novotny & Olem 

1994; Brönmark & Hansson 2005; Smith & Schindler 2009). Secondly, the increase 

of primary production results in reduced water transparency and increased sedimen-

tation (Brönmark & Hansson 2005; Smith & Schindler 2009). Thirdly, the conse-

quent degradation of dead organic material by bacteria can cause oxygen deficiency 

in the bottom sediment and bottom water (Brönmark & Hansson 2005; Smith & 

Schindler 2009). Effects of eutrophication can be seen in different parts of a lake 

ecosystem, with altered species composition, biomass and shift in the trophic levels 

(Correll 1998; Smith & Schindler 2009).  

Phosphorus has been established as a common limiting nutrient for freshwater 

system after Schindler (1974) did a whole lake experiment involving different nu-

trients including P. In that experiment, carbon (C) and N where added in one half of 

a lake while C, N and P were added in the other half, resulting in an algae bloom 

only where P also was added (Schindler 1974). Phosphorus can be transported to a 

waterbody either as bound to soil particles (particulate P) or as dissolved (ortho-

phosphate), where the dissolved form is essential and directly available for primary 

producers and their growth (Correll 1998). 

1 Introduction 
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For phytoplankton growth, the ratio of N and P in the water is important to assess 

the limited nutrient (Brönmark & Hansson 2005). For instance, an increased atmos-

pheric N-deposition influences the ratio, where phytoplankton in lakes with low N-

deposition regions are considered to be N-limited and the opposite is true in regions 

with high N-deposition, in these lakes P-limitation instead becomes an issue (Elser 

et al. 2009). Phytoplankton in northern Sweden lakes are considered N-limited due 

to low atmospheric N-deposition and low input of dissolved inorganic N from the 

catchment, while lakes in the southern part with higher N-deposition and input are 

P-limited (Bergström et al. 2008). Phytoplankton have fast turnover rate and absorb 

dissolved nutrients directly from the water column (Brönmark & Hansson 2005). 

The available nutrients are essential for building the cells and their functions where 

P constitute an important component in the genetic information (DNA and RNA), 

energy system (ATP) and as phosphorus-lipids in the cell membrane (Brönmark & 

Hansson 2005). The phytoplankton’s properties thus make them a good indicator 

for rapid response on environmental impacts in general and nutrients loads in par-

ticular (Swedish EPA 2010). 

1.2 Water Framework Directive  

To avoid long-term deterioration of freshwater systems, the Water Framework Di-

rective (WFD) was adopted in year 2000 to protect freshwater resources in European 

Union and to establish long-term sustainable management (Directive 2000/60/EC). 

To assess the ecosystem’s function and structure, each waterbody’s ecological status 

is assessed with the main goal of achieving at least good ecological status. The wa-

terbodies are assessed during a six-years management cycle where the next cycle 

ends 2021. The good ecological status defines as:  
 

“The value of the biological quality elements for the surface water body type show low 

levels of distortion resulting from human activity, but deviate only slightly from those 

normally associated with the surface water body type under undisturbed conditions.” 

(Directive 2000/60/EC, Annex V) 
 

Four biological quality elements responding to eutrophication are assessed within 

the WFD for the ecological status in lakes. Phytoplankton is one of the four elements 

where biomass, as well as taxonomic composition and abundance are considered 

(Directive 2000/60/EC). As phytoplankton respond immediately to nutrient supply, 

they reflect the current eutrophication in the pelagic zone (Lyche-Solheim et al. 

2013). The other three elements, macrophytes, benthic invertebrates and fish, have 

longer generation time and thus reflect nutrient response over longer time, i.e. years 

(Lyche-Solheim et al. 2013). Macrophytes and benthic invertebrates mainly respond 



9 
 

to changes in littoral zone whereas fish respond to, and therefore indicate, changes 

across the lake ecosystem (Lyche-Solheim et al. 2013). The ecological status is as-

sessed as Ecological Quality Ratio (EQR) for each element parameter and shows 

the relationship between the observed value in the lake and type-specific reference 

conditions (Directive 2000/60/EC), which enables a comparison of the status be-

tween waterbodies. 

The WFD was incorporated 2004 in the Swedish Environmental Code 

(1998:808) for national legislation, where approach and included assessment criteria 

for phytoplankton parameters are described in the Swedish Handbook for Swedish 

ecological classification (Swedish EPA 2010; Swedish Agency for Marine and Wa-

ter Management 2018). The five year research program WATERS has since then 

suggested improvements and harmonisation of many methods for the Swedish as-

sessment criteria for ecological status (Lindegarth et al. 2016). The existing regula-

tion HVMFS 2013:19 for ecological classification were revised (HVMFS 2018:17) 

and came into force 1 January 2019. This update shows four phytoplankton param-

eters that needs to be considered for assessment, namely total biomass, chlorophyll-

a (chl-a), Plankton Trophic Index (PTI) and number of taxa. The three first phyto-

plankton parameters are indicators of the response to nutrient pressure, while num-

ber of taxa is an indicator of the pressure from acidification (Lindegarth et al. 2016).  

1.2.1 Phytoplankton as an Environmental Indicator  

Phytoplankton parameters response to nutrient pressure 

Measuring chl-a works as an indicator to get a cheap and broad overview of a wa-

terbody’s total phytoplankton biomass (Swedish EPA 2010). Using the pigment, 

chl-a, the algae get energy by absorbing sunlight (Brönmark & Hansson 2005). 

However, the amount of pigment is dependent on species groups (Brönmark & 

Hansson 2005). There is a strong positive relationship between chl-a and total phos-

phorus (TP) (Phillips et al. 2008; Carvalho et al. 2012; Lyche-Solheim et al. 2013; 

Lindegarth et al. 2016). A relationship is also seen between chl-a and total nitrogen, 

but it explains less of the variation (Phillips et al. 2008). In addition, other variables 

are related to chl-a such as lake depth and alkalinity (Phillips et al. 2008). The total 

biomass of phytoplankton is used as an indicator for nutrient pressure and is meas-

ured as biovolume (assuming a similar density of phytoplankton and water) (Swe-

dish EPA 2010). The total biomass thus reflects the lakes primary production, and 

depends on the species represented (Swedish EPA 2010). Both chl-a and total bio-

mass can be predicted using TP, where TP explains 80 % of the variation in chl-a 

and 65 % of the variation in total biomass (Lindegarth et al. 2016).  
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The Swedish Trophic Plankton Index (TPI) was developed by Willén (2007) and 

is based on indicator species for nutrient pressure. In short, species tolerant to high 

TP level are assigned a score value from 3 to 1, whereas the sensitive species are 

given score values from -3 to -1 (Willén 2007; Swedish EPA 2010). The TPI value 

thus indicates in which part of the oligotrophic and eutrophic scale (-3 to 3) the lake 

is located base on species composition. One disadvantage of TPI is that most species 

with score value are in the two ends of the scale, i.e. species being either very sen-

sitive or very tolerant for nutrient pressure (Willén 2007; Lindegarth et al. 2016). 

Consequently, there is the lack of species in the middle of the TPI pressure score, 

which makes the index less robust in the middle of the nutrient pressure scale. The 

European developed Plankton Trophic Index (PTI) (Phillips et al. 2012), functions 

in a similar way as TPI, but has the advantage that species are represented with score 

values throughout the P gradient. The PTI has also been evaluated for Swedish lakes 

within the WATERS project (Lindegarth et al. 2016), with the suggestion to replace 

TPI with PTI when assessing the species composition in Swedish lakes, which is 

now regulated in HVMFS 2013:19. Phillips et al., (2012) showed in a study based 

on a large European lake dataset for PTI that the index is significantly correlated to 

TP. The WATERS project, concluded that PTI and TP had an significant linear re-

lationship for 361 Swedish lakes, R2 = 0.59 (Lindegarth et al. 2016). Based on the 

relationship between TP and PTI, the index is suggested as strong and sensitive for 

eutrophication (Carvalho et al. 2012; Lyche-Solheim et al. 2013). However, PTI is 

also significantly influenced by other lake water properties independent of TP, such 

as alkalinity, and factors affecting the lake such as precipitation, temperature and 

lake surface area (Phillips et al. 2012), highlighting the need of different reference 

values for different types of lakes.  

In response to nutrient pressure in lakes, phytoplankton total biomass and PTI 

should be weighted together and form the basis for the phytoplankton ecological 

status classification, and in case chl-a is sampled it should be included (HVMFS 

2013:19; Swedish Agency for Marine and Water Management 2018).  

Phytoplankton response to acidic pressure and other pressures 

Two particularly important factors determining major phytoplankton groups are gra-

dient along nutrient condition (oligotrophic-eutrophic) and pH gradient (acidic-al-

kaline) (Brönmark & Hansson 2005). For instance, at pH lower than 5 to 6 the di-

versity and biomass decrease and dominating species groups shift (Brönmark & 

Hansson 2005). The number of phytoplankton taxa and pH is thus positively corre-

lated, i.e. the number of taxa increase with pH, however, the relationship only ap-

plies under pH 7 (Swedish Agency for Marine and Water Management 2018). The 

phytoplankton’s response to acidification is not in the focus of this study.  
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Additionally, several other factors besides nutrient pressure and pH influence the 

lake phytoplankton community composition, such as alkalinity, latitude and water 

colour, where some phytoplankton groups are also influenced by lake surface area 

and depth (Maileht et al. 2013). A decline of phytoplankton species richness and 

biomass is identified for Swedish lakes toward higher latitude (Weyhenmeyer et al. 

2013). Further, variation in phytoplankton richness of different species groups was 

in a Danish lake study besides water chemistry, also explained to a small extent by 

climate, lake morphology and land use (agriculture) in the catchment (Özkan et al. 

2013). 

1.3 Losses of Phosphorus from Land to Surrounding Water 

Since phosphorus is considered one of the most important factors for lake phyto-

plankton growth, reduction of the external load from the catchment is required for 

eutrophication recovery (Lyche-Solheim et al. 2013). The lake productivity depends 

both on the internal produced material (autochthonous) and the large proportion of 

material (such as humic substances and nutrients) transported from the catchment 

area (allochthonous) (Novotny & Olem 1994; Brönmark & Hansson 2005). Under-

standing of factors influencing P concentration in water is important, where varia-

bility of TP concentrations (R2= 0.71) in Swedish lakes was best predicted by the 

relationship to natural suspended matter, absorbance and altitude (Huser & Fölster 

2013). Lakes at low altitude have generally higher concentrations of N and P 

throughout Europe (Nõges 2009). Internal fluxes of nutrients by mineralization of 

organic matter and internal loading with phosphate release from sediment at low 

redox potential (low oxygen) to the water column (Brönmark & Hansson 2005) are 

also important sources. Internal loading occurs especially in summer in shallow eu-

trophic lakes even decades after the reduction of external P supply have taken place 

(Søndergaard et al. 2013). Geographical gradients of both lake morphology and wa-

ter chemistry are seen throughout Europe, where northern lakes have lower concen-

tration of nutrients, alkalinity and pH but higher content of organic matter (Nõges 

2009). The levels of water chemistry parameters (nutrients, alkalinity, pH and or-

ganic matter) are generally higher in larger lakes with larger catchment areas (Nõges 

2009).  

1.3.1 Diffuse- and Point Sources  

According to the calculations of the annual nutrient load to the Baltic Sea for year 

2014, the major sources of nutrients (N and P) are from agriculture (35 % N and 40 

% P) and forestry (36 % N and 30 % P) (Ejhed et al. 2016). The nitrogen load is 
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considerably higher than the P load, and the diffuse leakage from agricultural land 

is the largest anthropogenic source of P followed by wastewater treatment plants for 

the point effluents (Ejhed et al. 2016). Although P transport from land is lower than 

for N, it is still of concern given that freshwater primary producers mainly are P-

limited (Brönmark & Hansson 2005; Smith & Schindler 2009). In Sweden, the most 

intense and largest area of agriculture is located in southern part of the country 

(Johnsson et al. 2016). Urban areas also have a substantial impact as point sources, 

although the improved treatment methods from the 1970s have reduced the nutrient 

emissions from wastewater treatment plants, especially for P (Swedish EPA 2018). 

Phosphorus emissions from Swedish wastewater treatment plants in 2016 amounted 

to 237 tonnes with 96 % purification efficiency (Statistics Sweden 2018). Addition-

ally, nutrient emissions from individual sewers, stormwater, and industry are also 

important to consider for urban impact on water (Swedish EPA 2018). 

The biological quality factors govern the assessment of the ecological status of 

lakes whereas the physical-chemical factors have a supporting function (Swedish 

EPA 2010). For lakes, TP is assessed due to its role as limiting nutrient. For the 

estimation of TP reference values in the running waters, the impact of agriculture  

is considered when there is more than 10 % agricultural land in the catchment 

(HVMFS 2013:19; Fölster et al. 2018). Considering that nutrient retention may oc-

cur in lakes and thereby influence the concentration of P, the 10 % agricultural cri-

terion is not applied when assessing the TP reference value for lakes (Fölster et al. 

2018).  

1.3.2 Soil Properties Affecting Phosphorus Losses  

Soil is a complex system and understanding the effects of soil properties on nutrient 

losses is important to prevent potential leaching and negative effects to surrounding 

water. Generally, factors such as soil texture, structure and permeability, but also 

soil nutrient content and soil particle-size distribution, are important to understand 

leaching (Eriksson et al. 2014).  

Nitrate is a very mobile compound of nitrogen due to low adsorption capacity to 

soil particles (Eriksson et al. 2014) and nitrogen losses are therefore higher in in-

tense agricultural land with low clay content (course texture) soils having high per-

meability (Eriksson et al. 2014; Johnsson et al. 2016). On the small catchment scale, 

highest losses of nitrogen are seen for sandy soil with high precipitation (Kyllmar 

et al. 2014). Leaching of dissolved and particular bound P, depends highly on soil 

aggregates and pore structure (Eriksson et al. 2014). For instance, clay rich soil with 

strong aggregate structure will rapidly transport P through macropores or as surface 

runoff during precipitation even if the fine soil can adsorb P more than permeable 

sandy soil (Eriksson et al. 2014; Ejhed et al. 2016).  
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Soil texture governs to a high degree the prevailing transport pathways between 

fields and water recipients (Eriksson et al. 2014; Johnsson et al. 2016). Another 

important factor for P losses is the soil P content in agricultural soils. In a study 

investigating different soil types with different soil P content Djodjic et al., (2004) 

concluded that subsoil properties such as water transport pathways and P sorption 

capacity are important to consider when assessing the potential for P losses. Soil 

types with high clay content have a generally larger tendency to contribute to P 

losses (Djodjic et al. 2004; Johnsson et al. 2016), but this is highly site specific and 

strongly influenced by the soil properties including the aggregation (Eriksson et al. 

2014). The soils composition of fine particles (clay), organic matter and mineralogy 

are in turn all affecting the availability of P in the soil and its potential for leaching 

though the profile (Eriksson et al. 2014, 2016). Soils ability to adsorb and release P 

is also pH-dependent, where P at low pH is primarily bound to aluminium- and iron 

oxides, while at higher pH to calcium (Eriksson et al. 2014, 2016). On the catchment 

scale, around 80 % of the terrestrial P losses transported to aquatic system originates 

from a small area, around 20 % of the catchment area closest to the lake or river, a 

phenomenon known as the 80:20 rule (Sharpley et al. 2009).  

On arable land, the slope of the fields is considered an important factor for P 

losses where increasing slope contributes to higher losses (Johnsson et al. 2016). 

Another factor also affecting P losses is the crop and its soil cover, where lay (grass-

land) prevent highest losses of P (Johnsson et al. 2016). In Swedish agriculture lay 

is also the dominating crop (Johnsson et al. 2016). Areas with high erosion risk are 

important to detect as important sources of both suspended sediment and P loads 

(Schoumans et al. 2014; Djodjic & Markensten 2018). Soil vulnerability to erosion 

(soil erodibility), vegetative soil cover and slope length are some influencing factors 

for soil erosion risk (Djodjic & Markensten 2018). To prevent P impact on water 

from diffuse sources such as agricultural areas, there are many approaches and strat-

egies to apply at different scales, such as reducing risk of runoff and soil erosion, 

appropriate fertilizer and manure applications and establishing buffer zones con-

nected to the water for nutrient trapping and water flow delay (Schoumans et al. 

2014). 

1.4 Aims and Study Questions 

Ecological status for lakes should be evaluated, monitored and managed according 

to the WFD for each water management cycle (Directive 2000/60/EC). Sweden has 

around 95 000 lakes over 1 hectare (Holmgren 2018) whereas WFD demands only 

that waterbodies over 50 hectare need to be evaluated and reported (Directive 

2000/60/EC, Annex II). For Sweden this represents 7223 waterbodies (Drakare 
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2014). Monitoring of such a large number of waterbodies is a resource-demanding 

process regarding both the economy and time. Improvement of methods to assess 

lake status and upscaling of existing measurements is therefore important. 

This study aims to increase the understanding of the connection between lake 

phytoplankton and catchment properties and could thus be used to improve assess-

ment methods for phytoplankton in lakes. It is also intended to improve the estima-

tion of phytoplankton metrics in lakes lacking measurements of TP. The study will 

therefore investigate potential correlations between phytoplankton and catchment 

properties and explore if variables from the catchment can be used to describe lake 

phytoplankton. Of particular interest is if catchment variables can improve the al-

ready established correlation between phytoplankton and TP in lakes, as well as, to 

what extent the catchment properties can explain phytoplankton and TP itself. The 

lake phytoplankton will be represented by three indicators: total biovolume phyto-

plankton (tot bio), chl-a and PTI. The driving land variables include basic geograph-

ical information such as categories of land use, soil distribution, soil texture, soil 

chemistry and climate variables in the catchments of the studied lakes. The catch-

ment variables will be explained with different categories or more detailed sub-var-

iables. In addition, the lake was also described by basic geographic information of 

size of lake and catchment as well as location. To investigate the correlation between 

catchment characteristics and lake phytoplankton the study aims to answer follow-

ing questions: 

 

Questions regarding phytoplankton: 

 

1. Which catchment variables are important to explain the variation of each 

phytoplankton indicator in Swedish lakes?  

2. To what extent can the variation of each phytoplankton indicator be ex-

plained by the variables detected in question 1?  

3. Can the linear regression between total phosphorus and phytoplankton 

indicator be further improved by including important variables found in 

question 1?  

 

Questions regarding total phosphorus: 

 

4. Which catchment variables are important to explain the variation of total 

phosphorus concentrations in Swedish lakes? 

5. How much of the variation in total phosphorus concentrations in lakes 

can selected catchment variables detected in question 4 explain?  
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In this study, a dataset was built up by collection and compiling various sources 

covering lake water quality and associated catchment characteristics. The main 

components were lake phytoplankton and abiotic factors, physical and chemical, 

together with lake surrounding properties. Figure 1 shows the overall structure of 

the used input data.  

2 Material 

Figure 1. Overview of the dataset variables with lake and catchment properties. In total, 93 variables 

are represented in the dataset where 34 are from the WATERS dataset and 59 variables from the 

catchment dataset. Dashed line show material from the national soil surveys while the other catchment 

datasets represent material from other map sources. Abbreviations illustrate the source and name used 

for the variable group: PLC-Pollution Load Compilation, DSMS-Digital Arable Soil Map of Sweden, 

SGU-Geological Survey of Sweden and MI-Markinventering. 
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2.1 Lake Properties  

2.1.1 WATERS Dataset 

The lake data used in this study was collected by the WATERS project section that 

worked with phytoplankton metrics for Swedish lakes (Lindegarth et al. 2016). The 

WATERS phytoplankton dataset was originally selected from the national data base 

hosted at the Swedish University of Agriculture Sciences (SLU) (Miljödata-MVM 

2019). The WATERS criteria for the selection from the national data base was that 

the selected lakes had at least one reported phytoplankton data occasion between 

July and August, and years 2000 to 2012 (Lindegarth et al. 2016). Water chemistry 

was added to the dataset if available. All selected lakes in the current study are thus 

part of the Swedish Monitoring Programs, with standardised collection techniques 

for sampling and certified laboratories for analyses according to requirements from 

the Swedish Agency for Marine and Water Management. Usually, one lake repre-

sents one waterbody, where lake and associated catchment can be identified with 

individual ID. The larger lakes are however divided into several waterbodies and 

are therefore represented several times in the dataset. This means that larger lakes 

may be represented by different biological and chemistry values collected at indi-

vidual sampling sites.  

The WATERS project made a compiled version from data derived from the na-

tional data host, where a single mean value was calculated for 2000-2012 data for 

each variable and sampling site/lake, when more than one value was available 

(Lindegarth et al. 2016). The geographical information about lake depth, location 

and altitude (masl) in the WATERS dataset had been derived from Swedish Mete-

orological and Hydrological Institute (SMHI 2019). The WATERS dataset covers 

806 lake sites from the whole of Sweden. For the current study, only data represent-

ing areas with enough coverage in the land information was selected, see study 

boundaries in Section 3.1. In total, 523 sampling locations were used in this study 

representing 487 lakes. Eight lakes with several waterbodies in each lake are cov-

ered by together 44 sampling locations (waterbodies) in the dataset. Table 1 show 

all lake variables used in in this study, including phytoplankton, water chemistry, 

location and physical properties. Variables representing the phytoplankton are total 

biovolume (biomass), chl-a, PTI and number of taxa. Water chemistry variables in-

clude pH, water colour (filtered water, absorbance measured at 420 nm), alkalinity, 

conductivity, metals and nutrients. 
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Table 1. Lake variables, mean value July-August 2000-2012, derived from the WATERS dataset and 

used in this study. Min, max and median for the variable and number of waterbodies (N) included. 

Note that all variables are not available for all waterbodies, in total 523 waterbody´s are represented. 

Transformation type used for each variable are also given. 

Variable description Variable name Unit Transf. N Min Max Median 

Lake Mean Depth  L. Mean Depth m log(x) 397 0.5 38.7 4.7 

Lake Max Depth L. Max Depth m log(x) 449 0.9 120 14 

Lake Area  Lake Area km2 log(x) 523 0.0086 5550 1.7 

Water Body Area Water Body Area km2 log(x) 523 0.0086 3086 1.7 

Meter Above Sea Level  Masl m No 523 0.1 379.1 75 

Latitude Latitude - No 523 55.49 61.17 58.98 

Longitude Longitude - No 523 11.23 18.93 15.26 

Secchi Depth Secchi Depth m log(x) 320 0.3 15.5 2.2 

Lake pH  Lake-pH - No 301 4.8 9.8 7.2 

Ammonium Nitrogen NH4-N µg/l log(x) 265 0.5 253.3 14.0 

Nitrate and Nitrite  NO2+NO3-N µg/l log(x) 285 1.0 724.8 10.2 

Organic Nitrogen Org-N µg/l log(x) 165 58.0 1220.0 434.5 

Total Nitrogen TN µg/l log(x) 297 216.2 2825.0 535.0 

Phosphate PO4-P µg/l log(x) 245 0.96 145.25 2.88 

Total Phosphorus TP µg/l log(x) 303 1.0 332.5 16.0 

Conductivity Cond mS/m log(x) 301 1.56 53.93 7.42 

Calcium Ca mekv/l log(x) 216 0.023 3.039 0.328 

Magnesium Mg mekv/l log(x) 216 0.02 1.04 0.12 

Sodium Na mekv/l log(x) 213 0.05 1.28 0.22 

Potassium K mekv/l log(x) 214 0.004 0.153 0.029 

Alkalinity Alk mekv/l log(x+1) 298 -0.040 2.500 0.240 

Sulphate SO4 mekv/l log(x) 213 0.019 2.105 0.124 

Chlorine Cl mekv/l log(x) 216 0.024 1.365 0.204 

Fluorine F mg/l log(x) 157 0.019 0.745 0.150 

Total Organic Carbon TOC mg/l log(x) 291 0.8 33.0 10.5 

Silicon Si mg/l log(x) 180 0.1 8.3 1.0 

Absorbance Abs 420nm/ 

5cm 

log(x) 263 0.001 0.746 0.106 

Turbidity Turbidity FNU log(x) 209 0.25 59.50 1.70 

Iron Fe µg/l log(x) 110 8.1 5440.0 191.6 

Manganese Mn µg/l log(x) 110 1.2 730.0 49.6 

Total Biovolume  

Phytoplankton 

Tot Bio mm3/l log(x) 523 0.05 115.78 1.61 

Chlorophyll-a Chl-a µg/l log(x) 321 0.50 231.95 8.05 

Plankton Trophic Index  PTI - No 523 -0.933 1.859 0.088 

Number of Taxa Taxa count No 523 4.5 95.0 45.3 
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2.1.2 Lake Catchments 

The digitized geographical information about the lake catchments comes from the 

Department of Aquatic Sciences and Assessment geographical catchment-database 

at SLU (Miljödata-MVM 2019). The database provided corresponding lake catch-

ment based on the WATERS dataset catchment ID. The lake catchments were de-

lineated in a shapefile containing polygons, with one polygon for each lake catch-

ment. The catchment polygons were thereafter used in the study to extract the dif-

ferent catchment properties, see Section 3.2.  

2.2 Catchment Characteristics 

For the description of the catchment characteristics, different variables regarding 

land use, soil properties (texture, content, chemistry) but also climate factors were 

investigated. The material used comes from two different source types, either as 

continuous map of studied variables, or in form of point data from national soil sur-

vey’s sampling points. Overview of the different catchment properties is given in 

Figure 1 (Section 2). Variables derived from the same source type are grouped as a 

map variable or as a soil survey variable. All catchment variables included in this 

study are divided by the sources and can be found in Table 2. Note that some vari-

ables may have similar names but represent different content, which mainly depends 

on different definitions used in the original data source. Globally there are many soil 

type classification systems used. In this study both the Swedish system (Eriksson et 

al. 2014) and the international classification system FAO/USDA (USDA 2019) 

were used, where the last mentioned system describing soil texture (composition of 

sand, silt and clay) was used for arable land. 

2.2.1 Land Use - PLC 

In order to illustrate the land use distribution for the lake catchments, the infor-

mation from the developed and compiled geographical map within Pollution Load 

Compilation 6 (PLC 6) project was used (Widén-Nilsson et al. 2016). The PLC 6 

Land Use map were originally developed for the calculation of sources of N and P 

loads to Swedish seas for year 2014, and used for reporting to HELCOME about 

PLC 6 (Ejhed et al. 2016). The PLC 6 shapefile used in this study contain a detailed 

land use distribution map as polygons and covers southern Sweden up to and in-

cluding Dalarna county. The land use map contains eleven land use categories: ur-

ban area, forest, open land, mountain, water, sea, mire, arable land, clear cutting, 

wetland and pasture. The PLC 6 Land Use map was produced based on digital maps 

from different authorities (Widén-Nilsson et al. 2016). The main source of the land 
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use map was the GSD-roadmap from Swedish Mapping Cadastral and Registration 

Authority (Widén-Nilsson et al. 2016). The Swedish Board of Agriculture assisted 

with data to improve distribution of arable land, whereas urban areas were derived 

from the Statistics Sweden data (Widén-Nilsson et al. 2016). Finally, the Swedish 

Forest Agency provided information regarding areas that have been clear cut. 

2.2.2 Soil Texture Distribution 

For Soil Texture Distribution, two data sources were used. Firstly, for non-agricul-

tural land, a geographical map from the Geological Survey of Sweden (SGU) was 

used. A combination of different SGU maps with the best available data developed 

by SGU and used in Djodjic & Markensten (2018), was also used in this study. The 

combined SGU soil map contains a raster with spatial resolution 25 x 25 m and 

covers the southern half of Sweden. The map includes 14 categories ranging from 

sand, clay, mountain to till soil. The soil definitions are based on the Swedish clas-

sification system were for instance soils with more than 15 % clay content defines 

as clay soil (Eriksson et al. 2014). Variables from this dataset are named with SGU 

as the first letters followed by the variable name. 

Secondly, for the detailed description of the topsoil texture properties of the ar-

able land, the Digital Arable Soil Map of Sweden (DSMS) (Söderström & Piikki 

2016) was used. This map was developed for the national mapping of arable land in 

Sweden by SLU in cooperation with SGU (Söderström & Piikki 2016). The DSMS 

map is built on a concept where reference soil analysis (soil sampling) was con-

nected to available remote sensor data for model prediction by multivariate adaptive 

regression splines. The DSMS map was produced based on around 15 000 reference 

soil samples from 2011-2012, combined with gamma radiation data and digital ele-

vation model derived from airborne radiometric scanning and airborne light detec-

tion and ranging (LIDAR), respectively. These input data together with quaternary 

geological map build the two primary DSMS digital layers of clay- and sand content 

in arable land topsoil. The DSMS clay layer had a 0-80 percentual continuous range 

and DSMS sand 0-100 percentual range. A silt content map was derived from the 

primary maps (DSMS clay and DSMS sand) with a 0-99 continuous range. A DSMS 

map was also developed for twelve texture classes according to FAO/USDA system. 

For the organic layer, DSMS organic, show just if organic soil is present or not in 

the area.  

In this study the five DSMS maps: clay, sand, silt, FAO and organic were used 

for describing the arable topsoil texture. All DSMS layers are raster with a spatial 

resolution of 50 x 50 m and cover arable land up to and including Gävleborg county. 

The estimated uncertainties when comparing predicted and measured values differ 

between regions and DSMS layers, with an overall 6 % mean absolute error (R2= 
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0.76) for DSMS clay and 11 % (R2= 0.57) for DSMS sand (Söderström & Piikki 

2016). The predicted model for organic are highly uncertain according to Söder-

ström & Piikki (2016). 

2.2.3 Arable Topsoil Texture and Chemistry 

Underlying material for the extraction of the chemical properties in arable land con-

sists of the data from national soil survey of arable land where almost 12 600 topsoil 

samples were collected and analysed during 2011-2012 (Paulsson et al. 2015). The 

soil survey covers Sweden’s arable land excluding the four northern counties. Sam-

pling locations are distributed as a grid, with an average density of one sample per 

200 hectares, with higher sample density in regions with large portion of agricultural 

land (Paulsson et al. 2015). The samples describe the topsoil, down to 20 cm, con-

tent according to Swedish particle size scale of clay (< 2 µm), silt (2-60 µm), sand 

(0.2-2 mm) and gravel (> 2 mm). Soil analyses also included the organic material 

content, pH, aluminium, and iron and plant available nutrients phosphorus, magne-

sium, calcium and potassium extracted by ammonium lactate (Paulsson et al. 2015). 

The soils’ Phosphorus Sorption Capacity (PSC), was also calculated as a sum of 

aluminium and iron on molar basis and used as an indicator of available P-binding 

sites. The potential P leaching risk, estimated as molar ratio between the content of 

plant available P and PSC, called Degree of Phosphorus Saturation (DPS) was also 

calculated and included in the analyses. These sampling points with associated an-

alysed variables were used in this study to describe the chemical properties of the 

arable topsoil for each catchment area, for further specification of the variables see 

Table 2.   

2.2.4 Forest Soil Chemistry- MI 

The forest soil chemistry data used in this study originate from the Swedish Envi-

ronmental Protection Agency monitoring stations covering Sweden as a grid. The 

propose of the inventory program is to provide a basis for both nationwide estima-

tion of the forest soil status and to follow changes in forest soils. Hence, the sam-

pling sites are reinvestigated with regular intervals (Nilsson et al. 2015). The Land 

Inventory Database (Markinventerings databas) host the sample data (Stendahl 

2019). Variables derived from this database are named MI as first letters, referring 

to the Swedish term Markinventering. The samples included in this study where 

investigated between 2003-2012 to approximately cover the same period as both 

lake variables and soil survey on arable land. They represent different humus form 

types in the upper 0-30 cm layer and include pH (extracted with deionized water) as 

well as carbon and nitrogen content in percent weight (Nilsson et al. 2015; Stendahl 
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2019). All samples are collected in the soils’ fine fractions, ≤ 2 mm (Nilsson et al. 

2015; Stendahl 2019). The samples are mainly collected in forest and mire, with few 

samples from pasture, rock and impediment. In the inventory program, forest soil 

samples are included only from the productive forest producing on average at least 

one cubic meter wood per hectare and year (Nilsson et al. 2015).  

2.2.5 Climate: Temperature and Precipitation 

Material included for climate factors was developed by SMHI (Johansson 2000). 

Annual mean value of air temperature (℃) and precipitation (mm) from period 1961 

to 1990 was used. The original data comes from the metrological station network, 

covering Sweden, where geostatic interpolation was used to extrapolate measured 

values to two separate raster files with spatial resolution of 4000 x 4000 m over 

whole Sweden (Ejhed et al. 2016).  
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Table 2. Catchment variables used in the study, derived from different map sources and soil surveys 

shown in the first column. Abbreviations illustrate the source and names used for the variable group: 

PLC-Pollution Load Compilation 6, DSMS-Digital Arable Soil Map of Sweden, SGU-Geological Sur-

vey of Sweden, and MI-Markinventering. Min, max and median for the variable and amount of catch-

ments (N) represented. Note that soil survey variables are not available for all catchments. Transfor-

mation type used for each variable are also given.  
 

Variable description Variable name Unit Transf. N Min Max Median 
 

Catchment Area Catch. Area km2 log(x) 523 0.09 46839.7 48.4 

L
an

d
 U

se- P
L

C
 

PLC6-2 Urban Area Urban Area % log(x+1) 523 0 85.4 0.2 

PLC6-3 Forest Forest % No 523 0 94.3 63.4 

PLC6-4 Open Land Open Land % log(x+1) 523 0 39.0 4.5 

PLC6-5 Mountain Mountain % log(x+1) 523 0 2.9 0 

PLC6-6 Water Water % log(x+1) 523 0 40.6 11.1 

PLC6-7 Sea Sea % log(x+1) 523 0 0.00001 0 

PLC6-8 Mire Mire % log(x+1) 523 0 63.9 5.2 

PLC6-9 Arable Land Arable Land % log(x+1) 523 0 54.5 5.1 

PLC6-10 Clear Cutting Clear Cutting % log(x+1) 523 0 15.8 2.7 

PLC6-11Wetland and 

other unknown 

Wetland+other % log(x+1) 523 0 3.9 0.1 

PLC6-12 Pasture Pasture % log(x+1) 523 0 27.3 1.0 

PLC6-9+11+12  

Agriculture 

Agriculture % log(x+1) 523 0 64.3 7.4 

D
ig

ital A
rab

le S
o

il M
ap

 o
f S

w
ed

en
- D

S
M

S
 

DSMS-Clay Content DSMS-Clay 

Cont 

% 

(mean) 

No 523 0 46.0 15.9 

DSMS-Silt Content DSMS-Silt 

Cont 

% 

(mean) 

No 523 0 75.0 40.0 

DSMS-Sand Content DSMS-Sand 

Cont 

% 

(mean) 

No 523 0 84.5 32.8 

DSMS-Organic  

Content 

DSMS-Organic 

Cont 

% log(x+1) 523 0 4.5 0.2 

DSMS FAO 1 Sand FAO-Sa % log(x+1) 523 0 4.5 0 

DSMS FAO 2  

Loamy Sand 

FAO-LS % log(x+1) 523 0 17.8 0 

DSMS FAO 3  

Sandy Loam 

FAO-SaL % log(x+1) 523 0 33.0 0.4 

DSMS FAO 4 Loam FAO-L % log(x+1) 523 0 25.6 0.8 

DSMS FAO 5  

Silt Loam 

FAO-SL % log(x+1) 523 0 62.9 0.1 

DSMS FAO 6 Silt FAO-S % log(x+1) 523 0 0.2 0 

DSMS FAO 7  

Sand Clay Loam 

FAO-SaCL % log(x+1) 523 0 1.3 0 

DSMS FAO 8  

Clay Loam 

FAO-CL % log(x+1) 523 0 19.4 0 

DSMS FAO 9  

Silt Clay Loam 

FAO-SCL % log(x+1) 523 0 15.7 0 
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Variable description Variable name Unit Transf. N Min Max Median 

DSMS FAO 10  

Sand Clay 

FAO-SaC % log(x+1) 523 0 0.03 0 

DSMS FAO 11  

Silt Clay 

FAO-SC % log(x+1) 523 0 20.7 0 

DSMS FAO 12 Clay FAO-C % log(x+1) 523 0 15.3 0 

S
o

il T
ex

tu
re D

istrib
u

tio
n

- S
G

U
 

SGU 13 Organic Soil SGU-Organic 

Soil 

% log(x+1) 523 0 62.4 7.6 

SGU 14 Clay SGU-Clay % log(x+1) 523 0 41.6 0.4 

SGU 15 Silt  SGU-Silt % log(x+1) 523 0 26.0 0.2 

SGU 16 Sand  SGU-Sand % log(x+1) 523 0 83.8 0.5 

SGU 17 Gravel SGU-Gravel % log(x+1) 523 0 14.7 0 

SGU 18  

Cobbles to Boulders 

SGU-Cobbles 

to Boulders 

% log(x+1) 523 0 1.3 0 

SGU 19 Fluvio-Glacial 

Sediment. Sand-Block 

SGU-Fluvio- 

Glacial Sed. 

% log(x+1) 523 0 81.1 1.3 

SGU 20 Clay Till SGU-Clay Till % log(x+1) 523 0 26.3 0 

SGU 21 Till (Moraine) SGU-Till % No 523 0 89.1 36.0 

SGU 22 Thin Soil 

Layer 

SGU-Thin Soil 

Layer 

% log(x+1) 523 0 74.9 4.3 

SGU 23 Rock SGU-Rock % log(x+1) 523 0 86.0 6.7 

SGU 24 Artificial Fill SGU-A.Fill % log(x+1) 523 0 8.3 0 

SGU 25 Other SGU-Other  % log(x+1) 523 0 3.9 0 

SGU 26 Water SGU-Water % log(x+1) 523 0 36.7 10.8 

1A
rab

le T
o

p
so

il T
ex

tu
re &

 C
h

em
istry

 

Arable Land pH Arable-pH - No 314 4.80 7.74 6.07 

Organic Material  

Content 

OM Cont %  log(x) 314 1.5 63.3 5.6 

Clay Content  Clay Cont %  No 314 0 50.0 18.9 

Silt Content  Silt Cont %  No 314 13.0 100.0 46.6 

Sand Content  Sand Cont %  No 314 0 82.0 32.0 

Gravel Content >2mm Gravel Cont %  log(x) 314 0.02 15.80 1.38 

Phosphorus. Ammo-

nium lactate extracted 

P_AL mg/kg 

soil 

log(x) 314 10.0 220.0 55.7 

Potassium. Ammonium 

lactate extracted 

K_AL mg/kg 

soil 

log(x) 314 25.0 336.3 109.0 

Magnesium. Ammo-

nium lactate extracted 

Mg_AL mg/kg 

soil 

log(x) 314 5.0 600.0 131.9 

Calcium. Ammonium 

lactate extracted 

Ca_AL mg/kg 

soil 

log(x) 314 50.0 8814.9 1424.6 

Aluminium. Ammo-

nium lactate extracted 

Al_AL mg/kg 

soil  

log(x) 314 99.0 1900.0 424.6 

Iron. Ammonium lac-

tate extracted 

Fe_AL mg/kg 

soil  

log(x) 314 110.0 2400.0 490.8 
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Variable description Variable name Unit Transf. N Min Max Median 

Degree of Phosphorus 

Saturation. Ammonium 

lactate extracted  

DPS % log(x) 314 1.0 44.8 8.5 

Phosphorus Sorption 

Capacity  

PSC mmol  log(x) 314 8.0 91.0 24.8 

2M
I- d

ata            3C
lim

ate
 

MI-Carbon Content MI-C. Cont % 

weight  

No 291 4.13 48.80 32.48 

MI-Nitrogen Content MI-N. Cont % 

weight  

No 291 0.20 2.14 1.15 

MI-pH deionized H2O 

extracted 

MI-pH - No 291 3.31 5.95 3.96 

Air Temperature Temp ℃ No 523 2.2 7.6 5.5 

Precipitation Precip mm  log(x) 523 558 1134 688 

1. Number of soil samples in catchments extent from min 1 to max 2241, median 7. Number of samples con-

stitutes to calculated mean value for each catchment and variable. 

2. Number of soil samples in catchments extent from min 1 to max 917, median 10. Number of samples con-

stitutes to calculated mean value for each catchment and variable. 

3. Mean value for each catchment with data from 1961-1990 annual mean. 
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3.1 Study Boundaries 

This study has been geographically limited to include lakes with phytoplankton data 

and associated catchment south of 62°0´0´´N. So, this study thereby includes 487 

lakes (523 sampling sites) situated in the southern part of Sweden. Reasons behind 

this limitation are mainly based on the most limited available map source material. 

Thus, in order to be able to access and extract the same material for all catchments 

and thereby get as homogeneous and as representative material as possible, the study 

focus on the lakes in the southern part of Sweden. For instance, both DSMS map 

and soil survey on arable land cover only the southern part of Sweden. Note that 

larger lakes with several waterbodies will be represented by the whole lake catch-

ment, meaning that they have the same catchment characteristics but different lake 

biology and chemistry data.   

3.2 Geographic Information System Analyses 

To analyse the different geographical information, ArcGIS 10 (ESRI Inc 2018) was 

used with SWEREF 99 TM as the coordinate system. The catchment polygon shape-

file was the layer on which the extraction of all other data was based on.  

Since the smaller polygon catchment areas can be overlapped by larger catch-

ment areas from other lakes the toolbox Spatial Analyst Supplemental Tools (ESRI 

2017) was used to handle the overlapping polygons. Specifically, Tabulate Area 2 

and Zonal Statistics 2 were the two tools used to calculate distribution of variables 

within each catchment. Using these tools, each data source is thus run separately in 

ArcMap, where the catchment polygon layer defined the zone for which the distri-

bution of a given variable was calculated. Generally, Tabulate Area 2 tool was used 

for raster sources with categorical values whereas the Zonal Statistics 2 tool was 

3 Methods 
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used for data variables with continuous values. The results of these calculations 

were tables containing different statistical values, most often the mean value for a 

given variable per catchment of interest. The tables produced with ArcMap were 

then processed and analysed in Excel software (Microsoft Office 2016). The fol-

lowing part describes how the different catchment properties were linked and ex-

tracted to the catchment polygons in ArcMap. 

To make it easier to implement Tabulate Area 2 tool, the PLC 6 Land Use feature 

layer (polygon) was transformed to raster with 25 x 25 m grid size. SGU-Soil Tex-

ture Distribution and DSMS FAO were also processed by Tabulate Area 2 tool. 

Optimal processing cell size were set to the layer’s own cell size (PLC 6 Land Use 

and SGU-Soil Texture Distribution 25 x 25 m and DSMS FAO 50 x 50 m). The 

output resulted in tables with calculated area, where proportion was calculated for 

each category present in the catchment. Agricultural land was calculated by adding 

arable land, pasture and wetlands on arable land and other agriculture land together. 

As mentioned earlier, DSMS FAO map (categories 1-12) was used on arable land. 

The other arable land DSMS layers (content of clay, silt and sand particles), con-

sisted of continues values (percent). All statistics for these layers were calculated by 

Zonal Statistics 2. A comparison of mean and median in the statistical output was 

made to identify possible substantial differences. Finally, it was checked that no 

major deviations exist when these three DSMS percentage values were summarised 

for each catchment, as the sum of them should amount to 100 %. For DSMS organic, 

a manually percentual value were calculated based on the DSMS organic area and 

total catchment area.  

In the same way as described above, the Zonal Statistics 2 tool was also used for 

the climate variables, temperature and precipitation. Due to the large spatial resolu-

tion (4000 x 4000 m) in these climate layers, smaller catchment areas needed to be 

treated differently. By using Feature to Point tool for these small catchments statis-

tical mean value was calculated by Extract Multi Values to Points tool. When doing 

so, the point located in the middle of the small catchment was chosen as representa-

tive and mean values of temperature and precipitation were extracted for that point. 

All catchments were then described by a mean value for temperature and precipita-

tion from 1961-1990 annual mean period. 

The point layer with 12 600 arable topsoil samples were linked to the catchment 

polygon by Spatial Join tool, with join criteria that one sample point could belong 

to several polygons, to account for the overlapping polygons. Sample points not 

identified in a catchment area were excluded from the study. The number of sample 

points in each catchment and the mean of these points’ associated variables were 

thereafter calculated in Excel. The soil samples from this data set cover only arable 

land and were not available in all catchments. Similarly, as the arable soil samples, 

the MI soil samples dataset was processed in exactly the same way. The MI data 
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were derived only for catchment with available soil sample point(s) present in the 

catchment.  

Finally, all properties produced in ArcMap were compiled in Excel for each 

catchment and prepared for furtherer statistical analysis.   

3.3 Statistical Analysis 

3.3.1 Data Processing  

All statistical analysis were done with JMP Pro 14 (SAS Institute Inc 2018). The 

Shapiro-Wilk Test (α= 0.05) was used to test normality of all variables in the dataset. 

To handle non-normal distributed data, logarithmic transformation is usually sug-

gested for continuous data (Zar 1984) and was used for many variables in the da-

taset. For the individual variable’s transformation see Table 1 and Table 2 in Section 

2. In some cases, untransformed data was used when the transformation did not im-

proved normality according to Shapiro-Wilk Test. A scatterplot matrix was used to 

visualize data, discover outliers but also as an indication of how variables in the 

dataset correlate and which variables could be important for the lake biology. The 

variables SGU water and PLC water, represent the same information (water area), 

and the latter was then used with an assumption of higher precision of the PLC data. 

PLC sea and mountain variables were excluded for further analysis since they were 

present in just a few catchments. Linear regression was used to identify correlation 

between TP and phytoplankton tot bio as well as PTI and chl-a in the lakes. A Prin-

cipal Components Analysis (PCA) was thereafter performed to show correlation 

between all variables in the dataset, including both lake and catchment variables.  

3.3.2 PLS- Partial Least Squares Analysis 

The Partial Least Squares (PLS) analysis method was used to identify the catchment 

properties explaining the variation of the lake phytoplankton and concentration of 

TP. The result of PLS gives an indication of important variables in the catchment 

for further processing. Various models were built and used in PLS for the three de-

pendent variables (Y-variables) in the lakes: tot bio, PTI and TP, with catchment 

properties as the independent variables (X-variables). For each dependent lake var-

iable, three different models were produced and used in PLS. The included groups 

of independent catchment variables for the three models are given in Table 3: the 

first four variable groups are data from continuous map sources while the two last 

variable groups (Arable Soil Texture & Chemistry and Forest Soil Chemistry-MI) 
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represent national soil survey data in the catchment. The remaining two variable 

groups addressed lake location and area where in total five variables are derived 

from the WATERS dataset, hereafter also referred to as map variables. The last sixth 

variable (catchment area) in this group was derived from catchment shape file. Note 

that PLS analysis were based on available data just for the catchments sharing com-

mon variables selected in each model, meaning that catchment or waterbodies with 

missing values for one chosen variable were excluded from the analysis. Maximal 

available data for dependent variables tot bio and PTI were all (523) waterbodies 

and for TP 303 waterbodies.  

Model 1 included soil survey data on arable land and forest (MI-data) together 

with all map variables (first six variable groups in Table 3) in the dataset. For model 

2, only map data is included as the independent variables. The difference between 

model 1 and 2 was that model 1 represented fewer catchments but included all avail-

able catchment variables compared to model 2, which included all catchments. 

Model 3 included the same map variables as model 2 but only catchments containing 

less than 10 % of agricultural land. 

Table 3. Overview of the groups of catchment variables included in each model (M1-M3) for PLS 

analysis with dependent variable being: total biovolume phytoplankton, Plankton Trophic Index and 

total phosphorus. Grey cells show variable groups included in each model. The first four variable 

groups represent map data and the last two soil survey data. Five variables related to lake location 

and lake area are derived from the WATERS dataset were the catchment area are derived from catch-

ment shape file, and these variables will also be referred as map variables. For detailed description 

of each variable included see Table 1 and Table 2. Number of catchments with available data showed 

by maximal number of catchments, meaning that all catchments are not represented in the model. PLC-

Pollution Load Compilation, DSMS-Digital Arable Soil Map of Sweden, SGU-Geological Survey of 

Sweden, and MI-Markinventering. 
 

No. Variables Max No. Catchments M1 M2 M3*  

Land Use - PLC 10 523  
  

DSMS 16 523  
  

Soil Texture Distribution - SGU 13 523  
  

Climate 2 523    

Lake Location 3 523  
  

Area (Lake & Catchment) 3 523  
  

Arable Soil Texture &  

Chemistry 

14 314  
  

Forest Soil Chemistry - MI 3 291  
  

Total Variables 
  

64 47 47 

*M3 including catchment with <10 % agriculture. 
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The PLS analysis options were set to centering and scaling with NIPALS (Nonlinear 

Iterative Partial Least Squares) as method specifications. The validation method 

used was Leave-One-Out, meaning that the PLS cross-validate by leaving out one 

row (catchment) at a time when running the model to find the best dimension for 

building the PLS-model. The factor search range (dimensions) was set to default, 

maximum 15 factors. The first factors should in a good PLS model explain most of 

the variation in X and Y (Cox & Gaudard 2013). Variable Importance for the Pro-

jection (VIP) generated from the PLS analysis works as an indicator for how much 

each variable contributes to explain the model (Cox & Gaudard 2013). Generally, 

variables with small VIP value, less than 0.8, are consider as not important while 

variables with VIP over 1.0 are considered important (Cox & Gaudard 2013). For 

this reason, the criteria VIP >1.0 generated by the PLS analysis, for each model and 

dependent lake variable, was used as an indicator for selection of the important in-

dependent variables for further processing. 

3.3.3 Multiple Regression Analysis 

Catchment variables generated by the PLS analysis with VIP >1.0 were included in 

stepwise multiple regression for each model 1-3 and each dependent lake variable. 

Before the stepwise analysis was done, the variables representing almost the same 

information were evaluated and one of the variables was excluded. For example, 

when both arable land and agricultural land (the sum of arable land, pasture and 

other agricultural land) were estimated in PLS as important variable only agricul-

tural land was kept to avoid high correlation of independent variables. For all step-

wise regression analysis, the default option was used, with minimum BIC (Bayesian 

Information Criterion) as stopping rule and forward direction. Using these settings, 

JMP produces the best stepwise regression based on minimum BIC with output dis-

played in step history. So, for every lake variable (tot bio, PTI and TP), three step-

wise regression were made using the catchment variables from the PLS analysis 

with VIP >1.0. Thereafter, for the phytoplankton dependent variables (tot bio and 

PTI), the same procedure was repeated in exactly same way but with TP now also 

included as independent variable in the stepwise regression. 

Individual assessment was also made of variables included for each final multi-

ple regression to limit the number of variables without substantially reducing the 

proportion of variation explained. For this, the output of the stepwise regression, 

step history’s R2 value, was used. The criteria for the inclusion of a certain variable 

in the multiple regression was the following: when addition of a given variable at a 

time suggested by stepwise regression contributed to at least 2 % increase of step 

history R2, the variable was included in the multiple regression. If the variable con-

tributed less than 2 %, the variable was excluded, and no further variables were 
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added for the multiple regression. In case the variable passed this criteria, but was 

in the multiple regression not statistically significant (p > 0.05), the variable was 

also excluded. Additionally, if the multiple regression selected by criteria was the 

same as the minimum BIC selected regression, then just one regression was the out-

put for the model i.e. the one chosen by the stepwise regression (minimum BIC).  

All produced multiple regressions for each model and each dependent lake vari-

able can be seen in associated Appendix. For the TP models, there are thus two 

multiple regression possible as output for each model based on the variables with 

VIP >1, namely one selected by the JMP (minimum BIC) and another selected by 

criteria described above. Additionally, for each PTI and tot bio model, four multiple 

regression were possible since TP was also included as independent variable: two 

regressions selected by JMP (minimum BIC), with and without TP as independent 

variable, and two selected by criteria, with and without TP as independent variable. 

The flow chart over the statistical analysis can be seen in Figure 2. 

 

Figure 2. Flow chart over statistical analysis with Partial Least Squares (PLS) and stepwise regression 

with associated output. For each dependent variable: total biovolume phytoplankton (tot bio), Plankton 

Trophic Index (PTI) and total phosphorus (TP) three models were produced. All models 1-3, underwent 

the PLS analysis. Variables with VIP >1 from PLS analysis were thereafter processed in the stepwise 

regression for each model separately resulting in a multiple regression (solid arrow). Same analysis was 

repeated to include TP as independent variable (dashed arrow) for tot bio and PTI. Stepwise regression 

process is further divided in part 1 performing the multiple regression based on all variables selected by 

JMP, minimum BIC (Bayesian Information Criterion), and part 2, where further reduction of variables 

was done based on following criteria*: Step history’s R2 value were used to assess whether addition of 

variable one at a time contributed to ≥ 2 % in R2. If variable addition contributes < 2 %, it was excluded, 

no more variables were included. Also, in cases when variable contributed to ≥ 2 % but was not statisti-

cally significant (p > 0.05) in the following multiple regression, the variable was excluded. Additionally, 

if the criteria were the same as JMP selection, just one regression was the output i.e. the one selected by 

the stepwise regression. For TP, two multiple regression were possible as output for a model. In total, four 

multiple regression are possible as output for a model from PTI and tot bio. 
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4.1 Description of the Dataset  

A total of 487 lakes located in southern Sweden were used in the analyses. Eight of 

these lakes are large lakes and represented 44 waterbodies, making total number of 

included waterbodies to 523. The lakes are distributed in the southern part of Swe-

den, up to just above latitude 61°N, see Figure 3. The dataset contains lakes with 

various properties sampled in July-August between 2000-2012 (mean value), see 

Table 1 in Section 2.1.1. The lake area ranges from smallest 0.0086 km2 to largest 

5550 km2 with median of 1.7 km2, while the largest water body area is 3086 km2. 

The total biovolume of phytoplankton varies between 0.05-116 mm3/l (median 1.6 

mm3/l) whereas PTI-value range from -0.9 to 1.9 (median 0.09), with data available 

for all 523 waterbodies. Chlorophyll-a ranges between 0.5-232 µg/l, with a median 

8 µg/l (N= 321). Total phosphorus was available for 303 waterbodies with range 

1.0- 332.5 µg/l, and median 16.0 µg/l.  

The associated catchments had a median area of 48 km2 but range from the small-

est 0.09 km2 to the largest 46840 km2, see Table 2 in Section 2.2. The share of forest 

(0 to 94.3 %) and agricultural land (0 to 64.3 %) also varied considerably. In the 

entire dataset of all 523 waterbodies, 310 of those waterbodies were characterised 

by less than 10 % agricultural land in the catchment, which was used in the sub-

analysis, model 3. In the whole dataset the share of urban area was 0.2 % (mean) 

but varies between 0 to 85.4 % in the catchments.  

The comparison of mean and median from the GIS statistical output for the 

DSMS layer (content of clay, silt and sand particles) showed small differences and 

therefore the mean values are presented here in the results. 

 

4 Results 
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Figure 3. Location of the 487 investigated lakes in southern Sweden. Eight lakes are larger and consists 

together of 44 waterbodies (not shown in the map) for example lake Värnen, Vättern and Mälaren. A 

total of 523 waterbodies were included in the dataset. 
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4.2 PCA Analysis 

The PCA analysis shows the correlation between all lake and catchment properties 

in the dataset, see Figure 4. The first PCA component explains 23.8 % and the sec-

ond 10.9 % of the variation. Variables correlated positively to each other are close 

to each other, while a negative correlation is indicated by being at the opposite sides 

of the centre. Variable strength is shown by the distance from the centre, with higher 

strength farther away from the middle. Generally, the PCA indicates that lake phy-

toplankton indicators (chl-a, tot bio and PTI) are positively correlated with each 

other and lake TP. These variables also have positive correlation with certain catch-

ment properties, for instance agriculture, and negative correlations with variables 

such as forest and secchi depth. Number of taxa is located close to the middle with 

lower strength and weaker correlation to the other variables in the PCA analysis. 

Figure 4. PCA analysis for all 93 variables included in the dataset: 34 lake variables (cross) and 59 

catchment variables (filled circles). Coloured variables show the variables in focus of the study. For 

detailed description of abbreviations see Table 2 for the catchment variables and see Table 1 for the lake 

variables. 
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4.3 Linear Regression Analysis 

Total phosphorus of the lake water was highly correlated with chl-a (R2= 0.78, p < 

0.001), tot bio (R2= 0.66 p, < 0.001) and PTI (R2= 0.56, p < 0.001) with 303 obser-

vations, see Figure 5A-C. The correlation between chl-a and tot bio was also strong 

(R2= 0.75, N= 321, p < 0.001, Figure 5D) therefore only tot bio was investigated 

further. 
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Figure 5. Linear regression for total phosphorus A) total biovolume phytoplankton B) chlorophyll-a C) 

PTI (Plankton Throphic Index) for 303 observations, and D) correlation of total biovolume phytoplank-

ton and chlorophyll-a for 321 observations. Note the logarithmic scales. * (p < 0.05) ** (p < 0.01) *** 

(p < 0.001)   
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4.4 Total Biovolume of Phytoplankton 

The three PLS models produced for tot bio explain the variation of Y and X varia-

bles to different extent, see Table 4. Model 2, including all 523 catchments, explain 

the highest variation of Y (43.7 %) and X (50.4 %). The number of catchments 

included in the models differs due to differences in data availability and includes 

250 catchments in model 1 and 310 catchments in model 3, for catchment having 

less than 10 % of agricultural land. The number of factors explaining the variation 

differ also between the models. 

Table 4. PLS analysis for total biovolume phytoplankton as Y and catchment variables as X. Included 

number of X variables, selected catchments and numbers of factors explaining the variation for X and 

Y in the model.  

Model No. of X 

Variables 

Incl. 

Catchments No. of 

Factors 

Variation Explained 

for Cumulative X  

(%) 

Variation Explained 

for Cumulative Y  

(%) 

No. of  

VIP > 1 

M1 64 250 2 32.9 30.6 26 

M2 47 523 6 50.4 43.7 19 

M3* 47 310 3 33.8 39.1 21 

*M3 represent catchment with <10 % agriculture. 

Overall, there is a small difference regarding the selection of most important varia-

bles (VIP >1) included in each individual model, as seen in Figure 6, 7 and 8. Re-

gardless of model, the share of agricultural land was shown to be important. Map 

variables shown to be important in all models for tot bio were different land use 

categories, soil composition, lake location and climate (precipitation).  

Important catchment variables with VIP >1 included in model 1 indicate that 

both map sources and soil survey data were important for the lake tot bio (Figure 

6). The share of agricultural land use has the highest VIP value, whereas variables 

from the soil surveys data were in the lower VIP range with MI-pH (forest soil sur-

vey pH) at the top (Figure 6). Model 2, including only map variables, shows that 

variables such as land use categories, clay content, FAO-textural classes with finer 

soils (clay loam and silty clay loam), lake location (longitude and altitude (masl)) 

and precipitation are important for the model (Figure 7). Variables with highest VIP 

value for model 2 are agricultural land use and forest. The result for model 3 which 

only include catchments with less than 10 % agricultural land, illustrated with VIP 

values in Figure 8, show that most important variables for lake tot bio are still the 

share of agricultural land but also lake location along the longitudinal axis.  
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Figure 6. Model 1, catchment variables with VIP >1 from PLS for total biovolume phytoplankton with 

250 catchments included and two factors explained. Red dashed line indicates VIP =1. 
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Figure 7. Model 2, catchment variables with VIP >1 from PLS for total biovolume phyto-

plankton with 523 catchments included and six factors explained. Red dashed line indicates 

VIP =1. 

Figure 8. Model 3, catchment variables with VIP >1 from PLS for total biovolume phyto-

plankton, 310 catchments included with less than 10 % agricultural land and three factors 

explained. Red dashed line indicates VIP =1. 
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Results of multiple regressions for tot bio produced from variables important in PLS 

analysis (VIP >1) for each model are shown in Table 5. Depending on the model, 

catchment variables explain the Y-variable with 29-33 %, without adding TP. Com-

mon variables for model 1 and 2 are agricultural land, urban areas and water body 

area. The share of agricultural land has according to the effect test the highest ex-

planation for these two multiple regressions (Table 10, Appendix 1). For model 3 

without TP in the regression the share of forest land is the strongest explanatory 

variable important for the lake tot bio and the share of agricultural land are not in-

dicated as important in this regression (Table 10, Appendix 1). A common explan-

atory variable for tot bio in model 1 and model 3 (excl. TP) is longitude. 

When TP was added as independent variable, it was the most important variable 

regardless of model and explained up to 66 % of tot bio in the dataset (model 2, 

Table 5). Note that for model 1, soil forest survey data (MI-pH) was in combination 

with TP significantly explain the variation of the lake tot bio. The stepwise regres-

sion output with step history can be seen in Table 11 (Appendix 1) for selection by 

JMP (minimum BIC) and by criteria. Multiple regression selection based on selected 

criteria described in Section 3.3.3 showed that the number of variables could be 

reduced with a small decrease in step history R2, for all multiple regressions see 

Table 10 in Appendix 1. 

Table 5. Multiple regression with R2 and significance level for the total biovolume phytoplankton (tot 

bio). Input variables were derived from PLS with VIP >1 for each model, without and with total phos-

phorus (TP) as variable. Observations show the number of catchments used in multiple regressions 

and the numbers in parentheses show observations used in stepwise regressions. Multiple regressions 

selected by JMP (minimum BIC) are shown in bold text and by criteria as Italic text.  

Model Excl/Incl. TP R2  Observ. Multiple Regression 

M1 Excl. TP 0.32*** 523 

(250) 

logTot Bio=-1.142+0.0548*Longitude- 

0.117*logWater Body Area+0.269*log(Urban Area+1)+ 

0.566*log(Agriculture+1) 

Incl. TP 0.65*** 185 

(161) 

logTot Bio=-2.133+0.215*MI-pH+1.136*logTP 

M2 Excl. TP 0.33***  523 

(523) 

logTot Bio=-0.353-0.115*logWater Body Area+ 

0.260*log(Urban Area+1)+0.500*log(Agriculture+1)+ 

0.250*log(SGU-Clay+1) 

Incl. TP 0.66***  303 

(303) 

logTot Bio=-1.277+1.137*logTP 

M31 Excl. TP 0.29***  310 

(310) 

logTot Bio=0.605+0.0766*Longitude+ 

0.00941*DSMS-Clay Cont-0.0179*Forest- 

0.631*log(Water+1) 

Incl. TP 0.64***  199 

(199) 

logTot Bio=-1.294+1.142*logTP 

1. M3 represent catchment with <10 % agriculture. * (p < 0.05) ** (p < 0.01) *** (p < 0.001)   
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4.5 Plankton Trophic Index (PTI) 

Results from PLS analysis for PTI show that model 2, based on map variables only, 

explained the highest amount of variation for PTI with 52.5 % (Y) and for the catch-

ment variables 26.1 % (X), see Table 6. The other two models were weaker. Note 

that the number of factors included in the model as well as the number of included 

catchments differ between the models. 

Table 6. PLS analysis for Plankton Tropic Index (PTI) as Y and catchment variables as X. Included 

total number of X variables, selected catchments and numbers of factors explaining the variation for 

X and Y in the model.   

Model No. of X  

Variables 

Incl. 

Catchments No. of 

Factors 

Variation Explained 

for Cumulative X  

(%) 

Variation Explained 

for Cumulative Y  

(%) 

No. of 

VIP > 1 

M1 64 250 1 22.2 30.8 27 

M2 47 523 2 26.1 52.5 18 

M3*  47 310 1 17.0 44.6 19 

* M3 represent catchment with <10 % agriculture. 

Generally, based on the PLS analysis, catchment variables important for explaining 

PTI in each model (VIP > 1) are mainly the same regardless of the model. Variables 

related to the share of agricultural land had the highest VIP-value (Figure 9, 10 and 

11). Result from model 1 indicates that map data had the higher VIP values com-

pared to the soil survey data, which were found in the middle/lower half of the range 

of important variables (Figure 9). The Degree of P Saturation (DPS) from the arable 

soil survey reached the highest VIP value among the variables derived from the soil 

survey data. Important variables in model 2 (Figure 10) and model 3 (Figure 11) 

are relatively similar and mostly differ in the order of appearance. The main differ-

ence between the models used to describe PTI is that size of the area related to the 

lake (water body area and entire lake area) appears as an important variable in model 

3 but not in model 2 or model 1.  
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Figure 9. Model 1, catchment variables with VIP > 1 from PLS for Plankton Trophic Index (PTI) with 

250 catchments included and one factor explained. Red dashed line indicated VIP =1. 
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Figure 10. Model 2, catchment variables with VIP >1 from PLS for Plankton Trophic 

Index (PTI) with 523 catchments included and two factors explained. Red dashed line 

indicated VIP =1. 

Figure 11. Model 3, catchment variables with VIP >1 from PLS for Plankton Trophic 

Index (PTI), 310 catchments included with less than 10 % agricultural land and one factor 

explained. Red dashed line indicated VIP =1. 
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Table 7 show results from the multiple regressions analysis for PTI with associating 

explanatory variables for each model. The results for the PTI without TP as variable 

in the multiple regressions, show that catchment variables together explained 44-48 

% of the lake PTI, see Table 7 for explanatory variables for each regression. The 

share of agricultural land was important in all these three regressions (excl. TP), in 

model 1 and 2 it is the most important variable for explaining PTI according to the 

effect test (Table 12, Appendix 2). Five catchment variables were important for the 

model 3 regression (excl. TP, Table 7) with the share of the clay soil on non-agri-

cultural areas (SGU-Clay) as the most important variable (Table 12, Appendix 2). 

Note that the forested area and total catchment area are important for this regression 

(model 3) but not for the other two regressions without TP. 

PTI can be explained with 65 % when lake TP and share of agricultural land are 

included in a multiple regression (Table 7). For lakes with less than 10 % agricul-

tural land in the catchment, 66 % of PTI can be explained with share of agricultural 

land, TP, lake area and FAO-CL. In all three multiple regressions where the TP is 

included, it was the most important variable for explaining PTI (effect test in Table 

12, Appendix 2). For all six regressions, with and without TP as a variable, the share 

of agricultural land is important for explaining variation of the lake PTI. All PTI 

multiple regression selected by JMP (minimum BIC) and by criteria can be found 

together with the associated test in Table 12 Appendix 2, and for step history results 

see Table 13 .  

Table 7. Multiple regression with R2 and significance level for the Plankton Tropic Index (PTI). Input 

variables were derived from PLS with VIP >1 for each model, without and with total phosphorus (TP) 

as variable. Observations show the number of catchments used in multiple regressions and the num-

bers in parentheses show observations used in stepwise regressions. Multiple regressions selected by 

JMP (minimum BIC) are shown in bold text and by criteria as Italic text.  

Model Excl/Incl TP R2  Observ. Multiple Regression 

M1 Excl. TP 0.44*** 523 

(250) 

PTI=-0.319+0.425*log(DSMS-Organic Cont+1)+ 

0.481*log(Agriculture+1)+0.328*log(FAO-SC+1) 

Incl. TP 0.65***  303 

(161) 

PTI=-0.898+0.326*log(Agriculture+1)+0.613*logTP 

M2 Excl. TP 0.48***  523 

(523) 

PTI=-0.399+0.235*log(Urban Area+1)+ 

0.526*log(Agriculture+1)+0.183*log(SGU-Clay+1) 

Incl. TP 0.65*** 303 

(303) 

PTI=-0.898+0.326*log(Agriculture+1)+0.613*logTP 

M31 Excl. TP 0.47***  310 

(310) 

PTI=-0.0144-0.00632*Forest+ 

0.0802*logCatch.Area+0.232*log(Urban Area+1)+ 

0.344*log(Agriculture+1)+0.258*log(SGU-Clay+1) 

Incl. TP 0.66*** 199 

(199) 

PTI=-0.850+0.100*logLake Area+ 

0.190*log(Agriculture+1)+0.561*log(FAO-CL+1)+ 

0.594*logTP 

1. M3 represent catchment with <10 % agriculture. * (p < 0.05) ** (p < 0.01) *** (p < 0.001)   
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4.6 Total Phosphorus  

PLS analysis for the TP as a Y-variable show that model 2 had the highest explana-

tion degree for variation in lake TP, with 68.1 % (Y) and 67.5 % (X) for the catch-

ment variables, whereas the other two models explained less (Table 8). The number 

of included catchments differ between the models as well the number of factors 

explaining the variation.  

Table 8. PLS analysis for total phosphorus (TP) as Y and catchment variables as X. Included total 

number of X variables, selected catchments and numbers of factors explaining the variation for X and 

Y in the model. 

Model No. of X 

Variables 

Incl. 

Catchments No. of 

Factors 

Variation Explained 

for Cumulative X  

(%) 

Variation Explained 

for Cumulative Y  

(%) 

No. of  

VIP > 1 

M1 64 161 3 44.5 55.4 26 

M2 47 303 10 67.5 68.1 22 

M3* 47 199 3 34.5 66.5 22 

* M3 represent catchment with <10 % agriculture. 

 

The important map variables (VIP >1) for TP common in all three models relates to 

land use (water, agricultural and open land), soil properties on arable land (FAO-

texture, organic- and clay content), non-agricultural soil distribution (SGU- soil tex-

ture of clay and sand), lake location (longitude and altitude (masl)) and also the size 

of both lake (water body area and lake area) and catchment area (Figure 12, 13 and 

14). In model 1, map variables had the highest VIP value and only four variables 

from the arable soil survey were important (Figure 12). None of the MI-forest chem-

istry variables had VIP over 1. The PLS output for models 2 and 3 illustrates that 

important variables are about the same but differ in order of appearance, see Figure 

13 and Figure 14. 
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Figure 12. Model 1, catchment variables with VIP >1 from PLS for total phosphorus (TP) with 161 

catchments included and three factors explained. Red dashed line indicated VIP =1. 
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Figure 13. Model 2, catchment variables with VIP >1 from PLS for total phosphorus 

(TP) with 303 catchments included and 10 factors explained. Red dashed line indicated 

VIP =1. 

Figure 14. Model 3, catchment variables with VIP >1 from PLS for total phos-

phorus (TP), 199 catchments included with less than 10 % agricultural land 

and three factors explained. Red dashed line indicated VIP =1. 
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The multiple regression based on the catchment characteristics could explain 51-55 

% of the variations in TP concentrations in studied lakes, depending on the model 

and associated variables with VIP over 1, see Table 9. Generally, for all three mul-

tiple regressions, different map data such as share of clay and organic soils on non-

agricultural land, as well as the area of water body, and share of agricultural and 

urban areas (not model 2) were indicated as important variables and correlated with 

lake TP. However, the strongest explanatory variable for TP in model 1 was clay 

content on arable land (DSMS-Clay Cont) and for model 3 the share of non-agricul-

tural clay (SGU-Clay), while in model 2 the share of agricultural land was most 

important, see effect test Table 14 in Appendix 3. In cases where multiple regression 

was selected by criteria, it was found that the number of variables included could be 

reduced by marginal reduction of the explanation degree, see Table 14 in Appendix 

3 for all regression produced and Table 15 for step history.     

Table 9. Multiple regression with R2 and significance level for the total phosphorus (TP). Input varia-

bles were derived from PLS with VIP >1 for each model. Observations show the number of catchments 

used in multiple regressions and the numbers in parentheses show observations used in stepwise re-

gressions. Multiple regressions selected by JMP (minimum BIC) are shown in bold text and by criteria 

as Italic text.  

Model R2  Observ. Multiple Regression 

M1 0.51***  303 

(185) 

logTP=0.800+0.0141*DSMS-Clay Cont- 

0.168*logWater Body Area+0.732*log(DSMS-Organic Cont+1)+ 

0.251*log(Urban Area+1)+0.212*log(Agriculture+1) 

M2 0.52*** 303 

(303) 

logTP=0.535-0.137*logWater Body Area+ 

0.472*log(Agriculture+1)+0.308*log(SGU-Organic Soil+1)+ 

0.358*log(SGU-Clay+1) 

M31 0.55***  199 

(199) 

logTP=0.518-0.141*logWater Body Area+0.478*log(Urban Area+1)+ 

0.380*log(Agriculture+1)+0.306*log(SGU-Organic Soil+1)+ 

0.365*log(SGU-Clay+1) 

1. M3 represent catchment with <10 % agriculture. * (p < 0.05) ** (p < 0.01) *** (p < 0.001)   
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This study has investigated the correlation between catchment properties with phy-

toplankton and TP in 487 lakes (corresponding to 523 waterbodies), in the southern 

part of Sweden (Figure 3). The catchments were characterised by in total 64 differ-

ent variables covering land use, soil distribution and texture, soil chemistry, climate, 

lake location and size of lake and catchment. Since a large number of lakes and wide 

range of associating catchment properties were examined in this study, the result 

gives a broad indicator of interactions between properties in the catchment and their 

connection to lake phytoplankton and TP.  

5.1 Lake Phytoplankton and Total Phosphorus Correlate 

with Similar Catchment Describing Variables 

5.1.1 Important Catchment Variables from PLS Analysis  

In the first step in PLS analysis, variables were selected and identified as important 

(VIP >1) for the three dependent variables. This study can from the PLS analysis 

generally conclude that proportion of agricultural land is an important catchment 

variable for explaining phytoplankton tot bio (Figure 6, 7 and 8), PTI (Figure 9, 10 

and 11) and TP (Figure 12, 13 and 14) regardless of which model was applied. Even 

when only lakes with less than 10 % agricultural land in their catchment were con-

sidered (model 3), the proportion of agricultural land was still shown as an important 

variable in all PLS analysis. Generally, the catchment variables that were indicated 

as important (VIP >1) are similar for all models and the three tested dependent var-

iables (Y-variable) and differs mostly in order of appearance. The similarities be-

tween the models were seen even when the models differed to some extent regarding 

the number of included catchments. This confirms the robustness of selected catch-

ment variables identified as important for the description of the phytoplankton and 

TP in this dataset.  

5 Discussion 
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Besides the share of agricultural land, other important explanatory variables 

were soil clay content, FAO-fine soil texture classes, lake location (longitude and 

altitude) and in several cases also urban area and climate (precipitation). It is not 

surprising that both agricultural land and urban areas are important variables in the 

PLS models, since both of these land use categories contribute to a large proportion 

of nutrient losses to surrounding water, not least phosphorus (Ejhed et al. 2016; 

Statistics Sweden 2018). For small agricultural catchment (2-35 km2) studied by 

Kyllmar et al., (2014), a strong positive correlation was found between the clay 

content of arable soils and the stream outlet TP concentration. This relationship 

could be a reason why the importance of fine soil texture was found to be important 

for the PLS models in the current study. The effect of the lake’s position along the 

longitudinal axis could be explained by the difference in water-chemical properties 

in the west-east gradient, due to higher acidity deposition on the west coast (Fölster 

2018) as well as a gradient in precipitation volumes. Importance of altitude (masl) 

can probably be related to water chemistry differences, where lakes at lower altitude 

have generally higher P concentration (Nõges 2009).    

5.1.2 Evaluation of Catchment Variables used in Multiple Regressions  

Selected important variables from the PLS with VIP >1 were used to build the mul-

tiple regressions and were shown to be statistically significant. There is generally a 

small difference in which variables were found as explanatory in the multiple re-

gression for the three examined dependent variables (tot bio, PTI and TP). The dif-

ferences depended partly on the identified variables of importance during the PLS 

analysis (VIP >1) but also on the differences in the number of catchments included 

in the PLS models. Without TP as an independent variable for tot bio (Table 5) and 

PTI (Table 7), a positive correlation was shown to proportion of agricultural land in 

the catchment for all three models with one exception for tot bio in model 3. The 

share of agricultural land is also the strongest explanatory variable for model 1 and 

2 multiple regressions (tot bio: Table 10, Appendix 1 and PTI: Table 12, Appendix 

2). However, importance of agricultural land does not apply to tot bio in model 3, 

representing catchments with less than 10 % agricultural land. In this case, the share 

of forest is the strongest explanatory variable for phytoplankton tot bio with nega-

tive correlation in the multiple regression (Table 10, Appendix 1), although even 

here the share of agricultural land was important for the PLS analysis (Figure 8). 

Lakes dominated by forest land use are then predicted to have lower volume of phy-

toplankton. Losses of nutrient to surrounding water are thus also considerably lower 

for forest than agricultural areas (Ejhed et al. 2016). Phytoplankton growth is thus 

also affected by other factors in the lake, for instance content of humic substances 

(Maileht et al. 2013).  
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For estimation of the TP concentration in the lake, the multiple regressions show 

that the share of agricultural land is also an important explanatory variable and cor-

relates positively to TP (Table 9). For large Swedish catchment areas a strong posi-

tive correlation between the share of arable land and the TP concentration in the 

watercourse outlet has been found (Bol et al. 2018). The reason that phytoplankton 

(tot bio and PTI) correlate well with the share of agricultural land in the catchment 

is then probably an indirect effect of higher TP concentration in the lake as the share 

of agricultural land increases. 

Correlation of catchment properties with total biovolume of phytoplankton 

Multiple regression for lake tot bio showed that four catchment variables together 

significantly can predict 29-33 % of the variation in tot bio, depending on model, 

and with small difference in the explanatory variables (Table 5). Both models 1 and 

2 showed a negative correlation between tot bio and water body area, and a positive 

correlation to diffuse- and point sources (agriculture and urban area). The reason for 

lower volume of phytoplankton in lakes with a larger water body area could be due 

to the properties in the lake affecting both the growth of phytoplankton and the con-

centration of P. For European lakes, it has been seen that lakes with longer residence 

time have lower concentration of nutrients (TP and nitrogen compounds) as well as 

lower chl-a concentrations (Nõges 2009). Although residence time is not investi-

gated in this study, the larger lakes probably have longer residence time allowing 

sedimentation processes to take place in the lake. The fact that the volume of phy-

toplankton is lower in lakes with larger water body area might be consequently an 

effect of lower P concentrations. A negative correlation between the lake TP and 

water body area was also found in this study (Table 9). Another explanation for the 

negative correlation of water body area to both lake TP and tot bio could be a dilu-

tion effect. Considered that the lakes with a larger surface area have also larger lake 

volume, which was shown for European lakes (Nõges 2009).  

Other explanatory variables for tot bio in the multiple regressions in models 2 

and model 3, were the share of finer soils on non-agricultural land (SGU-Clay) and 

the clay content of arable (DSMS-Clay Cont), respectively (Table 5). Both these 

variables showed a positive correlation with the tot bio, i.e. higher tot bio is expected 

at higher clay contents in the catchment area. Longitude was also positive correlated 

to tot bio (model 1 and 3) in the multiple regression, probably due to the lake chem-

ical gradient in west-east direction in Sweden. For instance, an acidity gradient 

where lakes in the eastern part of Sweden are less acidified (Fölster 2018) with 

higher pH values due to lower deposition of acidifying agents. Additionally, the 

phytoplankton composition is also controlled by other water chemistry parameters 

such as alkalinity and water colour (Maileht et al. 2013).  
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However, the multiple regression showed that catchment properties together 

with TP could not further explain the lake tot bio in this study. The strongest signif-

icantly correlation (model 2) found for tot bio was the correlation to lake TP where 

66 % (N= 303) of the variation was explained (Figure 5A, Table 5). In the case with 

fewer catchments (N= 161, model 1) the correlation between tot bio and TP was 

weaker (R2= 0.61, Table 11 in Appendix 1). In this case the correlation could sig-

nificantly be improved by inclusion of MI-pH (forest soil survey pH) to 65 % (N= 

185, Table 5). The fact that lake pH is correlated with phytoplankton composition 

and biomass is well recognised (Brönmark & Hansson 2005). The positive correla-

tion to MI-pH thus shows that phytoplankton biomass increases with higher pH val-

ues in surrounding forest soils.  

For all examined phytoplankton indicators in this study, the strongest explana-

tion was found for chl-a where 78 % (N= 303) of the variation was significantly 

explained by the lake TP (Figure 5B). That chl-a is showing a strong response to 

TP is in line with other studies (Phillips et al. 2008; Carvalho et al. 2012; Lyche-

Solheim et al. 2013; Lindegarth et al. 2016). The strong correlations of chl-a with 

TP is the reason that no further investigation was made for chl-a. Also, the strong 

correlation, 75 % (N= 321, Figure 5D), between chl-a and tot bio means that the 

explanatory catchment variables found for the tot bio to a large extent also can ex-

plain chl-a.  

Catchment variables improved prediction of plankton trophic index 

According to the results of the multiple regressions, PTI was the only phytoplankton 

indicator where catchment properties (the share of agricultural land) significantly 

increase the explanation degree of the index variation together with TP to 65 % (N= 

303, Table 7), where the concentrations of TP alone explain 56 % (N= 303, Figure 

5C) of PTI. For lakes with less than 10 % agricultural land in the catchment, model 

3, TP together with proportion of three catchment variables (FAO-CL, lake area and 

agriculture) could significantly explain the variation of PTI with 66 % (N= 199, 

Table 7). All these variables were positively correlated to PTI. However, TP is still 

the best predictor of PTI, and this strong positive relationship to TP was also found 

in other studies (Phillips et al. 2012; Lyche-Solheim et al. 2013; Lindegarth et al. 

2016). 

This study shows that three catchment variables (share of agricultural land, share 

of urban area and SGU-Clay) were able to significantly explain 48 % (N= 523, Table 

7) of the variation in the lake PTI, having all positive correlation to PTI. Almost as 

strong correlations were also found for the other two models, model 1 (44 %, N= 

523) and model 3 (47 %, N= 310), although with some differences in the explana-

tory catchment variables and the number of included catchments and lakes. Regard-

less of the model, with and without TP as an independent variable, the share of the 
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agricultural land was indicated as a statistically important variable for PTI with pos-

itive correlation in the multiple regressions. This means that higher PTI values, i.e. 

species more tolerant to high nutrient levels, can be expected in lakes with a larger 

share of agricultural land in the catchment. Agriculture is also considered one of the 

major sources of nutrient losses to surrounding water (Ejhed et al. 2016). 

 Soils of importance for PTI were all related to fine texture soils, such as non-

agriculture clay (SGU-Clay), as well as fine textured arable soils, silty clay (FAO-

SC) and clay loam (FAO-CL) (Table 7). For the model 3 regression, lake surface 

area was one of the four variables (including TP) that significantly influenced PTI, 

with a positive correlation. The importance of lake surface area has also been found 

for PTI in Phillips et al., (2012), where higher PTI were expected with increasing 

lake area. Without TP in model 3, the catchment size was found to be an important 

variable. In the whole dataset with 523 waterbodies, the PTI (-0.9 to 1.9) covered 

both the oligotroph and eutrophic scale. The fact that the PTI values ranged across 

the entire scale in this dataset means that the connections found in this study thus 

apply to lakes with both high and low PTI values.   

How much can catchment variables together predict lake total phosphorus? 

Certain catchment properties were significantly correlated with lake TP explaining 

51-55 % of the variation, depending on the regression model used (Table 9). Ex-

planatory variables differ slightly between the models and in total four to five vari-

ables were of importance for the regressions. It can also be concluded from the re-

gressions that the proportion of the agricultural land and urban area (not for model 

2) are positively correlated to the lake TP whereas TP was negatively correlated to 

the water body area. High level of P can then be expected in smaller lakes with a 

high proportion of agricultural and urban land use in the catchment. Both these land 

use categories are known as important sources of nutrient losses to surrounding wa-

ter (Ejhed et al. 2016; Statistics Sweden 2018). Although lakes with less than 10 % 

agricultural land in associated catchment were studied separately, the share of agri-

cultural land was still an important variable concerning the concentration of TP in 

the lake water. Negative correlation between water body area and TP has also been 

identified for tot bio and water body area in this dataset (mentioned above) and 

probably the same explanation could also be applied for TP. Namely, that TP is to 

some extent influenced by the water body area and in turn tot bio is correlated to TP 

levels. However, it is important to remember that phytoplankton growth is depend-

ent on dissolved nutrients in the water column (Brönmark & Hansson 2005) whereas 

TP includes both dissolved P and P bound into organisms and particles.  

Other important catchment variables for the description of lake TP identified by 

the regressions were related to soil properties in both agriculture and non-agricul-

tural areas (Table 9). For instance, a positive correlation to TP was found to the 
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share of organic and clay soil (non-agricultural areas) as well the soils’ clay and 

organic content (arable areas) in the catchment. Since the soils with a higher clay 

content have a greater possibility to form macropores and through that contribute to 

P transport and leaching (Eriksson et al. 2014; Johnsson et al. 2016), this could then 

be one explanation why an increased soil clay content in the catchment contribute 

to increased concentration of TP in the lake. That clay content in the catchments 

arable soil is positively correlated to concentration of TP in the water is in line with 

Kyllmar et al., (2014). Consequently, over 50 % of the variation in TP levels in the 

lake could significantly be explained with the help of properties in the catchment 

area (Table 9), confirming that the terrestrial properties in the surrounding area have 

a large impact on the lake’s water quality and are important to consider for manage-

ment to prevent nutrient losses and avoid eutrophication. 

The regulation of P levels in lakes is complex and depends on both external pro-

cess in the catchment, explored in this study, but also on internal processes within 

the lake such as retention of nutrients and internal loading of P from the sediment 

(Brönmark & Hansson 2005; Søndergaard et al. 2013). Catchment properties not 

investigated directly in this study which may affect transport and nutrient losses to 

surrounding water are for instance soil vulnerability for soil erosion (Djodjic & 

Markensten 2018), crop distribution and field slope (Johnsson et al. 2016). Addi-

tionally, the data regarding nutrient losses from individual sewers as well as 

wastewater treatment plants (Statistics Sweden 2018; Swedish EPA 2018) could be 

taken into consideration. An inclusion of these variables in regression models might 

lead to further increase in our understanding of the relationship between catchment 

characteristics and lake properties. 

5.2 Evaluation of Input Data and Statistical Models  

The importance of both soil chemistry data from soil surveys and available contin-

uous map data were evaluated in this study, as shown in PLS model 1. Soil chemis-

try samples covering arable as well as forest soils (MI-data) were less important for 

the three studied Y-variables since some of these variables ended up in the lower 

half of important variables with VIP >1 (Figure 6, 9 and 12). This is also confirmed 

in associated multiple regressions (Table 7 and Table 9) where only in one case 

variables related to the soil surveys turns out to be statistically significant, i.e. MI-

pH variable for the phytoplankton total volume (Table 5). The influence of climate 

(air temperature and precipitation) has not been detected as important for the multi-

ple regressions although precipitation was important in most PLS analysis. Too 

small variation of used average values (period 1961-1990) within the climate vari-

ables in the dataset can be one reason. Optimally, the values for temperature and 
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precipitation should cover the same period as the lake data (2000-2012) used. For 

instance, the growth of phytoplankton is influenced by the temperature during the 

growing season (Brönmark & Hansson 2005) and for Swedish lakes, the duration 

of the ice-free season also influence the phytoplankton biomass (Weyhenmeyer et 

al. 2013). In European lakes, climate variables were identified as important factors 

for PTI (Phillips et al. 2012). 

The three produced and examined models were intended to cover the best avail-

able data. Model 1 includes all 64 catchment variables (both soil chemical data from 

soil surveys and map data) in the dataset but do not includes all lakes. The MI-forest 

soil survey data is distributed in a grid pattern over Sweden (Nilsson et al. 2015) 

and so even the arable soil survey samples but with increased samples density in 

more intensive agriculture regions (Paulsson et al. 2015). Consequently, smaller 

catchment areas are probably underrepresented in model 1 since there is lower prob-

ability that soil samples were collected compared to the larger catchment areas. On 

the other hand, model 2 includes all map data and the entire dataset of lakes. Im-

portance of the agricultural land was examined in model 3, by selection criteria 

where only lakes with less than 10 % agricultural land in the catchment were in-

cluded.  

The PLS analysis show that model 2 explains the highest variation of the X-

variables (catchment variables) and each Y-variable, for tot bio 43.7 % (N= 523, 

Table 4) of the variation were explained and 52.5 % for PTI (N= 523, Table 6) 

respective 68.1 % for TP (N= 303, Table 8). This indicated that a combination of 

these map variables explains the most variation and are especially important to con-

sider in relation to phytoplankton and TP.  

5.3 Limitations and Uncertainties 

Several map layers have been used to describe the land use, soil texture and soil 

distribution as well as climate properties in the lake catchment area. The accuracy 

is thus controlled by the source’s own spatial resolution where 50 x 50 m used for 

DSMS layers, 25 x 25 m SGU layer and climate 4000 x 4000 m. Reduced accuracy 

when converting land use (PLC 6) feature layer to 25 x 25 m raster, to be able to 

incorporate the GIS tool, can be considered negligible for the result since the other 

map sources used have the same or even lower resolution. Of course, some uncer-

tainty can arise during the production of each individual layer. For instance Söder-

ström & Piikki (2016) considered largest uncertainty in the organic DSMS layer. 

Larger lakes with several waterbodies included in the dataset are represented by 

the lake’s entire catchment area and not the sub-catchment. The specific data for the 

lake chemistry and biology are those represented for the water body area. For TP 
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and the volume of phytoplankton is shown to correlate to the water body area and 

not to the entire lake surface area which could indicate that local properties within 

the waterbody influence the chemistry and biology. Additionally, catchment prop-

erties close to the waterbody might have higher influence on the waterbody com-

pared to properties further away in the catchment and thus be more important for 

the management of large lakes. The specific catchment area for each waterbody 

within the large lakes can thus be of concern. This is especially important when 

assessing P losses on catchment scale, where only a small proportion of the catch-

ment area contributes to the main losses, the 80:20 rule (Sharpley et al. 2009). 

5.4 Future Implications 

The main focus of this study was to evaluate the connections between properties in 

the catchment area and the lake phytoplankton and TP. To further enhance our un-

derstanding of the lake water quality, the correlation to other lake variables can be 

important to investigate further. The PCA analysis (Figure 4) show the correlation 

of all 93 variables in the dataset, in the lake as well on the land. It shows that phy-

toplankton indicators (tot bio, chl-a and PTI) are positively correlated to each other 

and TP. The PCA result can provide indications of water chemistry variables to 

investigate further but also how other catchment and lake variables correlate to each 

other. For phytoplankton, negative correlation is seen to lake depth (mean and max) 

and secchi depth while positive correlation to turbidity, alkalinity, conductivity, 

metals (mainly Cl, Na, K) and other nutrients compounds in the lake. Vulnerability  

and influence of alkalinity has also been concluded for PTI and chl-a (Phillips et al. 

2008, 2012). Therefore, a possible continuation of this study could be to investigate 

the relationship between other water chemistry and catchment characteristics and if 

inclusion of such variables can increase the relationship found for the phytoplankton 

and TP in this study.  

Since the effect of the agricultural land was shown to be important even when 

only lakes with less than 10 % of agricultural land were included, it could therefore 

be of interest to further develop and identify the threshold (“tipping point”) where 

the importance of agricultural land no longer has a strong impact on phytoplankton 

and TP. It would also be interesting to investigate whether the connections found in 

this study also would applies to northern Sweden lakes which, unlike southern Swe-

den, are dominated by forest and are less impacted by agricultural and urban areas 

(Ejhed et al. 2016). In addition, the northern Sweden lake phytoplankton are to a 

greater extent N-limited compared to southern Sweden (Bergström et al. 2008).  

In this large-scale study, no direct connection was found to the data from national 

soil chemistry surveys, although to the certain extent they were important in the PLS 
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models. However, it is worth mentioning that the arable DSMS map layers are pro-

duced and to a high degree based in reference to soil samples from the field (Söder-

ström & Piikki 2016). Further development could thus be to investigate if the arable 

soil chemistry properties are of greater importance for a subset of lakes within in-

tensive agricultural areas and with a high proportion of agricultural land. It would 

be reasonable to assume that the properties of arable soils might have a more prom-

inent role in catchments with high share of agricultural land. 

However, findings in this study could also be used to develop the existing as-

sessment methods for phytoplankton and P in lakes. For running water, assessment 

criteria regarding TP reference values is taken into account when there is more than 

10 % of agricultural land in the catchment area (HVMFS 2013:19). Since the share 

of agricultural land also proves to be important for the studied lakes, consideration 

of the share of agricultural land might also be included in the assessment criteria for 

lake TP reference value. However, an investigation is needed to detect the agricul-

tural limit for lakes since it is considered important for catchment with less than 10 

% agricultural land, but in lakes also internal processes regulate P concentration 

which complicates the reference values of lakes which Fölster et al., (2018) also has 

addressed. 

This study’s findings have hopefully also increased the understanding of the con-

nection between lake biology and chemistry to the surrounding land and could be 

used for lake management and to prevent P losses. The performed multiple regres-

sions could also be tested through dataset on lakes with measured values to validate 

predicted and measured values. Since the water sampling and analyses are expen-

sive, the important map variables for phytoplankton and TP identified here could be 

used to fast screening lakes that may need measures to reach good ecological status 

and therefore need to be assessed according to the WFD. For the estimation of phy-

toplankton, the regression relationship found with catchment properties could be 

used as a broad indicator for lakes without measured TP, especially for PTI. This 

study still recommends, however, to measure TP in the lake for the best estimation 

and highest variation explained for tot bio. However, the measured TP should in 

combination with the share of agricultural land in the catchment be used for PTI 

estimation.  
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• The three investigated dependent lake variables (tot bio, PTI and TP) were all 

positive correlated to the proportion of agricultural land in the catchment area. 

• Agricultural land was an important explanatory variable for PTI and TP, even 

when evaluating lakes with less than 10 % agricultural land.  

• Lake water chemistry, TP, was shown to be the strongest explanatory variable 

for the lake tot bio and PTI as has been found before.  

• PTI was the only phytoplankton indicator where catchment properties, share of   

agricultural land, together with TP support and increased the degree of estima-

tion of PTI to 65 % from 56 % with TP alone. In lakes with less than 10 % 

agricultural land in the catchment area, 66 % variation of PTI were explained by 

positive correlation to TP and share of the three catchment variables: lake area, 

agriculture and FAO-CL.  

• Without TP as an explanatory variable for PTI, catchment variables can together 

explain up to 48 % in the variation in the studied lakes, depending on model and 

included explanatory variables.  

• Strongest correlation for tot bio was to lake TP alone with 66 % variation ex-

plained. Without TP, four catchment properties explain tot bio 29-33 %, depend-

ing on model and slightly differ in explanatory variables.  

• Chl-a was the phytoplankton indicator that had strongest correlation with lake 

TP with 78 % variation explained.   

• Catchment properties in the studied lakes could explain over 50 % of the lake 

TP variation. Explanatory variables depend on model, but overall the content and 

share of the clay- and organic matter in soil, share of agricultural and urban areas, 

as well as the area of the water body were the most important explanatory vari-

ables for TP.  

• In this large-scale study, properties in the catchment area described by continu-

ous map data were shown to be more important as explanatory variables com-

pared to the data derived from national soil surveys.  

6 Conclusions 
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Multiple regression with associated tests and output can be seen in Table 10 and 

step history report from stepwise regression analysis in Table 11 for tot bio. 

Table 10. Multiple regression output for total biovolume phytoplankton with R2. Parameter estimate 

and effect test with significance level for all variables. Input variables derived from PLS with VIP >1 

for each model, without and with total phosphorus (TP) as variable. Number of observed catchments 

in multiple regression and observed in parentheses from stepwise regression. Multiple regression se-

lected by JMP (minimum BIC) in bold text and by criteria in Italic text. Note that variables are trans-

formed. For variable abbreviation see Table 1 and Table 2. 

     Parameters Estimates Effect Test 

Model Excl/Incl TP R2 Observ. Variable Estimate t Ratio Prob>|t| F Ratio Prob> F 

M1 Excl. TP 0.32***   523 

(250) 

Intercept -1.142 -6.01 <.0001 
  

Longitude 0.0548 4.37 <.0001 19.1 <.0001 

Water Body Area -0.117 -4.29 <.0001 18.4 <.0001 

Urban Area 0.269 4.55 <.0001 20.7 <.0001 

Agriculture 0.566 12.34 <.0001 152.2 <.0001 

Incl. TP 0.65 ***  185 

(165) 

Intercept -2.133 -7.73 <.0001 
  

MI-pH 0.215 3.12 0.0021 9.8 0.0021 

TP 1.136 17.37 <.0001 301.9 <.0001 

M2 Excl. TP 0.34***   523 

(523) 

Intercept -0.335 -8.07 <.0001 
  

Water Body Area -0.118 -4.43 <.0001 19.6 <.0001 

DSMS- 

Organic Cont 

0.546 3.18 0.0016 10.1 0.0016 

Urban Area 0.259 4.45 <.0001 19.8 <.0001 

Agriculture 0.397 6.86 <.0001 47.1 <.0001 

SGU-Clay 0.253 5.36 <.0001 28.7 <.0001 

0.33***  523 

(523) 

Intercept -0.353 -8.54 <.0001 
  

Water Body Area -0.115 -4.29 <.0001 18.4 <.0001 

Urban Area 0.260 4.44 <.0001 19.7 <.0001 

Agriculture 0.500 10.33 <.0001 106.7 <.0001 

SGU-Clay 0.250 5.25 <.0001 27.6 <.0001 

Incl. TP 0.66*** 303 

(303) 

Intercept -1.277 -21.12 <.0001 
  

TP 1.137 24.45 <.0001 597.7 <.0001 

M3 Excl. TP 0.30***  310 

(310) 

Intercept 6.143 2.64 0.0087 
  

Longitude 0.0247 0.9 0.3675 0.8 0.3675 

DSMS- 

Clay Cont 

0.00915 3.72 0.0002 13.8 0.0002 

Forest -0.0188 -7.83 <.0001 61.3 <.0001 

Water -0.650 -5.73 <.0001 32.8 <.0001 

Appendix 1 
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     Parameters Estimates Effect Test 

Model Excl/Incl TP R2 Observ. Variable Estimate t Ratio Prob>|t| F Ratio Prob> F 

Precip -1.631 -2.41 0.0167 5.8 0.0167 

0.29***  310 

(310) 

Intercept 0.605 1.76 0.0797 
  

Longitude 0.0766 4.51 <.0001 20.3 <.0001 

DSMS- 

Clay Cont 

0.00941 3.79 0.0002 14.4 0.0002 

Forest -0.0179 -7.48 <.0001 56.0 <.0001 

Water -0.631 -5.53 <.0001 30.6 <.0001 

Incl. TP  0.65***  199 

(199) 

Intercept -1.602 -10.85 <.0001 
  

Water 0.228 2.38 0.0182 5.7 0.0182 

TP 1.197 18.48 <.0001 341.4 <.0001 

0.64*** 199 

(199) 

Intercept -1.294 -18.05 <.0001 
  

TP 1.142 18.65 <.0001 347.9 <.0001 

* (p < 0.05) ** (p < 0.01) *** (p < 0.001)   

Table 11. Report from step history, for total biovolume phytoplankton with and without total phospho-

rus (TP). Mallow´s Cp criterion, p= number of parameters included intercept in selection, AICc=cor-

rected Akaike´s Information Criterion, BIC=Bayesian Information Criterion. Entered action show 

variable includes in stepwise regression where “best” fit selected by JMP, minimum BIC, (Bold text) 

and by criteria (Italic text) for building multiple regression. Note that variables are transformed. For 

variable abbreviation see Table 1 and Table 2. 
 

Step Variable Action "Sig Prob" Seq SS R2 Cp p AICc BIC 

M1  
Excl. TP 
Observ. 250 

1 Agriculture Entered 0.000 13.852 0.191 33.4 2 353.8 364.3 

2 Longitude Entered 0.000 4.154 0.248 15.6 3 337.6 351.5 

3 Water Body Area Entered 0.002 2.178 0.278 7.3 4 329.5 346.9 

4 Urban Area Entered 0.016 1.226 0.295 3.5 5 325.7 346.5 

5 K_AL Entered 0.079 0.647 0.304 2.4 6 324.6 348.8 

6 DSMS-Clay Cont Entered 0.070 0.679 0.313 1.2 7 323.4 351.0 

7 DSMS-Organic Cont Entered 0.029 0.975 0.326 -1.5 8 320.6 351.6 

8 Mire Entered 0.112 0.512 0.333 -1.9 9 320.2 354.5 

9 Mg_AL Entered 0.310 0.208 0.336 -0.9 10 321.3 358.9 

10 FAO-CL Entered 0.353 0.174 0.339 0.3 11 322.6 363.5 

11 MI-pH Entered 0.430 0.126 0.340 1.7 12 324.1 368.4 

12 SGU-Thin Soil Layer Entered 0.515 0.086 0.342 3.3 13 325.9 373.5 

13 SGU-Clay Entered 0.420 0.132 0.343 4.7 14 327.5 378.3 

14 Clay Cont Entered 0.616 0.051 0.344 6.4 15 329.5 383.5 

15 Best Specific . . 0.295 3.5 5 325.7 346.5 

M1 
Incl. TP 
Observ. 161 

1 TP Entered 0.000 29.339 0.605 15.3 2 120.3 129.3 

2 MI-pH Entered 0.001 1.235 0.631 6.1 3 111.6 123.7 

3 FAO-SCL Entered 0.039 0.482 0.641 3.8 4 109.4 124.4 

4 Water Body Area Entered 0.072 0.360 0.648 2.6 5 108.2 126.1 
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Step Variable Action "Sig Prob" Seq SS R2 Cp p AICc BIC 

5 DSMS-Organic Cont Entered 0.197 0.183 0.652 2.9 6 108.6 129.4 

6 Open Land Entered 0.286 0.125 0.654 3.8 7 109.6 133.3 

7 Mg_AL Entered 0.356 0.094 0.656 5.0 8 111.0 137.5 

8 Ca_AL Entered 0.179 0.198 0.660 5.2 9 111.3 140.7 

9 Clay Cont Entered 0.242 0.149 0.663 5.8 10 112.2 144.3 

10 Precip Entered 0.262 0.137 0.666 6.6 11 113.1 148.0 

11 Mire Entered 0.238 0.151 0.669 7.2 12 114.0 151.6 

12 MI-C. Cont Entered 0.100 0.291 0.675 6.6 13 113.5 153.7 

13 Best Specific . . 0.631 6.1 3 111.6 123.7 

M2 
Excl. TP 
Observ. 523 

1 Agriculture Entered 0.000 40.048 0.231 103.4 2 774.8 787.6 

2 SGU-Clay Entered 0.000 10.181 0.290 57.8 3 735.3 752.2 

3 Urban Area Entered 0.000 3.886 0.312 41.6 4 720.5 741.7 

4 Water Body Area Entered 0.000 4.079 0.336 24.6 5 704.4 729.7 

5 DSMS-Organic Cont Entered 0.002 2.205 0.349 16.2 6 696.3 725.9 

6 FAO-SCL Entered 0.019 1.207 0.356 12.6 7 692.7 726.5 

7 Precip Entered 0.016 1.261 0.363 8.7 8 688.9 726.8 

8 Forest Entered 0.025 1.070 0.369 5.7 9 685.8 728.0 

9 DSMS-Clay Cont Entered 0.222 0.317 0.371 6.2 10 686.4 732.7 

10 FAO-SC Entered 0.138 0.467 0.374 6.1 11 686.2 736.8 

11 FAO-L Entered 0.458 0.117 0.374 7.5 12 687.8 742.4 

12 FAO-CL Entered 0.575 0.067 0.375 9.2 13 689.6 748.4 

13 Open Land Entered 0.730 0.025 0.375 11.1 14 691.6 754.5 

14 Longitude Entered 0.801 0.014 0.375 13.0 15 693.6 760.7 

15 Masl Entered 0.927 0.002 0.375 15.0 16 695.8 767.0 

16 Best Specific . . 0.349 16.2 6 696.3 725.9 

M2 
Incl. TP 
Observ. 303 

1 TP Entered 0.000 62.855 0.665 -4.8 2 181.5 192.6 

2 FAO-L Entered 0.079 0.324 0.669 -5.8 3 180.5 195.2 

3 FAO-SCL Entered 0.134 0.235 0.671 -6.0 4 180.2 198.6 

4 Open Land Entered 0.319 0.104 0.672 -5.0 5 181.3 203.3 

5 FAO-SC Entered 0.321 0.103 0.673 -3.9 6 182.4 208.0 

6 Water Body Area Entered 0.464 0.056 0.674 -2.5 7 184.0 213.2 

7 Urban Area Entered 0.552 0.037 0.674 -0.8 8 185.7 218.5 

8 Longitude Entered 0.556 0.036 0.675 0.9 9 187.5 223.9 

9 SGU-Clay Entered 0.725 0.013 0.675 2.7 10 189.5 229.5 

10 Masl Entered 0.599 0.029 0.675 4.5 11 191.4 234.9 

11 Forest Entered 0.712 0.014 0.675 6.3 12 193.4 240.5 

12 Best Specific . . 0.665 -4.8 2 181.5 192.6 

M3 
Excl. TP 
Observ. 310 

1 Longitude Entered 0.000 9.539 0.112 103.5 2 448.6 459.7 

2 Forest Entered 0.000 7.594 0.201 64.4 3 417.9 432.7 

3 Water Entered 0.000 5.788 0.269 35.1 4 392.4 410.9 
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Step Variable Action "Sig Prob" Seq SS R2 Cp p AICc BIC 

4 DSMS-Clay Cont Entered 0.000 2.807 0.302 21.9 5 380.2 402.3 

5 Precip Entered 0.017 1.112 0.315 17.9 6 376.4 402.2 

6 DSMS-Organic Cont Entered 0.074 0.614 0.322 16.5 7 375.2 404.7 

7 Water Body Area Entered 0.047 0.754 0.331 14.5 8 373.3 406.3 

8 SGU-Rock Entered 0.032 0.866 0.341 11.8 9 370.7 407.3 

9 SGU-Clay Entered 0.034 0.839 0.351 9.2 10 368.2 408.4 

10 Masl Entered 0.114 0.461 0.357 8.7 11 367.7 411.5 

11 Agriculture Entered 0.138 0.403 0.361 8.6 12 367.6 415.0 

12 SGU-Sand Entered 0.287 0.207 0.364 9.4 13 368.6 419.5 

13 Lake Area Entered 0.303 0.194 0.366 10.4 14 369.7 424.1 

14 FAO-SCL Entered 0.332 0.172 0.368 11.5 15 371.0 428.9 

15 Urban Area Entered 0.329 0.175 0.370 12.5 16 372.2 433.6 

16 Best Specific . . 0.315 17.9 6 376.4 402.2 

M3 
Incl. TP 
Observ. 199 

1 TP Entered 0.000 31.689 0.639 8.3 2 92.0 101.8 

2 Water Entered 0.018 0.504 0.649 4.6 3 88.4 101.4 

3 DSMS-Organic Cont Entered 0.161 0.176 0.652 4.6 4 88.5 104.7 

4 FAO-CL Entered 0.150 0.184 0.656 4.5 5 88.5 107.8 

5 SGU-Rock Entered 0.035 0.389 0.664 2.1 6 86.1 108.6 

6 Forest Entered 0.075 0.274 0.669 1.0 7 85.0 110.6 

7 SGU-Clay Entered 0.185 0.151 0.672 1.3 8 85.3 114.0 

8 SGU-Sand Entered 0.195 0.143 0.675 1.7 9 85.8 117.5 

9 Urban Area Entered 0.256 0.110 0.677 2.4 10 86.7 121.5 

10 SGU-Thin Soil Layer Entered 0.365 0.070 0.679 3.6 11 88.1 125.9 

11 Precip Entered 0.447 0.049 0.680 5.1 12 89.7 130.6 

12 Masl Entered 0.501 0.039 0.681 6.6 13 91.6 135.4 

13 Best Specific . . 0.649 4.6 3 88.4 101.4 

 

 



65 
 

Multiple regression with associated tests and output can be seen in Table 12 and 

step history report from stepwise regression analysis in Table 13 for PTI. 

Table 12. Multiple regression output for Plankton Trophic Index (PTI) with R2. Parameter estimate 

and effect test with significance level for all variables. Input variables derived from PLS with VIP >1 

for each model, without and with total phosphorus (TP) as variable. Number of observed catchments 

in multiple regression and observed in parentheses from stepwise regression. Multiple regression se-

lected by JMP (minimum BIC) in bold text and by criteria in Italic text. Note that variables are trans-

formed. For variable abbreviation see Table 1 and Table 2. 

     Parameters Estimates Effect Test 

Model Excl/Incl TP R2  Observ. Variable Estimate t Ratio Prob>|t| F Ratio Prob > F 

M1 Excl. TP 0.30***  314 

(250) 

Intercept -0.306 -3.45 0.0006 
  

DPS 0.168 2.27 0.0241 5.1 0.0241 

DSMS- 

Organic Cont 

0.399 2.56 0.0111 6.5 0.0111 

Agriculture 0.349 4.55 <.0001 20.7 <.0001 

FAO-SC 0.336 4.56 <.0001 20.8 <.0001 

0.44***  523 

(250) 

Intercept -0.319 -10.35 <.0001 
  

DSMS- 

Organic Cont 

0.425 3.28 0.0011 10.7 0.0011 

Agriculture 0.481 11.29 <.0001 127.6 <.0001 

FAO-SC 0.328 4.95 <.0001 24.5 <.0001 

Incl. TP 0.66***  303 

(161) 

Intercept -0.708 -4.91 <.0001 
  

DSMS- 

Clay Cont 

0.00340 1.92 0.0555 3.7 0.0555 

Forest -0.00172 -1.1 0.2742 1.2 0.2742 

Mire -0.0580 -1.2 0.2321 1.4 0.2321 

Agriculture 0.253 5.08 <.0001 25.8 <.0001 

SGU-Gravel 0.183 1.53 0.1275 2.3 0.1275 

TP 0.579 12.16 <.0001 148.0 <.0001 

 0.65***  303 

(161) 

Intercept -0.898 -18.25 <.0001 
  

Agriculture 0.326 8.84 <.0001 78.1 <.0001 

TP 0.613 13.51 <.0001 182.4 <.0001 

M2 Excl. TP 0.50***  523 

(523) 

Intercept -0.370 -12.33 <.0001 
  

DSMS- 

Organic Cont 

0.420 3.41 0.0007 11.6 0.0007 

Urban Area 0.258 6.08 <.0001 37.0 <.0001 

Agriculture 0.398 9.22 <.0001 84.9 <.0001 

FAO-SCL 0.204 3.2 0.0014 10.3 0.0014 

SGU-Clay 0.127 3.32 0.001 11.0 0.001 

Appendix 2 
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     Parameters Estimates Effect Test 

Model Excl/Incl TP R2  Observ. Variable Estimate t Ratio Prob>|t| F Ratio Prob > F 

0.48*** 523 

(523) 

Intercept -0.398 -13.31 <.0001 
  

Urban Area 0.235 5.53 <.0001 30.5 <.0001 

Agriculture 0.526 15.78 <.0001 249.0 <.0001 

SGU-Clay 0.183 5.38 <.0001 28.9 <.0001 

Incl. TP 0.68***  303 

(303) 

Intercept -0.880 -16.8 <.0001 
  

Catch. Area 0.0356 2.57 0.0106 6.6 0.0106 

Urban Area 0.150 2.51 0.0127 6.3 0.0127 

Agriculture 0.237 5.91 <.0001 34.9 <.0001 

SGU-Clay 0.146 3.63 0.0003 13.2 0.0003 

TP 0.538 11.11 <.0001 123.5 <.0001 

0.65***  303 

(303) 

Intercept -0.898 -18.25 <.0001 
  

Agriculture 0.326 8.84 <.0001 78.1 <.0001 

TP 0.613 13.51 <.0001 182.4 <.0001 

M3 Excl. TP 0.47*** 310 

(310) 

Intercept -0.0144 -0.11 0.913 
  

Forest -0.00632 -3.53 0.0005 12.4 0.0005 

Catch. Area 0.0802 4.11 <.0001 16.9 <.0001 

Urban Area 0.232 4.07 <.0001 16.5 <.0001 

Agriculture 0.344 5.76 <.0001 33.1 <.0001 

SGU-Clay 0.258 6.12 <.0001 37.4 <.0001 

Incl. TP 0.66*** 199 

(199) 

Intercept -0.814 -14.31 <.0001 
  

Lake Area 0.0872 3.43 0.0007 11.8 0.0007 

Urban Area 0.187 2.44 0.0155 6.0 0.0155 

Agriculture 0.180 2.96 0.0035 8.7 0.0035 

FAO-CL 0.591 4.84 <.0001 23.4 <.0001 

TP 0.543 9.32 <.0001 86.8 <.0001 

0.66***  199 

(199) 

Intercept -0.850 -15.28 <.0001 
  

Lake Area 0.100 4.00 <.0001 16.0 <.0001 

Agriculture 0.190 3.09 0.0023 9.5 0.0023 

FAO-CL 0.561 4.55 <.0001 20.7 <.0001 

TP 0.594 10.78 <.0001 116.1 <.0001 

* (p < 0.05) ** (p < 0.01) *** (p < 0.001)   
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Table 13. Report from step history, for Plankton Trophic Index (PTI) with and without total phospho-

rus (TP). Mallow´s Cp criterion. p= number of parameters included intercept in selection, AICc=cor-

rected Akaike´s Information Criterion, BIC=Bayesian Information Criterion. Entered action show 

variable includes in stepwise regression where “best” fit selected by JMP, minimum BIC, (Bold text) 

and by criteria (Italic text) for building multiple regression. Note that variables are transformed. For 

variable abbreviation see Table 1 and Table 2. 
 

Step Variable Action "Sig Prob" Seq SS R2 Cp p AICc BIC 

M1  
Excl. TP 
Observ. 250 

1 Agriculture Entered 0.000 9.391 0.251 39.4 2 168.9 179.4 

2 FAO-SC Entered 0.000 1.453 0.289 26.6 3 157.7 171.6 

3 DSMS- 
Organic Cont 

Entered 0.001 1.258 0.323 15.8 4 147.7 165.1 

4 DPS Entered 0.017 0.588 0.339 11.9 5 143.9 164.7 

5 SGU-Gravel Entered 0.080 0.309 0.347 10.7 6 142.9 167.1 

6 Mire Entered 0.073 0.323 0.356 9.4 7 141.7 169.3 

7 K_AL Entered 0.057 0.359 0.365 7.8 8 140.1 171.1 

8 FAO-SCL Entered 0.038 0.421 0.376 5.5 9 137.9 172.1 

9 Open Land Entered 0.107 0.253 0.383 4.9 10 137.3 175.0 

10 DSMS-Clay 
Cont 

Entered 0.119 0.234 0.389 4.6 11 137.0 177.9 

11 Clay Cont Entered 0.308 0.100 0.392 5.5 12 138.1 182.4 

12 Longitude Entered 0.297 0.105 0.395 6.5 13 139.2 186.7 

13 Forest Entered 0.204 0.155 0.399 6.9 14 139.8 190.5 

14 FAO-CL Entered 0.224 0.141 0.403 7.5 15 140.5 194.5 

15 Best Specific . . 0.339 11.9 5 143.9 164.7 

M1 
Incl. TP 
Observ. 161 

1 TP Entered 0.000 11.195 0.490 47.1 2 40.2 49.3 

2 Agriculture Entered 0.000 1.388 0.551 24.8 3 21.9 33.9 

3 SGU-Gravel Entered 0.015 0.379 0.568 20.1 4 17.9 33.0 

4 DSMS- 
Clay Cont 

Entered 0.014 0.375 0.584 15.6 5 13.9 31.8 

5 Mire Entered 0.026 0.299 0.597 12.3 6 10.9 31.7 

6 Forest Entered 0.007 0.421 0.615 7.0 7 5.6 29.3 

7 Clay Cont Entered 0.054 0.211 0.625 5.3 8 3.9 30.5 

8 Open Land Entered 0.108 0.145 0.631 4.7 9 3.4 32.8 

9 MI-pH Entered 0.128 0.129 0.637 4.5 10 3.3 35.4 

10 FAO-SCL Entered 0.235 0.078 0.640 5.1 11 4.1 39.0 

11 FAO-SC Entered 0.175 0.101 0.645 5.3 12 4.5 42.0 

12 SGU-Clay Entered 0.260 0.070 0.648 6.1 13 5.5 45.7 

13 DPS Entered 0.299 0.059 0.650 7.1 14 6.7 49.6 

14 K_AL Entered 0.239 0.076 0.653 7.7 15 7.7 53.2 

15 FAO-CL Entered 0.261 0.069 0.657 8.5 16 8.7 56.9 

16 Ca_AL Entered 0.317 0.055 0.659 9.6 17 10.2 60.8 

17 Best Specific . . 0.615 7.0 7 5.6 29.3 

1 Agriculture Entered 0.000 48.026 0.411 98.4 2 429.3 442.0 
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Step Variable Action "Sig Prob" Seq SS R2 Cp p AICc BIC 

M2 
Excl. TP 

Observ. 523 

2 Urban Area Entered 0.000 4.705 0.451 58.2 3 394.3 411.2 

3 SGU-Clay Entered 0.000 3.384 0.480 29.8 4 367.9 389.1 

4 DSMS- 
Organic Cont 

Entered 0.001 1.235 0.491 20.7 5 359.2 384.6 

5 FAO-SCL Entered 0.001 1.157 0.501 12.3 6 351.0 380.6 

6 Catch. Area Entered 0.015 0.661 0.507 8.4 7 347.1 380.9 

7 Open Land Entered 0.188 0.194 0.508 8.6 8 347.4 385.4 

8 FAO-L Entered 0.193 0.189 0.510 8.9 9 347.8 389.9 

9 SGU-Sand Entered 0.116 0.275 0.512 8.5 10 347.3 393.7 

10 FAO-CL Entered 0.180 0.200 0.514 8.7 11 347.6 398.1 

11 Forest Entered 0.387 0.083 0.515 9.9 12 348.9 403.6 

12 Masl Entered 0.341 0.101 0.516 11.0 13 350.1 408.9 

13 DSMS-Silt 
Cont 

Entered 0.389 0.083 0.516 12.3 14 351.5 414.4 

14 DSMS- 
Clay Cont 

Entered 0.714 0.015 0.516 14.2 15 353.5 420.5 

15 FAO-SC Entered 0.696 0.017 0.516 16.0 16 355.4 426.6 

16 Best Specific . . 0.501 12.3 6 351.0 380.6 

M2 
Incl. TP 

Observ. 303 

1 TP Entered 0.000 33.916 0.564 120.7 2 124.4 135.5 

2 Agriculture Entered 0.000 5.418 0.654 36.0 3 56.3 71.1 

3 Catch. Area Entered 0.000 0.866 0.669 24.1 4 45.5 63.9 

4 SGU-Clay Entered 0.001 0.798 0.682 13.3 5 35.2 57.2 

5 Urban Area Entered 0.013 0.396 0.688 9.0 6 31.0 56.6 

6 FAO-SCL Entered 0.088 0.183 0.691 8.1 7 30.1 59.3 

7 DSMS- 
Silt Cont 

Entered 0.149 0.131 0.694 8.0 8 30.1 62.9 

8 FAO-L Entered 0.155 0.127 0.696 7.9 9 30.1 66.5 

9 DSMS- 
Organic Cont 

Entered 0.180 0.112 0.698 8.1 10 30.4 70.4 

10 FAO-SC Entered 0.298 0.067 0.699 9.1 11 31.5 75.0 

11 FAO-CL Entered 0.217 0.095 0.700 9.6 12 32.1 79.1 

12 Open Land Entered 0.274 0.074 0.702 10.4 13 33.0 83.6 

13 Masl Entered 0.447 0.036 0.702 11.8 14 34.6 88.7 

14 DSMS-Clay 
Cont 

Entered 0.541 0.023 0.703 13.4 15 36.5 94.0 

15 Forest Entered 0.522 0.026 0.703 15.0 16 38.3 99.3 

16 Best Specific . . 0.688 9.0 6 31.0 56.6 

M3 
Excl. TP 

Observ. 310 

1 Agriculture Entered 0.000 15.652 0.309 101.8 2 209.4 220.5 

2 Urban Area Entered 0.000 4.299 0.394 53.7 3 170.8 185.6 

3 SGU-Clay Entered 0.000 2.068 0.435 31.6 4 151.2 169.7 

4 Catch. Area Entered 0.000 1.152 0.458 20.1 5 140.6 162.7 
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Step Variable Action "Sig Prob" Seq SS R2 Cp p AICc BIC 

5 Forest Entered 0.001 1.080 0.479 9.5 6 130.2 156.0 

6 FAO-CL Entered 0.042 0.358 0.486 7.4 7 128.1 157.5 

7 DSMS- 
Organic Cont 

Entered 0.122 0.205 0.490 7.0 8 127.8 160.8 

8 Open Land Entered 0.108 0.221 0.495 6.4 9 127.2 163.9 

9 SGU-Sand Entered 0.205 0.137 0.497 6.8 10 127.7 167.9 

10 FAO-SCL Entered 0.370 0.068 0.499 8.0 11 129.0 172.8 

11 FAO-SaL Entered 0.173 0.158 0.502 8.2 12 129.3 176.6 

12 DSMS- 
Clay Cont 

Entered 0.390 0.063 0.503 9.4 13 130.7 181.6 

13 Lake Area Entered 0.498 0.039 0.504 11.0 14 132.4 186.8 

14 Water Body 
Area 

Entered 0.534 0.033 0.504 12.6 15 134.2 192.2 

15 DSMS- 
Silt Cont 

Entered 0.553 0.030 0.505 14.2 16 136.1 197.5 

16 Best Specific . . 0.479 9.5 6 130.2 156.0 

M3 
Incl. TP 
Observ. 199 

1 TP Entered 0.000 14.558 0.502 100.4 2 49.0 58.7 

2 Agriculture Entered 0.000 2.995 0.605 41.2 3 4.8 17.8 

3 FAO-CL Entered 0.000 0.877 0.635 25.2 4 -8.9 7.2 

4 Lake Area Entered 0.000 0.805 0.663 10.8 5 -22.5 -3.2 

5 Urban Area Entered 0.016 0.293 0.673 6.8 6 -26.4 -4.0 

6 SGU-Clay Entered 0.091 0.141 0.678 5.9 7 -27.2 -1.7 

7 DSMS- 
Silt Cont 

Entered 0.030 0.228 0.686 3.3 8 -30.0 -1.3 

8 FAO-SaL Entered 0.299 0.052 0.688 4.2 9 -28.9 2.9 

9 DSMS- 
Clay Cont 

Entered 0.216 0.073 0.690 4.7 10 -28.3 6.6 

10 FAO-L Entered 0.439 0.029 0.691 6.1 11 -26.6 11.2 

11 DSMS- 
Organic Cont 

Entered 0.400 0.034 0.692 7.4 12 -25.1 15.7 

12 SGU-Sand Entered 0.462 0.026 0.693 8.9 13 -23.4 20.5 

13 Open Land Entered 0.452 0.027 0.694 10.3 14 -21.6 25.1 

14 FAO-SCL Entered 0.391 0.036 0.695 11.6 15 -20.1 29.6 

15 Catch. Area Entered 0.626 0.012 0.696 13.4 16 -17.9 34.7 

16 Best Specific . . 0.673 6.8 6 -26.4 -4.0 
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Multiple regression with associated tests and output can be seen in Table 14 and 

step history report from stepwise regression analysis in Table 15 for TP. 

Table 14. Multiple regression output for total phosphorus (TP) with R2. Parameter estimate and effect 

test with significance level for all variables. Input variables derived from PLS with VIP >1 for each 

model. Number of observed catchments in multiple regression and observed in parentheses from step-

wise regression. Multiple regression selected by JMP (minimum BIC) in bold text and by criteria in 

Italic text. Note that variables are transformed. For variable abbreviation see Table 1 and Table 2. 

    Parameters Estimates Effect Test 

Model R2  Observ. Variable  Estimate t Ratio Prob>|t| F Ratio Prob > F 

M1 0.51***  303 

(185) 

Intercept 0.800 25.01 <.0001 
  

DSMS- 

Clay Cont 

0.0141 8.06 <.0001 65.0 <.0001 

Water Body Area -0.168 -7.69 <.0001 59.2 <.0001 

DSMS- 

Organic Cont 

0.732 4.86 <.0001 23.6 <.0001 

Urban Area 0.251 4.00 <.0001 16.0 <.0001 

Agriculture 0.212 3.76 0.0002 14.1 0.0002 

M2 0.58***  303 

(303) 

Intercept 4.247 4.52 <.0001 
  

DSMS- 

Clay Cont 

0.00873 2.99 0.003 9.0 0.003 

Forest -0.00892 -4.61 <.0001 21.3 <.0001 

Water Body Area -0.170 -5.50 <.0001 30.3 <.0001 

Catch. Area 0.0512 2.43 0.0158 5.9 0.0158 

DSMS- 

Organic Cont 

0.501 3.36 0.0009 11.3 0.0009 

Water -0.328 -4.08 <.0001 16.6 <.0001 

Agriculture 0.0741 1.02 0.309 1.0 0.309 

SGU- 

Organic Soil 

0.170 2.63 0.0089 6.9 0.0089 

SGU-Clay 0.143 2.09 0.0379 4.4 0.0379 

Precip -0.900 -2.90 0.004 8.4 0.004 

0.52*** 303 

(303) 

Intercept 0.535 8.22 <.0001 
  

Water Body Area -0.137 -6.41 <.0001 41.1 <.0001 

Agriculture 0.472 12.02 <.0001 144.4 <.0001 

SGU- 

Organic Soil 

0.308 5.39 <.0001 29.0 <.0001 

SGU-Clay 0.358 8.69 <.0001 75.5 <.0001 

M3 0.58*** 199 

(199) 

Intercept 0.724 6.12 <.0001 
  

Water Body Area -0.133 -5.22 <.0001 27.2 <.0001 
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    Parameters Estimates Effect Test 

Model R2  Observ. Variable  Estimate t Ratio Prob>|t| F Ratio Prob > F 

Urban Area 0.442 5.72 <.0001 32.7 <.0001 

Open Land 0.118 1.25 0.213 1.6 0.213 

Water -0.180 -2.39 0.0181 5.7 0.0181 

Agriculture 0.263 3.43 0.0007 11.8 0.0007 

FAO-SCL 0.308 2.51 0.0131 6.3 0.0131 

SGU-Organic Soil 0.290 5.33 <.0001 28.5 <.0001 

SGU-Clay 0.287 5.4 <.0001 29.2 <.0001 

0.55*** 199 

(199) 

Intercept 0.518 8.75 <.0001 
  

Water Body Area -0.141 -5.66 <.0001 32.0 <.0001 

Urban Area 0.478 6.34 <.0001 40.2 <.0001 

Agriculture 0.380 6.68 <.0001 44.6 <.0001 

SGU-Organic Soil 0.306 5.62 <.0001 31.5 <.0001 

SGU-Clay 0.365 8.05 <.0001 64.8 <.0001 

* (p < 0.05) ** (p < 0.01) *** (p < 0.001)   

Table 15. Report from step history, for total phosphorus (TP) with Mallow´s Cp criterion, p= number 

of parameters included intercept in selection, AICc=corrected Akaike´s Information Criterion, 

BIC=Bayesian Information Criterion. Entered action show variable includes in stepwise regression 

where “best” fit selected by JMP, minimum BIC, (Bold text) and by criteria (Italic text) for building 

multiple regression. Note that variables are transformed. For variable abbreviation see Table 1 and 

Table 2. 
 

Step Variable Action "Sig Prob" Seq SS R2 Cp p AICc BIC 

M1  
Observ. 185 

1 Agriculture Entered 0.000 6.165 0.243 112.2 2 112.1 121.68 

2 Water Body 
Area 

Entered 0.000 2.732 0.351 72.5 3 85.9 98.52 

3 DSMS-Clay Cont Entered 0.000 2.136 0.435 41.9 4 62.3 78.06 

4 Urban Area Entered 0.001 0.938 0.472 29.6 5 51.9 70.77 

5 DSMS- 
Organic Cont 

Entered 0.001 0.851 0.505 18.6 6 42.0 63.87 

6 Ca_AL Entered 0.026 0.347 0.519 15.3 7 39.0 63.90 

7 FAO-CL Entered 0.035 0.303 0.531 12.7 8 36.5 64.47 

8 FAO-SCL Entered 0.028 0.323 0.544 9.8 9 33.7 64.60 

9 Catch. Area Entered 0.115 0.163 0.550 9.3 10 33.3 67.19 

10 SGU-A.Fill Entered 0.128 0.152 0.556 8.9 11 33.1 69.94 

11 FAO-SC Entered 0.071 0.211 0.564 7.7 12 31.9 71.65 

12 Open Land Entered 0.054 0.237 0.574 6.1 13 30.3 72.87 

13 SGU-Gravel Entered 0.272 0.076 0.577 6.9 14 31.3 76.78 

14 Water Entered 0.296 0.069 0.579 7.9 15 32.5 80.80 

15 SGU-Thin Soil 
Layer 

Entered 0.418 0.042 0.581 9.3 16 34.2 85.30 

16 Best Specific . . 0.505 18.6 6 42.0 63.87 
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Step Variable Action "Sig Prob" Seq SS R2 Cp p AICc BIC 

M2  

Observ. 303 

1 Agriculture Entered 0.000 14.940 0.307 206.5 2 200.3 211.32 

2 SGU-Clay Entered 0.000 5.444 0.419 126.7 3 148.9 163.60 

3 Water Body 
Area 

Entered 0.000 2.821 0.477 86.4 4 119.1 137.42 

4 SGU-Organic Soil Entered 0.000 2.253 0.524 54.6 5 93.0 114.99 

5 Water Entered 0.003 0.674 0.538 46.5 6 86.1 111.75 

6 Forest Entered 0.006 0.567 0.549 39.9 7 80.5 109.72 

7 Precip Entered 0.002 0.698 0.564 31.5 8 72.8 105.63 

8 Catch. Area Entered 0.007 0.518 0.574 25.7 9 67.5 103.85 

9 DSMS- 
Organic Cont 

Entered 0.011 0.455 0.584 20.9 10 62.9 102.83 

10 DSMS-Clay Cont Entered 0.003 0.603 0.596 13.8 11 55.9 99.39 

11 Open Land Entered 0.118 0.164 0.599 13.3 12 55.5 102.56 

12 FAO-SCL Entered 0.101 0.180 0.603 12.6 13 54.9 105.46 

13 FAO-CL Entered 0.121 0.160 0.606 12.2 14 54.6 108.64 

14 Lake Area Entered 0.200 0.109 0.609 12.6 15 55.1 112.63 

15 Longitude Entered 0.200 0.109 0.611 13.0 16 55.6 116.60 

16 Masl Entered 0.335 0.062 0.612 14.0 17 56.9 121.33 

17 FAO-SC Entered 0.492 0.031 0.613 15.6 18 58.7 126.54 

18 SGU-Thin Soil 
Layer 

Entered 0.592 0.019 0.613 17.3 19 60.6 131.95 

19 SGU-Sand Entered 0.614 0.017 0.614 19.0 20 62.7 137.39 

20 FAO-L Entered 0.861 0.002 0.614 21.0 21 65.0 143.07 

21 Best Specific . . 0.596 13.8 11 55.9 99.39 

M3  

Observ. 199 

1 Open Land Entered 0.000 5.511 0.227 174.6 2 101.3 111.07 

2 SGU-Clay Entered 0.000 2.345 0.323 130.5 3 76.9 89.85 

3 SGU-Organic Soil Entered 0.000 2.052 0.408 92.2 4 52.5 68.63 

4 Urban Area Entered 0.000 1.751 0.480 59.8 5 28.8 48.13 

5 Water Body 
Area 

Entered 0.000 1.161 0.527 38.9 6 11.8 34.27 

6 Agriculture Entered 0.000 0.994 0.568 21.4 7 -4.0 21.55 

7 FAO-SCL Entered 0.010 0.362 0.583 16.3 8 -8.8 19.86 

8 Water Entered 0.018 0.295 0.595 12.5 9 -12.5 19.28 

9 Mire Entered 0.063 0.179 0.603 10.9 10 -13.9 20.92 

10 Longitude Entered 0.043 0.210 0.611 8.8 11 -16.0 21.85 

11 SGU-Sand Entered 0.081 0.153 0.618 7.8 12 -16.9 23.90 

12 FAO-SC Entered 0.210 0.078 0.621 8.3 13 -16.3 27.51 

13 DSMS-Silt Cont Entered 0.343 0.045 0.623 9.4 14 -14.9 31.83 

14 DSMS-Clay Cont Entered 0.313 0.051 0.625 10.4 15 -13.7 36.02 

15 Masl Entered 0.476 0.025 0.626 11.9 16 -11.8 40.76 

16 Lake Area Entered 0.465 0.027 0.627 13.4 17 -10.0 45.47 
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Step Variable Action "Sig Prob" Seq SS R2 Cp p AICc BIC 

17 FAO-CL Entered 0.647 0.011 0.627 15.2 18 -7.8 50.53 

18 SGU- 
Thin Soil Layer 

Entered 0.760 0.005 0.628 17.1 19 -5.4 55.72 

19 Best Specific . . 0.595 12.5 9 -12.5 19.28 
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