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SUMMARY

Lameness or other disturbances in the musculoskeletal system are common reasons why dog
owners seek veterinary care. The lameness is most often associated with pain, degenerative
changes in joints or muscles, or injury.

Evaluation of lameness have traditionally been performed subjectively by means of visual
assessment and scoring. Such methods are well established in field of equine medicine where
the examiner typically observes the ventro-dorsal movements of the head, the withers and the
pelvis during locomotion. A major problem with subjective assessment, however, is that dif-
ferent examiners will arrive at different results. This has been confirmed in studies carried out
both within the fields of equine medicine and small animal medicine. Unfortunately, the situ-
ation becomes even more challenging when it comes to companion pets such as dogs, as their
movements are both faster and smaller in magnitude compared to those of large animals.

Computer assisted lameness analysis with motion capture systems or inertial measurement
units, IMUs, is becoming more and more common in horse clinics today as a more objective tool
to evaluate and assess lameness. Data is collected during exercise and analyzed in a computer
program after which movement asymmetries can be assessed. These methods can be helpful
both in everyday activities and in more complicated cases, as the asymmetries can be monitored
over time.

To our knowledge there is no similar commercial tool available for companion pets such as
dogs yet. However, in a recent study at SLU which evaluated the use of IMUs on dogs trotting
on a treadmill using a commercial system for horses with a modified software, good results were
seen in moderate induced lameness scenarios. More studies are desirable to determine whether
or not the method can be used in less controlled forms, e.g., in a hallway or in a corridor at a
veterinary clinic.

The purpose of the this work has therefore been to investigate whether it is feasible to use
standard IMUs, signal processing and software algorithms to reliably assess lameness of grade
2-3 in dogs under conditions prevailing at a regular veterinary clinic.

Thirteen clinically sound dogs were included in the study. None of the them had a history
of orthopedic conditions or joint surgery. Reversible distal limb disturbances were induced,
mimicking supporting limb lameness, in all dogs by placement of cotton wool wads under the
paw. Reversible proximal limb disturbances, mimicking swinging limb lameness, were induced
by placement of a custom-made weight above the carpus or tarsal joint, respectively. In order to
obtain measurements we utilized a commercial measurement system developed by Delsys Inc.
We used four IMUs in parallel located at the head, wither, pelvis and at one of the forelimbs.
The data was analyzed offline using different algorithms for lameness assessment.

The results indicate that it possible to use standard IMUs to evaluate lameness in dogs, but
that more work is needed to robustify the algorithms. Compared to horses the physical behavior
of dogs and their smaller sizes leads to new challenges that need to be addressed in future
research.
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1 INTRODUCTION

LAMENESS or other disturbances in the locomotor system (musculoskeletal system) are com-
mon reasons why dog owners seek veterinary care. The lameness is most often associated

with pain or injury.
Evaluation of lameness have traditionally been performed subjectively by means of visual 

assessment and scoring. Such methods are well established in field o f e quine m edicine where 
the examiner typically observes the vertical (ventro-dorsal) movements of the head and the 
pelvis during trotting locomotion. Unfortunately, the situation becomes more challenging when 
it comes to companion pets such as dogs, as their movements are both faster and smaller in 
magnitude compared to those of large animals.

Lameness analysis with motion capture systems or inertial measurement units (IMUs) is be-
coming more and more common in horse clinics today as a more objective tool to evaluate and 
assess lameness. Examples of commercially available systems are for instance the QHorse (mo-
tion capture) developed by QUALISYS AB, the Equinosis® Q with Lameness Locator® (IMU) 
developed by Equinosis Inc, and GaitSmart™ Pegasus (IMU) developed by ETB Ltd. Data is 
collected during exercise and analyzed in a computer program after which movement asymme-
tries can be assessed. These methods can be helpful both in everyday activities and in more 
complicated cases, as the asymmetries can be monitored over time.

There is no similar commercial tool available for dogs yet. However, in a recent study 
that tested IMUs on dogs trotting on a treadmill using the Lameness Locator® with a modified 
software (Rhodin et  al., 2017), good results were seen in moderate induced lameness scenarios. 
More studies are desirable to determine whether the method can be used in less controlled 
forms, e.g., in a hallway or in a corridor at a veterinary clinic.

1.1 Purpose

The purpose of the study is to investigate whether standard inertial measurement units (IMUs) 
can be used to reliably assess lameness in dogs under conditions prevailing at a regular veteri-
nary clinic. The work is part of a larger study involving also treatment options for dogs suffering 
from chronic pain. The feasibility of transcutaneous electrical nerve stimulation (TENS) will 
be evaluated in a blinded study.
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2 LITERATURE REVIEW

Since the thesis work is a mixture between veterinary medicine and signal processing applica-
tions, the literature review will be divided into separate subsections. Section 2.1 gives a brief
background to lameness, defines the basic concepts and describes how lameness can be assessed
and graded. Section 2.2 gives a short introduction to inertial measurement units (IMUs). Sec-
tion 2.3, finally, provides a survey regarding previous and related work using IMUs for lameness
assessment.

2.1 Lameness

Lameness refers to an inability to properly use one or more limbs. It is most often associated
with pain or injury. The most common causes of acute or sudden lameness in dogs are injury
to a joint, muscle, bone fracture or dislocation. Osteoarthritis and hip dysplasia may also cause
lameness in dogs. Lameness can affect dogs of any age from growing puppies to senior dogs.

2.1.1 Gait Analysis

The movement pattern of a four legged animal, e.g. a dog, can be described using stride cycles,
where an entire cycle involves all four limbs taking a step forward. During each stride, every
limb has a stance phase when it is in contact with the ground and a swing phase when it moves
forward in preparation for the next stance phase. Loading of the limbs during the stance phase
occurs in two stages. Immediately after the toes contact the ground the foot is rapidly decel-
erated giving rise to a shock wave that travels proximally through the bones and joints during
the so-called impact phase. During the remainder of the stance phase, the limb is loaded more
gradually as it accepts the body weight then pushes off against the ground. In general, the hard
tissues (bones and joints) are more vulnerable to injury during the impact phase, whereas the
soft tissues are more likely to be injured during the latter loading phase (Back and Clayton,
2013).

2.1.2 Lameness Assessment

Evaluation of the severity of the lameness has traditionally been performed subjectively by
means of visual assessment. Such methods are well established in field of equine medicine
where the examiner typically observes the vertical (ventro-dorsal) movements of the head and
the pelvis during locomotion in order to identify the lame limb(s). The principle is that in
a healthy non-lame animal the vertical displacements of these structures will have the same
amplitude regardless of the limb bearing weight. A lame animal, though, will put more weight
on the healthy limb than on the lame limb, so that the displacement becomes asymmetrical.
Once the lame limb(s) is/are identified the degree of lameness is graded according to grading
scale, for instance the one shown in Table 1.

Figure 1 (a) shows an artificial simulated example of the vertical (ventro-dorsal) displace-
ment of the pelvis during trotting as function of time for an animal with a hindlimb lameness.
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Table 1. Lameness grading scale.

Grade Description
0 Normal, no lameness
1 Off weight bearing at a stance, no lameness noted at a walk/trot
2 Mild lameness at a trot, none at a walk
3 Moderate lameness at a walk/trot
4 Places foot when standing, intermittently carries limb when trotting
5 Non-weight bearing lameness

There are two max peaks and two min peaks (valleys) for each stride, since when one hindlimb
is in stance phase the contralateral limb is in swing phase and vice versa. The amplitude of the
displacement is larger for the healthy limb compared to the lame limb. The lowest position of
the pelvis occurs in the middle of the loading phase, and the highest position occurs at the push
off.
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Figure 1. (a) A simulated example of hindlimb lameness. The animal will put more weight on
the healthy limb than on the lame limb. (b) The lameness curve in (a) can be split up in two
components; a non-lame component (blue/solid) and a lame component (red/dashed).

It is straightforward to show that the (ideal) displacement curve in Figure 1 (a) can be split
into a sum of two sinusoid components; a non-lame component with a frequency twice the stride
frequency (shown as the blue/solid line in Figure 1 (b)) and a lame component with a frequency
equal the stride frequency (shown as the red/dashed line in Figure 1 (b)).

The method for lameness assessment and grading described above can of course also be
utilized for companion pets such as dogs. Unfortunately, the situation often becomes more
challenging in this case, as the movement patterns of dogs are both faster and smaller in mag-
nitude compared to those of large animals. The use of the head displacement as an indicator of
forelimb lameness is also questionable. Dogs are more flexible in using their heads during exer-
cise and often seek eye contact with their handlers. It is probably better to use the displacement
of the withers as an indicator of forelimb lameness.
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A general problem using the above described method is also that it is a subjective method, 
i.e., different examiners will probably arrive at different results. In a study done by Keegan 
et  al.  (2010) it was reported that when a group of clinicians (average 18.7 years of experience) 
were asked to choose whether or not a horse was lame and choose the worst limb, after full 
lameness evaluation, the clinicians agreed on the diagnosis only 51.6% of the time. Similar 
results have been reported for dogs. Waxman et  al.  (2008) measured ground reaction forces 
in dogs with induced supporting lameness, after visual scoring by three orthopedic surgeons 
and three veterinary students. The agreement between the visual assessment and the force plate 
data was low (0–39% agreement), depending on the degree of lameness. The authors concluded 
that subjective evaluation of lameness varied greatly between observers and that it agreed 
poorly with objective measures of limb function, such as ground reaction forces.

In order to get a more objective measure we will therefore investigate the use of inertial 
measurement units for lameness assessment.

2.2 Inertial Measurement Units (IMUs)

An inertial measurement unit, IMU, is a device that combines accelerometers and gyroscopes 
to produce a three dimensional measurement of both specific f orce a nd a ngular v elocity with 
respect to an inertial reference frame. Sometimes the IMU is also complemented with magne-
tometers that sense the magnetic field around i t and provide compass data (Wikipedia contrib-
utors, 2018). The number of independent sensors in the IMU defines t he d egrees o f freedom 
(DOF). An IMU containing three accelerometers, three gyroscopes and three magnetometers is 
thus referred to as a 9-DOF IMU.

Traditionally IMUs have been expensive mechanical systems preserved military or avia-
tion application use. However, with the advent of smart phones and hand-held video cam-
eras etc, cheap on-chip IMUs have become widely available. These so-called MEMS (micro-
electromechanical systems) are equipped with miniature accelerometers that contain silicon 
beams, which deform during acceleration. Changes in capacitance are sensed within the chip, 
which outputs a voltage proportional the applied acceleration. Similarly, the MEMS contain 
miniature gyroscopes that sense Coriolis forces when rotations are applied to a pair of oscillat-
ing tines. Thus a voltage proportional to the applied rotational velocity is outputted. MEMS 
components are small, light, inexpensive, have low power consumption and short start-up times. 
However, they are still not performing as well as conventional high-grade sensors in view of 
misalignment, noise and temperature varying biases (offsets).

2.2.1 Accelerometers

The accelerometers are positioned orthogonally to each other, thus defining a  l ocal coordinate 
system. In this document we have adopted the right-hand NED (north-east-down) convention 
shown in Figure 2. That is, the x-axis points in the forward longitudinal (caudo-cranial) di-
rection, the y-axis points in the right lateral direction, and the z-axis points in the vertical 
downward (dorso-ventral) direction. The numerical values obtained from the accelerometers
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are given relative the gravity constant g � 9:81 m=s2, and we denote them ax, ay and az re-
spectively. This means that if the IMU is in rest and perfectly aligned with the ground plane,
then ax D ay D 0 and az D �1. In practice, though, the measured values are typically cor-

x

z

y

ωx

ωy
ωz

Figure 2. The right-hand north-east-down (NED) coordinate system.

rupted by biases and measurement noise. We assume that they consist of the true specific force
a0, a slowly varying bias term ba, and measurement noise e. That is,

ai D a
0
i C b

a
i C ei ; i 2 fx; y; xg : (1)

2.2.2 Gyroscopes

The gyroscopes are oriented so that they measure the rotational velocities around the x-, y- and
z-axes as shown in Figure 2. Their positive directions are clockwise while looking along the
axes. We denote the measured values !x, !y and !z. They are commonly referred to as the
roll angle velocity, the pitch angle velocity, and the yaw angle velocity, respectively. As for the
accelerometers above, we assume that the measured values consist of the true angle velocity
!0, a slowly varying bias term bg , and measurement noise v. That is,

!i D !
0
i C b

g
i C vi ; i 2 fx; y; xg : (2)

2.2.3 Using Inertial Data in Applications

When using the data from inertial sensors, one is often interested in obtaining the position
in the 3D (x-y-z) space and the rotation angles around the axes (orientation or attitude). In
order to do so the signals from the IMU have to be integrated; the angular velocities once
to obtain the angles, the accelerations twice to obtain the displacements. A major drawback
with MEMS components in this regard is that the noise and biases in the measurements will
contribute to severe drifts in the integrated signals. Thus some form of filtering (e.g., low-pass
filtering to get rid of noise, and high-pass filtering to get rid of biases and trends) and/or sensor
fusion is required. Another complication is that the measurements are given relative the local
coordinate systems of the IMUs, i.e., the IMU frames. Sometimes one is instead interested in
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the positions and orientations of the IMUs relative the earth coordinate system, i.e., the earth 
frame. A system that estimates those quantities is called an attitude and heading reference 
system (AHRS). Different approaches for AHRSs have been thoroughly studied within the fields 
of avionics and robotics. I have in this work investigated the use of an Extended Kalman filter 
(EKF) based on quaternions, see Appendix B. Knowing the attitude might be advantageous 
when selecting valid trotting data, and for correction of the accelerometer signals.

2.3 Lameness Assessment Using IMUs

Lameness assessment using IMUs is not a new idea. A significant amount of work has been 
carried out within the field of equine medicine, see for instance Keegan et  al.  (2004), Pfau et  al.
(2005), Pfau et  al.  (2013) and the references therein. There also exist commercial IMU-based 
tools for horses. Equinosis® Q with Lameness Locator® (formerly known as just Lameness 
Locator®), is based on the work by Keegan et al. (2011). This system utilizes three IMUs; 
one on the head, one on the left forelimb, and one on top of the pelvis. Another commercial 
system is GaitSmart™ Pegasus which uses IMUs within brushing boots and a GPS sensor on 
the rider’s hat. A third system under development is EquiMoves (Bosch et  al.,  2018) which 
works by capturing horse motion from up to eight synchronized wireless IMUs. In their work 
they did put IMUs on all four limbs which enables them to also evaluate the limb angles for the 
individual limbs.

A quite recent study performed by Rhodin et  al.  (2017) at SLU investigated the 
performance of IMUs on dogs trotting on a treadmill using the Lameness Locator® with a 
modified software. They obtained good results for moderate induced lameness scenarios. 
Jenkins et  al.  (2018) have developed and validated an IMU method for automatic canine gait 
analysis using a single wearable sensor put on the animals leg during exercise on a 
treadmill. Ladha et  al.  (2017) have developed GaitKeeper, a system for measuring and 
analyzing canine gait using four IMU sensors; one on each leg.
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3 MATERIAL AND METHODS

The aim of the study is to investigate whether standard IMUs can be used to reliably assess
lameness in dogs under conditions prevailing at a regular veterinary clinic. The Ethical Com-
mittee for Animal Experiments, Uppsala, Sweden (No. C67/16) approved the study, which was
performed with the informed consent of the dog owners.

3.1 Animals

Thirteen clinically sound dogs were included in the study (six Labrador Retrievers, two Riesen
Schnauzers, two mixed breed dogs, one Lagotto Romagnolo, one Nova Scotia Duck Tolling
Retriever, and one Pointer). They were all belonging to staff or students at SLU who had shown
interest in participating in the study in response to a small email and social media campaign
at the campus. There were five males and eight females. Mean age was 5.1 ˙ 3.3 years, and
mean height at the withers was 53.6˙ 6.0 cm. The dogs were assessed as clinically sound after
orthopedic examination performed by the supervisor Dr Anna Bergh. None of the dogs had a
history of orthopedic conditions or joint surgery.

3.2 Lameness Induction

Reversible distal limb disturbances were induced, mimicking supporting limb lameness, in all
dogs by placement of a cotton wool wad under the paw, secured with cohesive bandage. The
size of the wad was adjusted to each dog to induce lameness of 2-3 degrees (on a scale 0–5 ac-
cording to Table 1: moderately lame, distinctly visible at the trot). Proximal limb disturbances,
mimicking swinging limb lameness, were reversibly induced by placement of a custom-made
weight (200 g) above the carpus or tarsal joint, respectively. Assessment and grading of the
resulting lameness induction was performed by the supervisors Dr Anna Bergh and Anja Ped-
ersen.

3.3 Instrumentation

In order to obtain IMU data we have used a commercial measurement system, Trigno™ Wire-
less EMG1, developed by Delsys Inc. The system provides the possibility to use up to sixteen
IMUs in parallel. The measured data were sampled with a frequency of fs D 148:15 Hz and
transmitted wirelessly over a custom RF protocol operating within the 2.4 GHz spectrum to a
base station connected to a computer via USB. The measurements were recorded to files us-
ing the software that was provided by the system, EMGWorks Acquisition. Each IMU (called
Trigno™ Avanti) is a small 9-DOF unit complemented with an electromyography (EMG) sen-
sor that can measure the electrical activity produced by skeletal muscles, see Figure 3 (a). Each
unit measure 37 � 26 � 15 mm and weigh approximately 14 grams. The four metal bars at the
bottom of the unit are normally attached to the skin and measure the muscle activity under the

1https://www.delsys.com/products/wireless-emg/
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(a) (b)

Figure 3. (a) The Trigno™ Avanti IMU used for data collection. (b) The base station. Images:
c© Delsys Inc.

sensor. However, these measurements have not been utilized in this work. Figure 3 (b) shows
the base station.

In our trials we used four IMUs located according to Figure 4. The IMUs were attached to

Withers

Pelvis

Forelimb

Head

Figure 4. Sensor placement during the trials.

the animals using a combination of home-made textile harnesses, Velcro and double adhesive
tape, see Figure 5. The IMUs on the head, withers and pelvis were oriented so that their x-
axes were pointing cranially in the median plane. The IMU on the forelimb was oriented with
its x-axis pointing proximally along the leg. A dummy sensor was attached to the contra-
lateral forelimb in order to not induce lameness by the instrumentation. The coordinate system
convention for the Trigno™ Avanti IMU seems be WSU (west-south-up). However, since we
were not using the EMG sensor we decided to put Velcro on top of the IMUs and flipped them
upside down, hence arriving at an ESD (east-south-down) orientation. Thus, in order to obey the
NED convention shown in Figure 2, the IMU coordinate system had to be rotated �90ı around

10



(a) (b)

Figure 5. Examples of sensor attachments.

the z-axis. That is, to flip the x and y measurements and negate the measurements associated
with the x-axis.

3.4 Measurement Procedure

In addition to the IMUs we also used a pressure mat system, Tekscan Walkway™ High Reso-
lution2, to record data. Briefly, pressure mat analysis is a system in which the weight-bearing
forces can be estimated as the animal steps onto a sensor mat during locomotion (DeCamp et al.,
2016). Analysis of pressure mat data is performed in another project and will not be considered
further in this work.

Data were collected while the dogs were trotting back and forth in a corridor with 180ı

turns in the end, stepping on the pressure mat in each direction. A handler was running with
the dogs to ensure that they kept the right path and right steady-state trotting pace. The handler
controlled the dogs via a leash.

One measurement session was performed before the first lameness induction (sound trial)
and then during each lameness induction in one limb at a time. The lameness inductions de-
scribed in Section 3.2 were induced in one forelimb and one hindlimb, yielding four trials of
induced lameness per dog. Extra sound trials were collected between the induced measurements
to ensure return to soundness. In total, data from eight registration sessions were collected for

2https://www.tekscan.com/product-group/medical/mats-and-walkways
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each dog, and a recovery period was allowed between the trials since all data had to be processed
and saved to file.

3.5 Data Analysis

After successful data collection, the data were exported to CSV files and imported into the data
analysis tool MATLAB (MathWorks, 2018). Nine signals,

ax; ay; az; !x; !y; !z; mx; my; mz; (3)

sampled with sampling period Ts D 1=fs D 6:7 ms were obtained for each IMU where a, !
and m denote acceleration, angular velocity, and magnetometer data respectively. In the sequel
we use superscript h (head), w (withers), p (pelvis) and f (forelimb) to indicate the sensor in
question, so that for instance apz means the vertical acceleration measurement from the pelvis
sensor. We also use square brackets to denote sample index, that is,

azŒk� D az.kTs/; (4)

denotes the sampled version of the continuous signal az.t/ at sample instant k.
The data for each trial (consisting of in total 4 � 9 D 36 signals) was aligned to a common

time frame and was saved to a separate MATLAB “mat-file” along with meta data regarding
the trial, such as dog name, breed, lameness grade etc. The lameness grade was specified per
limb, so that each trial contains four grade values, GradeFL, GradeFR, GradeHL and GradeHR,
associated with the fore left, fore right, hind left and hind right limbs respectively.

3.5.1 Attitude and Heading Estimation

The data was first transformed from the IMU reference frames to the earth reference frame
using the quaternion-based AHRS algorithm outlined in Appendix B. An AHRS (attitude and
heading reference system) algorithm fuses the information from several sensor sources in order
to enhance the attitude estimation. With attitude here we mean the orientation in the earth frame
expressed in Euler angles � (roll), � (pitch) and  (yaw), see Section B.2.1 in Appendix B.

The accelerometer and gyroscope data, aŒk� and !Œk�, from the three IMUs located on the
pelvis, withers and head were included in the extended Kalman filter (EKF) described in Section
B.3. We decided to only include the gyro offsets in the filter (that is, treating the accelerometer
offsets as noise) yielding a final filter consisting of 21 states (3 � 4 quaternion components +
3 � 3 gyro offsets). The filter states of each IMU were initially assumed to be independent
of those of the other IMUs, so that the 21-state filter is equal to running three 7-state filters in
parallel. Since the interesting bandwidth of the attitude dynamics is well below 10 Hz, the data
was resampled from 148:15 Hz to 20 Hz before the EKF was applied.

The fact that several dogs were shaking intermittently during the trials (probably because
of the instrumentation) had a bad impact on the stability of the EKF. This was remedied by
calculating a sliding window variance of the angular velocity !xŒk� around the caudo-cranial
x-axis, and by blocking the measurement update in the filter when this variance was high.
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A problem with using only gyroscope and accelerometer data (i.e., a 6-DOF IMU) is that
the accelerometers will not be able to stabilize the yaw (heading) estimate. A common solution
is thus to utilize the magnetometer (compass) measurements mŒk� in order to stabilize the yaw.
Here we decided not to use the magnetometer data since we were performing the experiments
indoors were the magnetometers are prone to magnetic disturbances (electronic equipments,
iron in the building etc).

Figure 6 (a) shows the result when estimating the Euler angles for the pelvis IMU in one
example trial. From the figure we can see that the filter is not able to stabilize the yaw, so that
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Figure 6. Euler angles estimated using the extended Kalman filter. (a) Without yaw constraint.
(b) With yaw constraint.

we get a drift in the estimate. The 180ı turns in the ends of the corridor are clearly visible
though. A drift in the yaw estimate is not a big deal if the goal is to just compensate the
accelerometer signals. However, if we would like to use the yaw for data segmentation, it could
be advantageous with a drift-free estimate.

A possible option to stabilize the yaw estimates is to add a constraint to the filter requir-
ing that the angles must be a multiple of 180ı (see Appendix B). Running the filter with this
constraint gives the result shown in Figure 6 (b). Another option is to introduce dependencies
between the states of the three IMUs. This can be achieved by augmenting the Kalman filter
with virtual measurements that aims at keeping the yaw estimates approximately equal. A third
option to stabilize the yaw is to utilize GPS sensors, but the indoor experimental setup will
likely reduce the usefulness of such devices.

3.5.2 Segmentation

The data was then split in segments containing valid trotting data by applying a Pearson sliding
window correlation operation to the vertical accelerometer signals from the withers and pelvis
sensors, awz and apz , and thresholding the result. That is,

rk D

Pk
iDk�PC1

�
awz Œi � � Na

w
z

� �
a
p
z Œi � � Na

p
z

�qPk
iDk�PC1

�
awz Œi � � Na

w
z

�2qPk
iDk�PC1

�
a
p
z Œi � � Na

p
z

�2 ; (5a)
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where

Nawz D
1

P

kX
iDk�PC1

awz Œi �; (5b)

Napz D
1

P

kX
iDk�PC1

apz Œi �; (5c)

denote the sample means and P is the window width. Figure 7 shows an example of the result
of segmentation. A value of 1 in the binary/red curve indicates that the data will be used for
stride analysis. The pelvis vertical acceleration apz is also shown for reference.
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Segmentation of data

Figure 7. Data segmentation. A value of 1 in the binary signal (red) indicates that data represent
trotting and thus will be included in the analysis.

3.5.3 Stride Splitting

Stride splitting (i.e., extracting data associated with individual strides) within the valid trotting
segments was achieved by using data from the IMU at the forelimb to identify left or right stance
or swing phase. The accelerometer signal along the cranio-caudal z-axis, afz , was zero-phase
filtered with 4th order Butterworth high-pass filter with cutoff frequency 0:5 Hz and double
integrated using the trapezoidal rule (see Appendix A) in order to obtain the displacement pfz
as shown in the example in Figure 8 (a). The time instants for “toe on”, i.e., when the toes
touches the ground in the beginning of each stance, were determined by identifying the min
peaks which are indicated as dashed lines in the plot. The min peaks represent the most cranial
position of the limb, and occurs just before the toes hit the ground. Figure 8 (b) shows the
corresponding acceleration along the caudo-cranial z-axis, afz . This is in accordance with the
similar result for horses reported by Olsen et al. (2012) and Bragança et al. (2017).

The vertical displacements for the withers pwz and pelvis ppz were then computed similarly
to the frontlimb position above, by double integrating the accelerometer signals awz and apz .
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Figure 8. Stride splitting using the forelimb IMU. The dashed lines represent the most cranial
positions of the frontlimb, which occur just before “toe on”.

Here we decided to do the integration in the frequency domain instead (see Appendix A) since
that resulted in a slightly better result. While in the frequency domain, the signals were band-
pass filtered in the frequency range between 1 to 6 Hz before the signals were transformed back
to the time domain. The frequency range was selected after analyzing all trials, in which the
average stride frequency while trotting was around 2 Hz.

The displacement signals were then split according to the “toe on” time instants described
above to in order to obtain withers and pelvis data associated with the strides, see Figure 9.
One problem, however, with the data on this form is that the length of the time intervals defined
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Figure 9. Stride split of withers and pelvis vertical positions pwz and ppz .

by “toe on” in general are different as they depend on the trotting speed. As a last step in the
preprocessing of data, the time instants for the stride data were therefore normalized to the unit
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interval Œ0; 1� and interpolated/resampled to a common time frame of M samples, i.e.,

�k D
k � 1

M
; k D 1; : : : ; M: (6)

Figure 10 shows examples of time normalized strides from the pelvis sensor in two different
trials; a sound trial in Figure 10 (a), and a trial with induced swinging hindlimb lameness in
Figure 10 (b). By smoothing the plots (averaging) with the eye it is rather clear that the curves
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Figure 10. Time normalized pelvis strides ppz from two different trials. (a) Sound trial. (b) Trial
with hindlimb swinging lameness.

are consistent with the trial setup. An induction on a hindlimb was always done on the limb
diagonal to the forelimb carrying the sensor. Thus the lame stance will occur first which is
evident from Figure 10 (b).

I also compared the above described filtering and integration procedure with the cyclic in-
tegration method proposed by Pfau et al. (2005), but did not get any improvements while using
their method.

3.5.4 Min and Max Peak Statistics

One obvious path to explore is to analyze the min and max peak statistics for the withers and
pelvis displacements in the vertical (dorso-ventral) direction. This is the same method as has
been considered in the Lameness Locator® and similar systems. Let us return to the simulated
example we used earlier in Section 2.1.2. Figure 11 shows the min and max peaks in the pelvis
displacement ppz for an animal with hindlimb lameness. The idea is to form the quantities PDmin

and PDmax, which denote the differences in min peaks and max peaks amplitudes for the pelvis
respectively, i.e.,

PDmax D Max1 �Max2; (7a)

PDmin D Min2 �Min1; (7b)

and analyze them statistically. Analogously we form the quantities WDmin, WDmax, HDmin and
HDmax for the withers and the head.
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Figure 11. Min and max peaks for the pelvis displacement ppz .

Inspired by the work by Starke et al. (2012) and Bosch et al. (2018) the following quantities
were also analyzed statistically (see Figure 11):

• Rangedown;1 and Rangedown;2: The difference in amplitude between the max peak and the
min peak for the displacement in downward direction during a stance phase. Since there
are two stance phases during each stride there will be two values.

• Rangeup;1 and Rangeup;2: The difference in amplitude between the min peak and the max
peak for the displacement in upward direction during a stance phase. Since there are two
stance phases during each stride there will be two values.

• �Rangedown: The difference between the two downward ranges.

• �Rangeup: The difference between the two upward ranges.

Then the upwards and downwards symmetry indices (SI) can be formed according to

SIdown D
�Rangedown

max
�
Rangedown;1;Rangedown;2

� (8a)

SIup D
�Rangeup

max
�
Rangeup;1;Rangeup;2

� (8b)

An SI value of 0 indicates perfect symmetry, whereas a value of˙1 indicates maximum asym-
metry where the sign depends on the affected limb.

3.5.5 Fourier Series Analysis

Inspired by the work of Kasebzadeh and Gustafsson (2018), who have analyzed human gait us-
ing IMUs, I did also chose to investigate if frequency analysis could be utilized. The motivation
behind this study was to see if it possible to avoid the steps of identifying the max and min
peaks as are required in the method described in Section 3.5.4.
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It is well known that every function f .t/ that is periodic on an interval Œt0; t0 C P � can
be approximated by a sum of sine and cosine functions with increasing frequencies, see for
instance Bracewell (1999). That is,

fN .t/ D
˛0

2
C

NX
kD1

�
˛k cos

2�kt

P
C ˇk sin

2�kt

P

�
; (9)

where

˛k D
2

P

Z t0CP

t0

f .t/ cos
2�kt

P
dt; (10a)

ˇk D
2

P

Z t0CP

t0

f .t/ sin
2�kt

P
dt: (10b)

The approximation fN .t/ improves as N !1 and the limit value f1.t/ is called the Fourier
series representation of f .t/ (Bracewell, 1999).

Fourier series techniques can be applied to the data representing the withers and pelvis
displacements in the vertical (dorso-ventral) direction pz using inspiration from equation (9)
above and elementary matrix algebra. Let

Npz D .pz.�1/; pz.�2/; : : : ; pz.�M //
T ; (11)

be a vector containing the M displacement data samples interpolated on the interval Œ0; 1�, and
define

HN D

0BBBB@
1 cos 2��1 � � � cos 2��1N sin 2��1 � � � sin 2��1N
1 cos 2��2 � � � cos 2��2N sin 2��2 � � � sin 2��2N
:::

:::
:::

:::
:::

: : :
:::

1 cos 2��M � � � cos 2��MN sin 2��M � � � sin 2��MN

1CCCCA (12a)

#N D .˛0; ˛1; : : : ; ˛N ; b1; : : : ; bN /
T : (12b)

Then we can use the linear model
Npz D HN#N ; (13)

and estimate #N using ordinary least squares, e.g.,

O#N D
�
HT
NHN

��1
HT
N Npz; (14)

where .�/�1 denotes matrix inverse and .�/T denotes matrix transpose. If we just consider the
stride and the double stride frequencies, then N D 2. The amplitudes of the lame and non-lame
sinusoid components can thus be estimated using the expressions

OA1 D

q
Ǫ 21 C

Ǒ2
1; (15a)

OA2 D

q
Ǫ 22 C

Ǒ2
2 : (15b)

so that the ratio

% D
OA1

OA2
(16)

can be used as a measure of lameness. Figure 12 shows an example of the result obtained after
fitting a Fourier series model to the vertical displacement data in a stride.
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(blue/solid: data, red/dashed: fitted model).
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4 RESULTS

Experimental data has been analyzed for 98 trials. The original plan was to record eight trials
per dog, resulting in a total of 13 � 8 D 104 trials. Unfortunately though six trials have been
discarded due to bad or absent data. There are in average 8:77˙ 3:31 segments of trotting data
per trial. Counting the strides within these segments yields 86:4 ˙ 40:1 strides per trial. Bad
strides, i.e., strides that do not show the shape according to Figure 12, have been discarded.

During the analysis the 98 trials have been classified as follows according to the lameness
scale described in Table 1;

• Sound: Trials with GradeFL � 1, GradeFR � 1, GradeHL � 1 and GradeHR � 1,

• Fore lameness: Trials with GradeFL > 1 or GradeFR > 1, and GradeHL � 1,
GradeHR � 1,

• Hind lameness: Trials with GradeHL > 1 or GradeHR > 1, and GradeFL � 1,
GradeFR � 1.

We thus obtain 54 sound trials, 19 forelimb lameness trials, and 25 hindlimb lameness trials.

4.1 Min and Max Statistics

We start by analyzing the results of the min and max statistics described in Section 3.5.4. Figure
13 shows the box plots of the quantities WDmin and WDmax when evaluated on all trials. Here
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Figure 13. (a) Box plots of the min peak differences for the withers, WDmin. (b) Box plots of
the max peak differences for the withers, WDmax.

the red “+” symbol in the boxes denotes the mean value, and the horizontal red line in the
boxes represents the median. The edges of the boxes are the 25th and 75th percentiles. The
dashed vertical lines indicate variability outside the upper and lower quartiles where their ends
represent the 9th and 91th percentile respectively. The first thing to note is that we seem to have
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asymmetries present already during the sound trials. Furthermore we see that the results are
correlated with the inductions, but the differences between sound and induced lameness trials
are not as significant as we would wish.

Figure 14 shows analogously the box plots of the quantities PDmin and PDmax when evaluated
on all trials. Here the results are more consistent with the lameness inductions, but we still have
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Figure 14. (a) Box plots of the min peak differences for the pelvis, PDmin. (b) Box plots of the
max peak differences for the pelvis, PDmax.

asymmetries present in the sound trials.
Figure 15 and Figure 16 show the corresponding statistics for the symmetry indices (SIdown

and SIup) defined according to equation (8) for the withers and the pelvis. Also here we see
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Figure 15. (a) Box plots of the symmetry index for the withers in the downward direction,
SIdown. (b) Box plots of the symmetry index for the withers in the upward direction, SIup

that the symmetry indices are more correlated with the inductions at the rear limbs compared to
those at the fore limbs. According to the definition in (8), the symmetry indices for the withers
and the pelvis should have opposite signs since lameness was always induced on the diagonal
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Figure 16. (a) Box plots of the symmetry index for the pelvis in the downward direction, SIdown.
(b) Box plots of the symmetry index for the pelvis in the upward direction, SIup.

or contralateral limb relative the frontlimb carrying the sensor. At least the result in Figure 15
(a) and Figures 16 (a)-(b) are consistent with this fact.

If we analyze the max and min peak statistics while taking the induction type into account,
we get the results shown in Figure 17 and Figure 18. Here F-swing denotes frontlimb swinging
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Figure 17. (a) Box plots of the min peak differences for the withers (WDmin) separated by
induction type. (b) Box plots of the max peak differences for the withers (WDmax) separated by
induction type.

lameness, H-supp hindlimb supporting lameness etc. Also here it is evident that the algorithm
performs better for the rearlimbs, with the exception of the max peak statistics for swinging
lameness. For the forelimbs the algorithm seems to perform best for swinging lameness. The
differences in performance for the front and rear limbs could be related to the fact that a dog,
in contrast to a horse, in general has a much more loose and flexible skin, especially in the
withers region. Thus the sensor at the wither will move more during locomotion and induce
disturbances.
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Figure 18. (a) Box plots of the min peak differences for the pelvis (PDmin) separated by in-
duction type. (b) Box plots of the max peak differences for the pelvis (PDmax) separated by
induction type.

It is worth to point out that the analysis has been carried out using all 98 trials. We will
probably obtain better results if we exclude trials with inconsistent inductions. Exclusion can
be done by analyzing the video films that were recorded during the trial sessions.

4.2 Frequency Analysis

It would also be of interest to analyze the performance of the frequency analysis approach
outlined in Section 3.5.5. Figure 19 shows the statistics for the amplitude ratio % defined in
Equation (16). Here we see that the results are more consistent with the induction type. We can
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Figure 19. (a) Box plots of the amplitude ratio %w for the withers. (b) Box plots of the amplitude
ratio %p for the pelvis.

additionally take the induction type into account in the analysis, which gives the result shown
in Figure 20. It appears that it is supporting lameness that is best detected by this approach.
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Figure 20. (a) Box plots of the amplitude ratio %w for the withers separated by induction type.
(b) Box plots of the amplitude ratio %p for the pelvis separated by induction type.
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5 DISCUSSION AND FUTURE WORK

We have in this study evaluated the feasibility of using inertial sensors, signal processing and
software algorithms for lameness assessment, where the main goal has been to arrive at a more
objective measure compared to what is standard in today’s veterinary clinics.

Thirteen clinically sound dogs of medium size were included in the study. The study was
limited to considering only trotting locomotion on straight paths indoors, simulating both com-
mon examination procedures and facilities available at most veterinary clinics. In order to have
controlled experimental conditions, locomotion disturbances were induced artificially by using
cotton wads at the paws and weights on the limbs. A complication with this kind of artificial
lameness induction, however, is that it hard to get a consistent lameness grade during the trials
since the animal often adapts to the disturbance gradually.

The results indicate that it would be feasible to use standard low cost MEMS IMUs to
evaluate and assess lameness of grade 2-3 in trotting dogs, but that more work probably is
needed to fine-tune and robustify the algorithms. Due to their low cost, MEMS sensors are
more or less available to almost everyone today, for instance by using mobile phones with data
recording apps, or by using single-board microcontrollers and microcontroller kits like Arduino,
Raspberry Pi® etc.

There are many parts in the proposed movement analysis algorithm that can be improved.
One obvious topic to investigate is why we get a relative high degree of asymmetry already at a
low lameness grade. Another question is why the data from the withers sensor do not provide
as good results as the data from the pelvis sensor. Both these problems could be related to
the fact that a dog, in contrast to a horse, in general has a much more loose and flexible skin,
especially in the withers region. Thus the sensors will move more and induce more disturbances
when attached to a dog during locomotion. The use of home-made textile harnesses, Velcro and
double adhesive tape to attach the sensors to the animals during the trials worked rather well,
but it happened several times that the sensors got loose. It would therefore be desirable to come
up with a more failsafe way of fastening the sensors, preferably in a way that also reduces the
effect of the flexible skin.

Compared to the study by (Rhodin et al., 2017) we have in this study not yet considered the
use of the head sensor to assess forelimb lameness. The reason for that is mainly the physical
behavior of dogs compared to horses. A horse is typically moving more or less autonomously
when locomotion exercise has been initiated, whereas a dog is more eager to please the han-
dler and seeks eye contact. Sometimes one also has to motivate the dog to participate in the
procedure by using treats, which might introduce disturbances when the dog tries to catch the
treat. Another complication is the use of a leash which might affect the animal’s ability to move
freely.

There is of course also many aspects of the signal processing part of the work that can be
enhanced. Especially the stride splitting part in the software and the algorithm that evaluates the
quality and shape of the strides could be improved. Also the AHRS algorithm could obviously
be improved due to the drifts in the orientation estimates which are currently present. It might
be possible that the magnetometer measurements could be used if a thorough calibration routine
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is carried out prior to the trials.
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POPULÄRVETENSKAPLIG SAMMANFATTNING

HÄLTA eller andra rörelsestörningar är vanliga skäl till varför djurägare söker veterinärvård
för sina djur. Hältan hos djuret är oftast smärtutlöst och kan bero på muskel- och/eller

skelettskador, degenerativa förändringar i leder etc.

Utvärdering av hälta har traditionellt utförts genom att veterinären observerar djuret under rö-
relse och på så sätt bedömer om eventuella asymmetrier i rörelsemönstret föreligger. Detta är
en speciellt vanlig undersökning inom hästmedicin. Ett problem är dock att bedömningen är
subjektiv, dvs olika veterinärer kommer ofta till olika slutsatser. Detta har bekräftats i ett flertal
publicerade studier utförda både inom hästmedicin och smådjursmedicin. Dessvärre blir situa-
tionen ännu mer utmanande när det gäller sällskapsdjur som hundar. Deras rörelser är både
snabbare och mindre i magnitud jämfört med stora djur, så det kan vara svårt för det mänskliga
ögat att uppfatta eventuella asymmetrier.

Datorstödd rörelseanalys med kamerabaserade eller tröghetssensorbaserade system, har blivit
allt vanligare vid större hästkliniker idag som ett mer objektivt verktyg för att utvärdera rör-
elsestörningar. Data från djuret samlas in under under rörelse och analyseras i ett datorprogram
varefter ett mått på rörelseasymmetrierna erhålls. Sådana verktyg har visat sig vara till stor nytta
både vid rutinundersökningar och i mer komplicerade fall då man kan följa hur hältan förändras
över tid.

Vad vi vet finns det inte något liknande kommersiellt verktyg tillgängligt för sällskapdjur såsom
hundar ännu. I en nyligen genomförd studie vid SLU som utvärderade användningen av trög-
hetssensorer på hundar som travade på ett löpband, erhölls dock lovande resultat vid en måttlig
artificiellt inducerad hälta. I denna studie utnyttjades ett kommersiellt system för hästar som
hade modifierats med en speciellanpassad mjukvara. Kompletterande studier har därför ansetts
önskvärda för att avgöra om denna metod kan användas under mindre kontrollerade former, t ex
i ett rum eller i en korridor vid en veterinärklinik.

Syftet med detta arbete har därför varit att undersöka om det är möjligt att använda tröghetssen-
sorer, signalbehandling och mjukvarualgoritmer för att utvärdera rörelsestörningar hos hundar
under förhållanden som råder vid en helt vanlig veterinärklinik. Tröghetssensorer är numera bå-
de små, billiga och strömsnåla. De används t ex i smarta mobiltelefoner för positionering, bl a
genom att mäta accelerationer och rotationshastigheter.

Studien omfattade 13 friska hundar av medelstorlek, och begränsades till att endast beakta rö-
relseasymmetrier vid trav på rakt spår. För att kunna garantera kontrollerade förutsättningar
inducerades rörelsestörningar på konstgjord väg genom att applicera bomullsvaddar mellan tår-
na eller vikter på benen ovanför karpus respektive tarsus. Induktionerna anpassades så att en
hältgrad 2-3 på en 5-gradig skala uppnåddes. Mätdata samlades in genom att tröghetssensorer
från ett kommersiellt mätsystem fästes vid 4 positioner på hundarna; på huvudet, över manken,
över bäckenet och på ett av frambenen. Dataanalys gjordes sedan offline med olika mjukvaru-
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algoritmer för att utröna om eventuella rörelseasymmetrier förelåg.

Resultaten indikerar att det förefaller lovande att använda tröghetssensorer av standardtyp för att
analysera rörelseasymmetrier av grad 2-3 hos hundar, men att ytterligare forskning och utveck-
ling sannolikt krävs för att förbättra och robustifiera algoritmerna. Skillnaden mellan hästar
och hundar i både beteende och fysik leder till nya utmaningar som måste hanteras. Hundar
interagerar med sin förare i betydligt högre utsträckning, genom att t ex söka ögonkontakt, och
deras rörelser har högre frekvens och lägre magnitud. Dessutom är huden/pälsen hos en hund
generellt mer lös och flexibel, vilket innebär en utmaning när sensorerna ska fästas.
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Appendices

A NUMERIC INTEGRATION

A common method for approximating the definite integral

s D

Z
f .t/ dt (17)

numerically in the time domain, is to utilize the trapezoidal rule. If we assume that the data is
sampled with sample interval Ts yielding N samples, and we use the notation f Œk� D f .kTs/,
we have that

sŒN � D

Z NTs

Ts

f .t/ dt � Ts

NX
kD1

f Œk�C f Œk � 1�

2
: (18)

Here we assume that f Œ0� D 0. For double integrals, the rule (18) is applied twice. In practice,
however, it is often required to pre-process the data, such as filtering and/or removals of mean
values, in order to avoid cumulating errors, so-called drifts.

Integration can also be performed in the frequency domain. Let

F Œn� D

NX
kD1

f Œk� � e�i˝nk; n D 1; : : : ; N (19)

denote the discrete Fourier transform (DFT) of f Œk�, see Bracewell (1999), with i D
p
�1 and

˝n D
2�n

N
: (20)

Then it can be shown that integration in the time domain is the same as multiplying F Œn� with
Ts=.i˝n/ in the frequency domain, i.e.,

SŒn� D
Ts

i˝n
F Œn�: (21)

By taking the inverse discrete Fourier transform (IDFT) of SŒn�,

sŒk� D

NX
nD1

SŒn� � ei˝nk; (22)

we thus obtain the integral in the time domain. A double integral can be computed by multi-
plying F Œn� with �T 2s =˝

2
n . In implementations we will use the fast Fourier transform (FFT)

instead of DFT.

B AHRS

A system that estimates the orientation or attitude of an object relative the earth frame is called
an attitude and heading reference system (AHRS). Different approaches for AHRSs have been
thoroughly studied within the fields of avionics and robotics. I have in this work investigated
the use of an Extended Kalman filter (EKF) based on quaternions.
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B.1 Kalman Filtering

The concept and theory of Kalman filtering is well matured and has been thoroughly analyzed
and investigated since its introduction in the 1960s (Kalman, 1960). The Kalman filter assumes
that measured data is thought to has been generated by a linear dynamic state-space model
according to

xŒk C 1� D FkxŒk�CGkuŒk�C vŒk�; (23a)

yŒk� D HkxŒk�C eŒk�: (23b)

where xŒk� is the system state, uŒk� is the input, yŒk� is the output, and vŒk� and eŒk� are process
and measurement noise respectively. Using observations uŒk� and yŒk� from the system (23),
the goal is then to estimate the state vector xŒk�. A straightforward approach to estimate the
states is to utilize a state observer, i.e.,

OxŒk C 1� D Fk OxŒk�CGkuŒk�CKk .yŒk� �Hk OxŒk�/ : (24)

where Kk is the observer gain. The Kalman filter selects the optimal observer gain given
knowledge of the statistical properties of vŒk� and eŒk�. More specifically, the recursive Kalman
filter algorithm can be formulated as

Kk D Pkjk�1H
T
k

�
HkPkjk�1H

T
k CRk

��1
; (25a)

OxŒkjk� D OxŒkjk � 1�CKk .yŒk� �Hk OxŒkjk � 1�/ ; (25b)

Pkjk D Pkjk�1 �KkHkPkjk�1 (25c)

OxŒk C 1jk� D Fk OxŒkjk�CGkuŒk�; (26a)

PkC1jk D FkPkjkF
T
k CQk (26b)

whereRk andQk are the covariance matrices of eŒk� and vŒk� respectively. Here (25) is referred
to as the measurement update (or update step) since it incorporates the measurements yŒk� in
the recursion, and (26) is called the time update (or prediction step).

If the system description instead is nonlinear in xŒk� and uŒk�, i.e.,

xŒk C 1� D f .xŒk�; uŒk�/C vŒk�; (27a)

yŒk� D h.xŒk�/C eŒk�; (27b)

for some nonlinear functions f .�/ and h.�/, a common approximation is to linearize these func-
tions around the current state estimate. Then one ends up with the so-called extended Kalman
filter (EKF) where Fk, Gk and Hk in (25) and (26) are replaced with the Jacobians of f .�/ and
h.�/ evaluated at the current state estimate. That is,

Fk �
@f .x; u/

@x

ˇ̌̌̌
xDOxŒkjk�

; (28a)

Gk �
@f .x; u/

@u

ˇ̌̌̌
uDuŒk�

; (28b)

Hk �
@h.x/

@x

ˇ̌̌̌
xDOxŒkjk�

: (28c)
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B.2 Attitude and Heading

Describing the orientation of an object in 3D space can be done in several ways where Euler
angles or rotation matrices are commonly used approaches.

B.2.1 Euler Angles

Euler discovered that any orientation can be achieved by applying three elementary rotations
around the coordinate axes. Let �, � and  denote the Euler angles, i.e., the rotation angles
around the x, y and z axes respectively. Then it can be shown that an arbitrary rotation can be
expressed as0B@x0y 0

z0

1CA D R
0B@xy
z

1CA D Rx.�/Ry.�/Rz. /
0B@xy
z

1CA
D

0B@1 0 0

0 cos� � sin�
0 sin� cos�

1CA
0B@ cos � 0 sin �

0 1 0

� sin � 0 cos �

1CA
0B@cos � sin 0

sin cos 0

0 0 1

1CA
0B@xy
z

1CA
D

�
cos � cos cos � sin � sin �

sin� sin � cos �cos� sin sin� sin � sin Ccos� cos sin� cos �
cos� sin � cos Csin� sin cos� sin � sin �sin� cos cos� cos �

�0B@xy
z

1CA (29)

where R is an orthogonal rotation matrix satisfying R�1 D RT . When the object is rotating in
3D space, the Euler angles change according to0B@!x!y

!z

1CA D
0B@ d
dt
�

0

0

1CACRx.�/
0B@ 0
d
dt
�

0

1CACRx.�/Ry.�/
0B@ 0

0
d
dt
 

1CA : (30)

The dynamics of the Euler angles can be derived from this as

d

dt

0B@� 
�

1CA D
0B@1 sin� tan � cos� tan �
0 cos� � sin�

0
sin�
cos �

cos�
cos �

1CA
0B@!x!y
!z

1CA : (31)

The matrix in (31) becomes singular when � ˙ �=2 C n � � which can cause problems in a
Kalman filter context.

B.2.2 Quaternions

A better and more numerically stable approach is to use quaternions, which can be interpreted as
an extension of the concept of complex numbers, see for instance (Kuipers, 2000). A quaternion
consists of a real part and three imaginary parts usually denoted as

q D qw C iqx C jqy C kqz; (32)
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where qw is the real part, and qx, qy and qz are the imaginary parts. It is common to represent
a quaternion as a vector (i.e., column matrix) such that

q D
�
qw ; qx; qy; qz

�T
: (33)

A quaternion can be used to describe a rotation an angle ˛ around a vector

! D
�
!x; !y; !z

�T (34)

in 3D space as

q D

 
cos ˛

2

sin ˛
2
� !

!
: (35)

This provided the vector q has unit length, i.e., jqj2 D q2w C q
2
xC q

2
y C q

2
z D 1. The quaternion

can be converted to a rotation matrix according to

R D R.q/ D

0B@q2w C q2x � q2y � q2z 2.qxqy � qwqz/ 2.qwqy C qxqz/

2.qxqy C qwqz/ q2w � q
2
x C q

2
y � q

2
z 2.qyqz � qwqx/

2.qxqz � qwqy/ 2.qyqz C qwqx/ q2w � q
2
x � q

2
y C q

2
z

1CA : (36)

If ! is time-dependent (i.e., ! D !.t/), it can be shown, see for instance (Graf, 2008), that the
dynamic behavior of the quaternion is governed by

d

dt
q.t/ D

1

2

 
0

!.t/

!
˝ q.t/: (37)

where ˝ denotes Hamilton (quaternion) product. One can show that the Hamilton product can
be expressed as a matrix multiplication, so that

d

dt
q.t/ D

1

2
S.!.t//q.t/ D

1

2
NS.q.t//!.t/; (38)

with

S.!/ D

0BBB@
0 �!x �!y �!z

!x 0 �!z !y

!y !z 0 �!x

!z �!y !x 0

1CCCA and NS.q/ D

0BBB@
�qx �qy �qz

qw qz �qy

�qz qw qx

qy �qx qw

1CCCA : (39)

Here we use the same notation as Gustafsson (2018).

B.3 A Quaternion-based EKF

In order to use the dynamic relation (38) in a Kalman filter (i.e., being able to to express it in
a form similar to equations (23) or (27)), we have to solve the differential equation (38) on the
sample interval ŒkTs; .k C 1/Ts� assuming !Œk� is constant. We then get

qŒk C 1� D e
1
2
S.!Œk�/TsqŒk�

D

 
cos
j!Œk�jTs

2
I C

Ts

2

sin j!Œk�jTs

2

j!Œk�jTs

2

S.!Œk�/

!
qŒk�

�

�
I C

Ts

2
S.!Œk�/

�
qŒk�:

(40)
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where I denotes the identity matrix, see for instance (Gustafsson, 2018). A complication is that
we are not measuring the true angular velocity via a MEMS gyroscope, rather a sum of the true
angular velocity !0Œk�, the gyro bias bg Œk�, and measurement noise v!Œk�,

!Œk� D

0B@!xŒk�!yŒk�

!zŒk�

1CA D !0Œk�C bg Œk� � v!Œk� D
0B@!0xŒk�C bgx Œk� � v!x Œk�!0y Œk�C b

g
y Œk� � v

!
y Œk�

!0z Œk�C b
g
z Œk� � v

!
z Œk�

1CA : (41)

Thus

qŒk C 1� �

�
I C

Ts

2
S .!Œk� � bg Œk�C v!Œk�/

�
qŒk�

D

�
I C

Ts

2
S .!Œk�/

�
qŒk� �

Ts

2
NS.qŒk�/bg Œk�C

Ts

2
NS.qŒk�/v!Œk�:

(42)

We chose to model the dynamics of the gyro bias as a random walk, that is,

bg Œk C 1� D bg Œk�C vbŒk�; (43)

where vbŒk� is normally distributed noise with zero mean. In order to use the models (42) and
(43) in the EKF framework we use the measured angle velocities as input vector,

uŒk� D
�
!xŒk�; !yŒk�; !zŒk�

�T
; (44)

the measured accelerations as output vector,

yŒk� D
�
axŒk�; ayŒk�; azŒk�

�T
; (45)

and the quaternion and gyro offsets as state vector,

xŒk� D
�
qw Œk�; qxŒk�; qyŒk�; qzŒk�; b

g
x Œk�; b

g
y Œk�; b

g
z Œk�

�T
: (46)

The system dynamics can then be summarized in matrix form as

xŒk C 1� D

 
I C Ts

2
S.!Œk�/ �Ts

2
NS.qŒk�/

0 I

!
„ ƒ‚ …

Fk

xŒk�C

 
Ts

2
NS.qŒk�/ 0

0 TsI

! 
v!Œk�

vbŒk�

!
„ ƒ‚ …

Qvk

: (47)

The system outputs (45) relate to the state vector (46) as

yŒk� D R.qŒk�/T
�
a0Œk�C gv

�
C eŒk� D h.qŒk�/C eŒk�; (48)

where the R.q/T is the transpose of the rotation matrix in (36) which rotates from the earth
frame to the IMU frame, a0Œk� is the acceleration vector of the IMU in the earth frame, gv D
.0; 0; �1/T is the gravity vector in the earth frame, and eŒk� is measurement noise. The
acceleration vector a0Œk� is not known though, so we have to assume a0Œk� D 0. The relation
(48) is obviously nonlinear in qŒk� according to (36), so we have to linearize and compute the
Jacobian of h.�/,

Hk �
@h.x/

@x

ˇ̌̌̌
xDOqŒk�

: (49)
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Note that we have to ensure the unit length constraint when using the state transition model
(47) in an EKF so that Oq2w Œk�C Oq

2
xŒk�C Oq

2
y Œk�C Oq

2
z Œk� D 1. This can be achieved by means of

normalization, see (Zanetti et al., 2006).
By combining (29) and (36) the estimates of the Euler angles become

0BB@
O�Œk�

O�Œk�

O Œk�

1CCA D
0BBBBB@

arctan
2
�
Oqy Œk� Oqz Œk� � Oqw Œk� Oqx Œk�

�
Oq2w Œk� � Oq

2
x Œk� � Oq

2
y Œk�C Oq

2
z Œk�

arcsin
�
2
�
Oqw Œk� OqyŒk�C OqxŒk� OqzŒk�

��
arctan

2
�
Oqx Œk� Oqy Œk� � Oqw Œk� Oqz Œk�

�
Oq2w Œk�C Oq

2
x Œk� � Oq

2
y Œk� � Oq

2
z Œk�

1CCCCCA (50)

The measured accelerations (in the IMU frame) can be rotated to the earth frame using

aeŒk� D R . OqŒk�/ aŒk� � gv; (51)

or by using the quaternion directly 
0

aeŒk�

!
D OqŒk�˝

 
0

aŒk�

!
˝ Oq�Œk� �

 
0

gv

!
; (52)

where q� is the inverse/conjugate of the quaternion.
So far we have only considered a single extended Kalman filter for one IMU. If we want to

estimate the states for several IMUs in parallel we can just stack them in the filter. However,
they will then be completely independent.

The yaw estimates can be stabilized utilizing the special condition that the dogs are running
on straight paths with 180ı turns in the ends during the trials. Consider the Euler angles in
equation (50). By dropping the time indices and the “hats” for ease of notation, we have that
the yaw  is given by

 D arctan
2
�
qxqy � qwqz

�
q2w C q

2
x � q

2
y � q

2
z

: (53)

The yaw is thus 0ı or 180ı (+ n � 360ı) when the numerator in (53) equals zero. We can take
advantage of this knowledge in the filter by adding a virtual measurement in the filter output in
(48)

0 D h1.q/ D
�
qxqy � qwqz

�2
: (54)

Of course we need also to extend the Hk matrix in (49) with the partial derivatives of h1 with
respect to q.

Another idea is to try to stabilize the yaw estimate from the IMUs at the pelvis and withers
by adding dependencies between them. Given the two quaternions qp (pelvis) and qw (withers)
we can again extend the filter outputs in (48) with the squared differences of the numerators and
denominators in (53)

0 D h2.q
p; qw/ D

�
qpx q

p
y � q

p
wq

p
z � q

w
x q

w
y C q

w
wq

w
z

�2
; (55a)

0 D h3.q
p; qw/ D

�
.qpw/

2
C .qpx /

2
� .qpy /

2
� .qpz /

2

�.qww /
2
� .qwx /

2
C .qwy /

2
C .qwz /

2
�2
; (55b)
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thus to some extent forcing them, and the corresponding yaw estimates, to move towards the
same values. Also here we need to extend the Hk matrix in (49) with the partial derivatives of
h2 and h3 with respect to qp and qw .
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