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Beef is a highly demanded food and plays an important role in the everyday 
diet for many people. The most common methods for measuring meat quality 
attributes are pH, colour, water-holding capacity, intramuscular fat, flavour 
and tenderness, are more or less performed by subjective methods and various 
types of chemical methods, which all are time consuming, invasive and de-
structive. Furthermore, results from subjective measurements may be incon-
sistent due to biased judgement. Different imaging-based techniques have re-
cently been tested in order to rapidly and non-destructively measure and rank 
quality traits in beef cuts with consistent and reliable results. In this study 
imaging techniques (digital imaging and hyperspectral imaging) were used to 
objectively predict the average fat content and the distribution of fat on the 
surface of cuts of fresh beef samples. 
 
One part of this project digital (RGB) images from 61 beef samples were 
provided (from an earlier completed scientific study and analysed. Separately 
from the imaging analysis, it was evaluated how different traits such as age 
and breed affected the level of marbling. For each image there was back-
ground information with traits (carcass characteristics and slaughter data), 
that was analysed using a principal component analysis (PCA). Both breed 
and age affected the marbling grade, but the marbling was not affected by 
carcass characteristics.   
 
In the other part of the project, a set of 120 commercially provided beef sam-
ples were analysed using a hyperspectral camera. In order to acquire the hy-
perspectral images, a hyperspectral imaging system with a spectral range of 
900-2500 nm was used.   
 
Images from both datasets were analysed to obtain objectively measured fat 
content of all image samples. The predicted fat contents were then compared 
with marbling grades, evaluated by an experienced grader.  
 
The results from the image analysis indicate that both imaging techniques can 
be used to predict the amount and distribution of fat in beef samples, however 
in terms of overall accuracy, the hyperspectral imaging system was more pre-
cise. The comparison between measured fat content and marbling grading in-
dicate that there is a correlation between higher fat content and higher mar-

Abstract 



 
 

bling grade. However, there is a low correlation between the visually meas-
ured (marbling grading) and objectively measured (RGB and HS imaging)  
fat content, for both the RGB dataset and the hyperspectral dataset.  
 
Keywords: meat quality, eating quality, tenderness, marbling, imaging tech-
nique, hyperspectral imaging, objective and subjective analysis 



 
 

 
Nötkött är en mycket efterfrågad råvara som spelar en viktig roll i mathåll-
ningen för många människor. De nuvarande metoderna för mätning av kvali-
tetsattribut som pH, vattenhållande kapacitet, intramuskulärt fett, smak och 
mörhet är manuell inspektion och olika typer av kemiska analyser. Metoderna 
är tidskrävande och destruktiva, dessutom kan mänskliga klassificeringar 
vara inkonsekventa. Olika typer av bildanalyser har nyligen studerats för att 
kunna snabbt och icke-destruktivt mäta och rangordna kvalitetsegenskaper i 
styckdetaljer med konsekventa och tillförlitliga resultat. I denna studie an-
vändes bildanalys för att objektivt bestämma det genomsnittliga fettinnehållet 
och fördelningen av fett på ytsnitt av färska ryggbiffar. 
 
RGB-bilder tillhandahölls (från en tidigare avslutad vetenskaplig studie) och 
analyserades. Separat från bildanalysen utvärderades hur olika faktorer på-
verkar marmoreringsgraden. Bakgrunds information (produktion, slakt och 
slaktkropp), som korrelerade med RGB-bilderna, analyserades med hjälp av 
en principalkomponent analys (PCA). Både ras och ålder påverkade marmo-
reringsgraden, men marmoreringen skilde sig mellan djur av samma ras och 
ålder. 

 
Separat från RGB-data användes en uppsättning av 120 biffprover för att ge 
hyperspektrala bilder. För att förvärva hyperspektralbilderna användes ett hy-
perspektralt bildsystem med en bandbredd på 900-2500 nm.  
Båda dataseten analyserades i bildhanteringsprogramvara för att erhålla ob-
jektivt analyserade fettinnehåll i alla bilder. Det objektivt bestämda fettinne-
hållet jämfördes sedan med den grad av marmorering som bestämts genom 
visuell inspektion (subjektivt). 
 
Resultaten från bildanalysen indikerar att både RGB bilder och hyper-
spektrala bilder kan användas för att objektivt bestämma mängden och för-
delningen av fett i nötkött, men vad gäller noggrannhet var det hyperspektrala 
bildsystemet bättre. Det objektivt bestämda fettinnehållet korrelerades emel-
lertid inte med den subjektiva graderingen, vilket indikerar att det finns skill-
nader i skattningar för både RGB-datasetet och den hyperspektrala datasetet. 
 
Nyckelord: köttkvalitet, ätkvalitet, mörhet, marmorering, bildanalys, hyper-
spektral bildanalys, objektiv och subjektiv analys 
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Intresset för kött av hög kvalitet och välutvecklad marmorering (intramusku-
lärt fett) har ökat bland konsumenter och branschintressenter. Marmorering 
anses idag vara en tydlig markör för kött av premiumkvalitet. Det finns en 
efterfrågan på en effektiv och noggrann metod för att kunna mäta marmore-
ringen i en slaktkropp med hög precision och med konsekvent resultat.  
 
Bedömningen av marmorerings-
grad förslaktkroppar utförs idag av 
utbildade inspektörer på landets 
slakterier. Metoden för klassifice-
ring är dock tidskrävande och trots 
ett vältränat öga kan en visuell be-
dömning innebära inkonsekventa 
bedömningar av slaktkropparna.  

 
Att objektivt kunna mäta marmo-
rering,  skulle kunna bidra med 
högre noggrannhet i bedömningen 
och mindre variation mellan  t.ex. 
slakterier och bedömmare. Flerta-
let studier har gjorts för att utvär-
dera om bildanalys kan användas 
för att gradera slaktkroppar och 
bedöma kvalitetsegenskaper 
såsom mörhet, smaklighet och saf-
tighet.  
 
En metod som visat hög potential 
är hyperspektral bildanalys (HSI). 
I motsats till det mänskliga ögat 
som ser synligt ljus (rött, grönt, 
blått), fördelas spektral bildanalys 
över flera våglängder utanför det 

synliga spektrat. Detta ger möjlig-
het att se det som inte går att se 
med blotta ögat. 
I denna studie användes HSI för 
att objektivt analysera andel fett 
samt distributionen av fett i rygg-
biff. Samma ryggbiffar bedömdes 
visuellt av en tränad bedömare och 
graderades efter mängden marmo-
rering. Den visuella bedömningen 
jämfördes sedan med HSI resulta-
tet. I studien användes och analy-
serades även fettinnehåll i kött 
från ett annat dataset fotade med 
vanlig RGB-kamera. Resultaten 
visar att HSI generellt hade bättre 
klassificering av fettinnehåll än 
RGB-bilder. 
 
Studien påvisade möjligheter hos 
bildanalys i allmänhet, men HSI i 
synnerhet att objektivt kunna be-
döma andel fett i en köttbit.  Det är 
av intresse att fortsätta utveckla 
hyperspektral kamerateknik för att 
snabbt och med hög precision 
kunna bedöma marmoreringsgra-
den i olika styckdetaljer.

 

Bildanalys för en mer konsekvent och noggrann 
bedömning av marmoreringsgrad 
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1 Introduction 

1.1 Objective  
The overall objective of this study was to evaluate if imaging systems could be used 
to estimate the average fat content and the distribution of fat on the surface cuts of 
fresh beef samples.  
 
The specific objectives were to:  

1) Connect background information of the animals and marbling grade to eval-
uate the connection between different animal traits and marbling. 

2) Compute the distribution of intramuscular fat in beef samples, using an im-
aging system. 

3) Evaluate two imaging systems on their potential to estimate the fat distribu-
tion in beef: RGB images and hyperspectral images.  

4) Compare the fat distribution results from the objective analysis with mar-
bling grades from a subjective analyse to see if an imaging system can be 
used to estimate marbling in beef.  

1.2 Background  
In the modern beef industry, cattle origin from farms, where a range of production 
systems are used, e.g. from intensively production based on grain to extensive pro-
duction based on grazing. The systems also fits better for different types of breeds, 
thus animals with different carcass characteristics are used such as dairy breeds, 
light beef breads and Heavy beef breads. Also differences between the three sex, 
intact females, intact bulls, castrated bulls do exist. All these production factors af-
fect the quality of the meat provided after slaughter, and with the many different 
production systems, the industry is struggling to keep a consistent quality level 
(Naganathan et al. 2008). Since beef is a highly demanded food component and also 
commonly an important part in the everyday diets for many people, it is of high 
interest to be able to guarantee the quality of meat and meat products (Aredo, 
Velásquez, and Siche 2017). 
 
From a consumer’s point of view, beef quality can be defined by two main factors 
related to either (i) eating experience and (ii) hygienic quality. Consumers expect a 
product to be hygienically safe and free from pathogenic microbes. Being able to 
supply the costumer with safe products is considered to be one of the most important 
objectives in the industry (ElMasry G and Sun D.-W 2010; Kamruzzaman and Sun 
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2016). However, quality attributes in beef refer mostly to the eating experience. The 
eating experience is controlled by several traits as e.g. pH, water-holding capacity, 
fat- and protein- content and tenderness. Among all those attributes, tenderness is 
the most important factor influencing the eating quality. Consumers are willing to 
pay more for beef, if they are guaranteed a tender meat and refer to tenderness as 
the primary factor in eating satisfaction (Aredo, Velásquez, and Siche 2017; 
ElMasry G and Sun D.-W 2010; Kamruzzaman and Sun 2016). 
 

As the demands of products with high eating quality increases, it would be of 
interest to start evaluating the factors that correlated with attributes such as tender-
ness, flavour and juiciness. The traditional method for measuring the tenderness is 
by measuring the mechanical properties of the beef, Warner–Bratzler shear force 
(WBSF) or slice shear force (SSF). Such methods are time-consuming and destruc-
tive, by means that they are performed on cooked meat and the samples are cut. 
Other methods rely on human inspectors, such as sensory evaluation by trained ex-
perts. This method is both time consuming and limited by the subjectivity of each 
operator, which may give inconsistent and biased results (ElMasry G and Sun D.-
W 2010; Park et al. 2001). It is therefore desirable to find a cost-effective and fast 
way to evaluate factors that affect the eating quality to meet the consumers demand 
for high quality meat (Park et al. 2001; Jackman, Sun, and Allen 2011). 

1.3 Quality challenges in the meat industry 

1.3.1 Carcass grading in Europe 

In most European abattoirs, Swedish included, a system called EUROP is used to 
manually evaluate and grade the carcasses based on their conformation and fatness. 
The system is designed to ensure a fair and equal payment to the producer among 
all slaughter facilities. Furthermore the conformation scoring can be used (i) as a 
quality marker, (ii) to give feedback to the producer and (iii) to sort carcasses for 
further processing and selected markets (Einarsson 2011). The system is not built 
on evaluating the eating quality of single cuts, but mainly focuses on the primary 
yield factors of the carcass such as fat content and muscle conformation (Einarsson 
2011; Konarska et al. 2017). The value of a carcass is highly dependent on the sale-
able meat yield, which will be determined by the total fat percentage in the carcass 
and the amount of lean meat (Craigie et al. 2012).   
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The carcass is scored in fat class and conformation class, conformation is scored 
from E-P, and fat class is scored from 1-5. The scores are illustrated in Table 1. Each 
score can additionally be graded with +/-, hence the EUROP classification system 
has 15 classes.  
 

Table 1 Classification of carcasses according to EUROP (Jordbruksverket 2002)  

Carcass conformation score Fat class score 
E Extremely swelling 

and well developed 
5 Very abundant 

U Very swelling and 
well developed 

4 Abundant 

R Swelling and de-
veloped 

3 Average 

O Well developed 2 Lean 
P Somewhat thin 1 Very lean 

 

 
The lowest grading is thus equal to P- for conformation and 1- for fat class. The 
conformation class describes the swelling and amount of flesh on the carcass 
whereas fat class indicate the amount of subcutaneous fat on the outside of the car-
cass (Einarsson 2011; Johansen et al. 2006). In general, carcasses from specialized 
beef breeds gain higher conformation classes due to higher weights and higher 
dressing percentage. They also deposit less subcutaneous fat and show lower fat 
classes when compared to dairy cattle. The beef breeds ability to transform nutrients 
mainly into protein and to gain muscle instead of deposit fat contribute to their 
higher carcass conformations scores (Albertí et al. 2008; Clarke et al. 2009).  
 
All grading is performed based on photographic standards and the graders are highly 
educated and trained. The graders are regular inspected by the Swedish Board of 
Agriculture to confirm the standardisation among all graders. However, even if eval-
uators are well trained, the subjectivity within visual assessment may results in in-
consistency within the classification of carcass conformation due to human error 
(Craigie et al. 2012; Johansen et al. 2006). When the classification accuracy of eval-
uators in Norway was tested, systematic differences were found between classifiers. 
However the differences were within the limits for validation stated by the EU com-
mission. It was concluded that the evaluators in general over-classified confor-
mation and under-classified fat class (Johansen et al. 2006).  
 
Several studies have been conducted in order to estimate the accuracy of classifica-
tion in the EUROP system. Comparison has been made between the EUROP system 
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and image analysis, to evaluate the accuracy of both objective and subjective sys-
tems (Craigie et al. 2012; Einarsson 2011; Johansen et al. 2006). In the study of 
Johansen et al. (2006), the results indicated systematic differences between 
operators and European standards, however they were within the limitations stated 
by the EU comission. Craigie et al. 2012 and Einarsson 2011 concluded that current, 
subjetive grading has shortcomings due to inconsistency between operators. They 
both compared the visual grading with objective systems and proved that imaging 
assessment could be used with good results, when they were compared to the results 
based on the EUROP grading system.  

1.3.2 Beef quality  
Beef quality is defined as a combination of traits covering both composition of the 
beef (e.g. lean to fat ratio, meat percentage, intramuscular fat), sensory traits and 
functional traits (visual appearance and eating quality). 
Functional traits include for instance water-holding capacity (WHC) and pH, whilst 
composition traits cover e.g. lean to fat ratio, meat percentage, nutritional value, fat 
content and composition, and marbling. Sensory traits are those factors that affect 
the eating quality or palatability such as flavour, juiciness and tenderness (Andersen 
et al. 2005; ElMasry G and Sun D.-W 2010).  
 
Over the past decade, a higher knowledge about animal welfare and environmental 
impact from animal production have led to new standards regarding quality meat. 
Consequently, the definition of high quality now includes the production condition 
such as management, feeding and pre-slaughter handling (Andersen et al. 2005).   
 
One of the biggest issue in predicting quality of beef is that several factors will affect 
the traits listed above, both ante-mortem and post-mortem. Preslaughter stress and 
post-mortem factors such as changes in pH, cooling and aging, handling during 
packing and transport of the meat all influence the final quality attributes of the 
product.  
Ante-mortem factors that highly influence the characteristics of the meat are breed, 
sex, age and feeding. Also the management during lifetime, transport to slaughter 
and slaughtering conditions will affect the carcass characteristics (Y. Liu et al. 2003; 
Miller 2002). 
 
How familiar the animal is to human contact and if it is comfortable being trans-
ported and handled by man is a crucial factor for the physical properties of the meat. 
An animal that is not used to being transported or handled may become very stressed 



13 
 

during transport to slaughter and/or at the slaughterhouse. The acute stress will af-
fect the quality of the raw meat in a negative way due to a rapid decrease in pH 
(Grandin 1980). 

1.3.3 Eating quality  
Consumers consider tenderness to be the most important quality factor when deter-
mine the eating experience (Park et al. 2001). In a consumer panel test (Lucherk et 
al. 2016) 252 panellists ranked flavour and tenderness as top most important palat-
ability traits when eating beef. The purchasing habits of 120 panellists participating 
in a sensory test showed that more than 50 percent of the participants ranked ten-
derness as the most important palatability trait, followed by flavour and juiciness 
(Corbin et al. 2015). 
 
Tenderness is commonly measured by either sensory tests, performed by consumers 
and/or trained test panels or by instrumental technique. Usually the tenderness is 
measured using Warner-Bratzler shear force (WBSF) or slice shear force (SSF). The 
objective with both methods is to measure the force needed to cut through the centre 
of cooked steak samples (ElMasry G and Sun D.-W 2010). Older animals have less 
tender meat than young animals. This is due to collagen crosslinks, which changes 
the mechanical properties of the intra muscular connective tissue and contributes to 
the toughening of meat (Nishimura 2010). It is proven that marbling levels and the 
tenderness of meat is positively correlated (Xiong et al. 2014). As marbling is de-
posited into the muscle between the collagen linkage, it weakens the connective 
tissue resulting in tenderisation of the meat (Miller 2002; Nishimura 2010). 
 
Intra muscular fat (IMF) has an important role in different eating quality traits. The 
visible amount of IMF in the muscle is referred to as marbling. Marbling will appear 
in the muscle as small, thin streaks (like a marble pattern). The amount of streaks 

Figure 1 Degree of marbling will be determined on the amount of thin fat 
streaks within the muscle, and how well they are spread over the surface. 
The right beef cut is graded higher due to more fat streaks and how well 
they are distributed. High amount of fat streaks but poor distribution will 
be assigned a lower marbling grade.  



14 
 

and how well they are spread over the surface of the cut will determine the degree 
of marbling (Figure 1).  
Marbling is one of the most important features that influences the sensory accepta-
bility of meat and meat products. It affects all the attributes that are demanded by 
consumers such as flavour, juiciness and tenderness (Miller 2002).   
It is also shown that intensity of flavour increases with marbling levels (Miller 
2002). Uniformly and fine distribution (evenly spread over the surface of the cut) of 
fat streaks is to prefer. A steak with a high amount of finely distributed fat streaks 
will be considered to be of superior quality (Velásquez et al. 2017; Xiong et al. 
2014).  
 
In a study performed by (Lucherk et al. 2016), the palatability of beef steaks with 
varying marbling level and cooked to three different degrees of doneness were eval-
uated. The results indicated that the SSF value of beefsteaks significantly decreased 
when marbling level increased. The effect of doneness was also affected by mar-
bling. The most marbled samples managed to sustain its juiciness even when it was 
cooked to well-done (highest degree of doneness) and it also remained most tender 
compared to other marbling levels.   
 
The relation of tenderness and marbling level was concluded in (Corbin et al. 2015). 
According to this study, both juiciness and tenderness were correlated with fat con-
tent and increased with increased fat percentage. The correlations between tender-
ness, juiciness and flavour is strong and fat percentage plays a big role in all three 
factors.  
 
Since tenderness is considered to be the mostly important factor for eating quality, 
and since it is highly correlated with degree of marbling, it is important that mar-
bling is accurately predicted (Park et al. 2001; Konarska et al. 2017). The USDA 
quality grading system is a classification system that aims to grade carcasses based 
on both conformation and marbling. The scale consist of nine different levels of 
grading. In Sweden, the grading of marbling is based on the American USDA scale, 
but its nine levels is edited to fit Swedish cattle. Hence it only consists of five classes 
ranging from level 1-5 (Table 2). The grading is based on reference cards which 
represent the standard for marbling (Stenberg 2013).  
 
Another system for grading carcasses is the Meat Standard Australia (MSA), 
founded in Australia. The system includes the carcass conformation scoring like 
EUROP system. However, carcass grading in Australia also include several factors 
that will affect the eating quality. Those factors include breed, age, sex marbling, 
growth of the animal, carcass attributes and processing methods.  
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Like the EUROP system, the grading is performed by trained assessors, however it 
considers more traits in order to guarantee high quality meat and tenderness of beef 
cuts for costumers (Aus-Meat 2018). 
 
Table 2 Swedish standard for marbling levels (Stenberg 2013). 

Marbling level  Definition  USDA – equivalent  
1 No marbling - 
2 Incipient marbling Small 
3 Marbled Modest 
4 Well marbled Moderate 
5 Very marbled Slightly abundant 

 
Today no rapid, consistent and non-destructive method exist to predict marbling 
levels. Visual evaluation is time-consuming and rely on subjective inspections, 
which may be inconsistent. Instrumental methods are convenient and effective in 
measuring tenderness. However they are time-consuming, destructive and often re-
quires long-time sample preparation (Xiong et al. 2014). 
 
For marbling grading to become time-effective and accurate, it is needed to develop 
objective and automatic systems. Since the demand for high quality meat increases, 
many efforts have been made to develop non-destructive techniques for assessing 
marbling levels. Different types of imaging systems used for detecting traits such as 
tenderness and marbling have been developed and tested. The results indicate that 
imaging systems are powerful tools for predicting quality attributes in meat (Park et 
al. 2001; Velásquez et al. 2017; Xiong et al. 2014). 

1.3.4 Traits affecting marbling  
Several animal traits will affect the marbling development in the beef. Older animals 
tend to be more marbled than younger, due to intramuscular fat being the last fat to 
deposit (Albrecht et al. 2006; Venkata et al. 2015).  
 
Sex also influence marbling development. Heifers, in general receives higher mar-
bling grades than steers. This may be due to heifers capability to deposit fat into the 
muscle (Venkata et al. 2015). In an article (Harper and Pethick 2004) it was con-
cluded that heifers tend to be more marbled than steers and bulls, steers being more 
marbled than bulls. However, steers had slightly higher marbling than heifers when 
IMF % was expressed in relation to total fatness. Beef from heifers generally appear 
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to be more juicy and tender, which is most likely to be related to their higher IMF 
content (Venkata et al. 2015; Węglarz 2010).  
 
When comparing breed related changes in marbling, it is shown that Holstein ani-
mals tend to have high number of marbling flecks. It is finer structured than other 
breeds and the flecks is intensively incorporated into the muscle at 6 months of age, 
comparable with 12 months for Angus (Albrecht et al. 2006). The percentage of 
subcutaneous fat where higher in Holstein bulls than Charolais bulls. The beef bull 
also showed overall lower amount of inner fat depots. The Holstein bulls had lower 
dressing percentage and lower carcass conformation but graded higher in marbling 
(Pfuhl et al. 2007).  

1.3.5 Restrictions 
Beef quality is a wide definition, influenced by both ante-mortem factors such as 
breed and genetics, dietary influences and management. The quality is also affected 
by post-mortem factors both directly at slaughter and after the slaughtering process, 
during production. All factors that affect the meat quality will have impact on the 
eating experience in several ways, and is an attribute that is effected by many dif-
ferent factors. However, other important factors (other than marbling) linked to meat 
and eating quality (such as collagen, colour, pH and water holding capacity) will 
not be considered. Marbling as a quality factor and how it can be measured will be 
the main focus area in this report. Effects of breed, sex and age in marbling devel-
opment will be taken in to account, but environmental and management factors will 
be excluded from the study.  

1.4 Imaging techniques  

1.4.1 RGB imaging 

An ordinary digital camera takes photos that covers the spectral range of human 
vision and include wavelengths of approx. 400-700 nm. An RGB image consist of 
three spectral bands, red (R), green (G) and blue (B). The colours that we see are 
combinations of these three colours. The low number of spectral bands limits the 
RGB imaging in such way that it can have a high spatial resolution (many pixels per 
area), but poor spectral resolution and thereby less chemical information (Konda 
Naganathan et al. 2008). 
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1.4.2 Hyperspectral imaging 
The characteristic for hyperspectral imaging (HSI) are the number of spectral bands 
in the image. Depending on the system, the number of spectral bands can reach to 
about 300 bands. Although the spectral bands are narrow, ranging from 1-10 nm, 
they provide lots of spectral information. The most widely used hyperspectral im-
aging systems covers the visible wavelengths (380-800 nm) and the infrared range 
(400-1000 nm) (ElMasry and Sun 2010). A HS imaging system can be used to ac-
quire images of both high spatial and spectral resolution, since it consist of both the 
digital camera (spatial information) and a spectrograph (spectral information) 
(Konda Naganathan et al. 2008).   
 
With its ability to provide images with high spatial and spectral information, hyper-
spectral imaging has become an interesting technique for non-destructive analysis 
of beef and other food products. Several research efforts have been made to develop 
an imaging system for rapid analysis of different attributes such as moisture, pH and 
fat content. For instance one study evaluated an imaging system for on-line fat meas-
urement of beef trimmings. In slaughter facilities, beef trimmings are a residue from 
the deboning. The trimmings are valued by its fat content and often sold in batches 
with varied fat content and different size. The study aimed to calibrate an imaging 
system for measuring fat content of both single beef trimmings and for total amount 
of fat content in different sized batches. The imaging system accurately estimated 
the fat content in both single trimmings and for the different sized batches (Wold et 
al. 2011). 

1.4.3 Differences between RGB and HS imaging 
The main difference between a RGB image and a hyperspectral image is the richer 
spectral information provided by hyperspectral imaging. Figure 2 illustrates the dif-
ferences between RGB spectral bands and the spectral bands in hyperspectral im-
ages. The RGB images have a few very wide bands, whereas the hyperspectral im-
age consists of hundreds of almost continuous, narrow bands. The amount of narrow 
bands enables an almost continuous reflectance spectrum for each pixel in the hy-
perspectral image. That spectral information can then be used to classify and char-
acterize objects (Gowen et al. 2007). Figure 3 illustrates the spectral curve for a fat 
pixel, obtained from an  hyperspectral imaging compared to an RGB  image.. 
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Figure 2 Illustration of the spectral bands and wavelengths of RGB and Hyperspectral images. The 
RGB range consist of three wide bands (red, green, blue) whereas the hyperspectral image consist of 
hundreds of narrow bands. The amount of narrow bands allows an almost continuous reflectance 
spectrum for each pixel in the hyperspectral image. 

Figure 3 Spectral differences between a fat pixel from an RGB image (above) and a hyperspectral 
image (lower). For the upper, the spectral information in the pixel is limited due to less spectral in-
formation in the RGB image. The lower figure shows the spectral information generated by hyper-
spectral imaging. The pixel gets a continuous spectrum, which can be used to identify objects based 
on its composition. The spectrum characteristics will act like a “fingerprint”.  
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In HS imaging, each pixel contains spectral information. This spectral information 
is added as a third dimension to the spatially-dependent two-dimensions image ac-
quired by the system. The tree-dimensional image with two spatial and one spectral 
dimensions, is referred to as a hypercube (Gowen et al. 2007; L. Liu and Ngadi 
2014). The whole spectral image can be referred as a hypercube, or each pixel can 
be extracted from the image as a pixel hypercube. The most simple hypercube is the 
RGB image where each pixel has red, blue and green colour, compared to a HS data 
cubes which can contain reflectance of up to hundreds of spectral bands (Figure 4) 
(Lu and Fei 2014; Vasefi, MacKinnon, and Farkas 2016).  
 

Figure 5 illustrates in detail the extraction of a single pixel from the spectral image. 
The pixel from a RGB image will generate an intensity curve showing how much 
of the colour red, green or blue that is represented in the pixel. The pixel hypercube 
generated in the HS image generates a spectral curve, which provides a spectral 
signature for that specific pixel and does so for each pixel in the image. When ana-
lysing spectral images, it is done on pixel level, using the spectral information in 
each single pixel and comparing the spectral signature to discriminate between dif-
ferent constituents (Lu and Fei 2014).   
 

Figure 4 Differences of spectral bands between RGB (left) and a hyperspectral image (right). The 
left RGB show the 3 spectral bands, red, green and blue. The hyperspectral image shows the 3-D 
“hypercube” consisting of the two spatial and one spectral dimension. It illustrates the high dimen-
sion of information that can be generated from a hyperspectral image, when all spectral bands are 
merged into one hypercube.   
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Imaging systems based on RGB are often used in food quality systems, as they pro-
vide a cheap and user-friendly imaging tool. However, they have limited abilities to 
detect surface features that are sensitive to wavebands other than RGB colours. This 
limitation is overcome with the richer spectral information of HSI-systems, making 
it possible to determine both physical and chemical properties in an object (Gowen 
et al. 2007; Huang, Liu, and Ngadi 2017) 
 
Hyperspectral imaging systems and RGB based techniques have been compared in 
several studies. Systems based on RGB are user friendly and cheap imaging tech-
niques widely used in food quality controls (Taghizadeh, Gowen, and O’Donnell 

Figure 5 The RGB image (upper) consist of three spectral bands (red, green and blue). Each pixel 
will contain different amount (intensity) of each colour which will result in the visible colour compo-
sition of the pixel. For the spectral image (lower), the extracted pixel gets an almost continuous 
spectrum. This generates a spectral signature for that specific pixel. With its spatial information it is 
possible to locate the pixel in the image and the source of the spectrum. Each pixel in the image has 
a spectral signature, enabling identification of constituents in different target objects.  
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2011). However, hyperspectral imaging system have shown higher levels of dis-
crimination when used for sorting objects of different quality attributes (Al-Mallahi, 
Kataoka, and Okamoto 2008; Garrido-Novell et al. 2012). 
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2 Materials and methods  
This report includes analysis and results from two independent datasets. The two 
datasets are treated separately as two separate studies.  
 
The first dataset (hereinafter referred to as the SKARA dataset) included 61 RGB 
images of sirloins (Latissimus dorsi). These data were provided from a finished sci-
entific project at the research facility SLU Götala Beef and Lamb Research, Swedish 
University of Agricultural Sciences, Skara.  
 
The second dataset consisted of 120 samples of sirloins (Beef cuts), provided from 
a slaughter facility in Luleå (Nyhléns Hugosons, Luleå). This dataset will be referred 
to as the hyperspectral dataset (HS dataset), since the beef samples were used to 
provide hyperspectral images. 

2.1 Data acquisition 

2.1.1 SKARA dataset  
This dataset consists of 61 RGB images, one example is shown in Photo 1. Each of 
the images have associated information of e.g. breed, age at slaughter and marbling 

grade. This information will be referred to as the external spreadsheet since it con-
tains variables that will be analysed, but not originated from the image analysis. The 
descriptive statistics of the data in the spreadsheet is illustrated in Table 3. This data 
were acquired from a scientific project (“Uppfödning av mjölk/köt-
traskorsningsstutar”) on comparing pure dairy breed steers with crossbred steers. 
The aim of the project was to test if crossing dairy cows with a Charolais bull would 
increase growth, feed conversion, muscle coverage and fat coverage of the calves.  

Photo 1 Red Green Blue ( RGB) image of sample 3 from the SKARA 
dataset 
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The images show a surface cut from a sirloin and include a code that links the image 
with information from the live animal and also slaughter data. The distribution of 
breeds in the dataset are illustrated in Figure 6. The marbling evaluation was man-
ually conducted by an experienced grader. The subjective evaluation was used to 
compare the results from the image based classification models. This gave the op-
portunity to compare objective and subjective results.  
 
 Table 3 Descriptive statistics of the traits in the external information sheet for the SKARA dataset. 
Number of observations for each trait = 61. 

nn = 
61 

Age, 
mon 

Live weight, 
kg 

Carcass weight, 
kg 

Carcass yield, 
% 

Conformation 
class 

Fat cover 
class 

Mar-
bling 

Mean 24,4 663,1 315,5 47,5 4,8 7,3 1,7 

STDV 3,4 66,5 37,7 2,2 1,2 1,1 0,8 

Max 28,0 824,5 417,5 53,2 7,0 9,0 5,0 

Min 20,0 526,0 244,0 43,3 2,0 4,0 1,0 

 

2.1.2 Hyperspectral dataset   
For the hyperspectral imaging study, sirloin steaks (n=120) were provided from a 
local packaging plant (Nyhléns Hugosons, Luleå). The samples were single packed 
in plastic and vacuumed at the packaging plant. All samples were cut and packed to 
fit for commercial use and chosen by employees at the plant to provide a wide var-
iation in total fat distribution among the samples. 
 
Samples were kept in a cold room at a maximum temperature of approximately 4oC 
for 24 hours before the day of measurement. As differences in temperature can affect 

31%

28%

21%

20%

SLB/CH SLB

SRB/CH SRB

Figure 6 Distribution of breeds in SKARA dataset. SLB = Swedish Holstein, SRB = Swedish Red, 
SLB/CH and SRB/CH = the crossbreeding with Charolais bull.  
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the comparability of the images, the samples were kept in a cool box with ice on the 
day of measurement.  

 
To be able to analyse the effect of plastic package and also compare the fat content 
and distribution from the surface area on both sides of the sample, 20 samples were 
randomly chosen and scanned both with and without plastic. The sample was then 
turned and scanned again (without plastic) from the opposite side. These samples 
were thus scanned thrice, first with the plastic still intact, then with the beef taken 
out of the plastic with the same side facing up and finally scanned on the other side. 
 
The sirloin steaks were imaged using a ViaSpec Hyperspectral imaging system, 
completed with a motor driven transmission stage, a focus grid and a white reference 
(Middleton Spectral Vision, Middleton). The system is mounted with a push broom 
Specim short-wave infrared (SWIR) camera, using a 15 mm f/2.1 lens (SWIR spec-
tral camera, SPECIM, Finland). The acquired images consisted of 288 spectral 
bands, ranging from 935-2457 nm with a spectral resolution of 12 nm and a spatial 
resolution of 0.42 mm. The system was controlled by the Breeze software (Breeze, 
Prediktera AB, Umeå). Halogen light sources (bulbs) were used to illuminate the 
samples and were angled approximately 30o (to the horizontal plane) to focus the 
light beam to the whole surface area, without shadowing. The set-up is shown in 
Photo 2. 
 
For each sample, the camera took a dark and white reference. Those references will 
eventually be used to compute reflectance (Schaepman-Strub et al. 2006), making 
all the images comparable in terms of spectral response.  
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2.2 Image pre-processing  
In order to analyse the images, the background (i.e. everything that is not protein or 
fat) had to be removed from the image. This was done using a principal component 
analysis (PCA) implemented in the Breeze software (Prediktera, Umeå, Sweden) 
for the hyperspectral images. A PCA is a useful tool to visualize variation and pat-
terns among variables in a large dataset. It reduces and transforms the original data 
into a set of principal components (PC) that explains the most of the variation in the 
data, where the first PC (PC1) holds the most variation, PC2 second-most etc.   
 
For the RGB images, the background was removed manually due to the more com-
plex background and the poorer spectral information using Photoshop CS6 (Adobe, 
San Jose, California).  
In order to make the RGB images comparable, the spatial resolution was homoge-
nised for all images, using the image size application in Photoshop. The RGB im-
ages was then loaded into Breeze. 
  

Photo 2 The hyperspectral imaging system used for scanning beef samples (left). Prepared beef sam-
ple (right) 
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2.3 Mathematical models used for classification and 
quantification 

For building the quantification model a partial least square regression (PLS-R) 
model was used. The aim was to quantify the percentage of fat and its distribution 
in the surface of the beef samples. The PLS-R specifies the linear relationship be-
tween the response variable Y (in this case % of constituent, e.g. fat/muscle tissue) 
and the predictor variables X (in this case spectral value). It finds components in 
such a way that the score values have maximum covariance (Abdi 2007). In this 
study, the PLS-R was used to quantify the amount of fat and muscle tissue (referred 
to as protein in this report) in surface of the beef samples.  
 
For the classification of pixels into classes of either fat, protein, background or plas-
tic, a partial least squares-discriminant analysis (PLS-DA) was used. The PLS-DA 
maximises the variance in the data based on the classes of the dataset. The method 
aims to find a separator between two or more variables and group them, creating a 
straight line that divides the groups into different regions (Brereton and Lloyd 
2014).  
 
The PLS-DA is derived from PLS-R and unlike PLS-R, PLS-DA uses dummy var-
iables (i.e. 0 or 1) to perform classification. The dummy variables are used to indi-
cate whether the sample belong to a specific class or not. When more than two 
groups are represented, the linear vectors which divide two groups belonging to ei-
ther 0 or 1, will turn into a matrix filled with dummy variables. Each column will 
represent a group and the sample will be considered to belong to a relevant class or 
not (i.e. it will belong to a class (1) or not (0)). One PLS-DA will be built for each 
class and then combined together to result in a final model used for classification 
(Brereton and Lloyd 2014). 
 
The models were evaluated using a leave-p-out cross validation. The principle of a 
leave-p-out cross validation is illustrated in Figure 7. This approach aims to use all 
the available samples of a ns-size dataset to assess the performance of a model, using 
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ns-p samples for calibration and p samples for validation and repeating the process 
until every sample has been used for both validation and calibration. The accuracy 
of classification of the model was evaluated using a performance score, usually de-
fined as; 

 
where 𝑎𝑎 is the accuracy of classification of the model, 𝑇𝑇𝑇𝑇 and 𝑇𝑇𝑇𝑇 are the number 
of true positives and true negatives, respectively, and 𝑛𝑛𝑠𝑠 is the total number of sam-
ples of the database. By using all the samples for both training and validation, the 
risks of underfitting and overfitting the model are reduced (Berrar 2019; Drakos 
2016).  
 

2.4 Principal component analysis of the SKARA dataset  
The external data with descriptive information was loaded into Evince to build a 
PCA model to evaluate the correlation of variables. The variables of interest in this 
analysis section are linked to the non-spectral information (external data). The var-
iable “breed” was set as the categorical variable and a PCA was built. Score values 
were obtained for the observations and loading values for the variables. 

Figure 7 The principle of a leave-p-out cross validation, from Drakos, 
2016 
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2.5   Image analysis   

2.5.1 Supervised classification of pixels to train reference data 

 
Figure 8 illustrates the workflow applied for the hyperspectral dataset.  
 
Image analysis was made using the hyperspectral imaging software Breeze for both 
data sets, the hyperspectral images from Luleå and the RGB images from the 
SKARA dataset.  
 
To train a supervised classification model, a dataset with reference data is required. 
In this study, no such reference data were available for either of the datasets. Here, 
the classification was supervised, meaning that the model is provided with infor-
mation about the classes of the samples used for classification. To obtain this infor-
mation, a function was used in Breeze to manually select pixels of a specific consti-
tution (e.g. protein, fat, etc.), adding those pixels to a user-defined class and create 
a reference dataset based on that selection. For each selected pixels, an average 
spectrum is calculated and added to the associated class. Hence the class and the 
spectral information for each class becomes the reference data that will be used to 
create a classification model. The selections were performed on the original images, 
choosing areas with known composition such as fat, protein etc.   

 

Figure 8 Workflow of the image analysis process for the hyperspectral images. 
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Manual selection of grouped pixels can be limited, due to difficulty to select areas 
with pixels of a single class e.g. fat. To avoid this, the segmentation was set on 
representative spectra rather than on averaged ones. This method creates a number 
of user-defined points within the manual selection (in this case 10), where each point 
(i.e., pixel) gets its own spectral value. The spectrum of each selected pixels is then 
extracted and stored with its corresponding class. The spectral signature for each 
pixel is shown below in Figure 9.  
 

 
The four classes used to build the PLS-DA model for the HS dataset were back-
ground, plastic, fat and protein. For the SKARA dataset the two classes were fat and 
protein. The quantification was performed for the constituents fat and protein.   
 
For both the SKARA dataset and HS dataset, the reference data that were used for 
modelling the classification were split in a (i) calibration-validation (train dataset, 
approximately 50% of the reference dataset) and a (ii) test subset. The calibration-
validation subset were used for training the model and then evaluate it by using the 
leave-p-out cross validation. The models classification accuracy were then esti-
mated on the test subset.  

2.5.2 Effect of plastic package  
To evaluate the influence of the plastic on the classification, 40 images/ 20 samples 
(randomly chosen from the total of 120 samples) were loaded into Evince (Pred-
iktera AB, Luleå). Evince is a software used to perform multivariate data analysis. 

Figure 9 Spectral signature for a pixel of either (i) background, (ii) plastic, (iii) fat or (iv) protein. 
The pixels are extracted from the images in the HS dataset. The spectral information from the pixel 
and its corresponding class is used to train and test a classification model.  



30 
 

Each sample was imaged both with and without plastic. The predicted values for fat 
content and distribution (calculated by Breeze) were statistically analysed in Excel. 

 
Using a PCA model, the background was removed from the image. Then all the 
pixels from samples with plastic were selected and given a class variable; “with 
plastic”. The selection was inverted to mark the other group of pixels and classify it 
as “without plastic”. A PCA scatter plot was created and coloured based on the clas-
ses (with or without plastic) to see how the samples clustered against each other. A 
PLS-DA model was then built to maximise the separation between the two classes 

2.5.3 Analysis of fat distribution of both sides of the cut 
In order to estimate if distribution of fat differed on either side of the sample, the 
samples were imaged on both sides of the cuts. The 40 images/ 20 samples that were 
used to evaluate effect of plastic package, were also used for this analysis. The beef 
sample were imaged on both sides, without plastic. The similarity of fat percentage 
and the distribution on both sides of the samples were analysed using the same 
method as for the evaluation of plastic package. Here the two classes were FRONT 
and BACK. 
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3.1 Correlation of the SKARA dataset variables  
To evaluate how different variables in the external spreadsheet correlate, a PCA was 
performed using Evince (Figure 10). The figure shows that the two groups with 
cross breed steers clustered together and seem to be more alike. The purebred 
showed the same pattern. There was some overlapping from both groups indicating 
that there should be some individual differences affecting the results.  
 
Variables of interest and their distribution are shown in Table 3. Figure 11 shows 
the correlation between the explanatory variables in the external spreadsheet (the 
variables appearing close to each other are highly correlated). It seems that carcass 
traits were correlated, but that marbling is equally related to both carcass trait and 
age. Age and fat class appear to be uncorrelated since they cluster on different sides 
of the chart.  

 
A bi-plot was created to see how the different breeds correlated to the variables in 
the external spreadsheet (Figure 12). The results show that the crossbred steers tend 
to correlate more with the carcass traits and also have a higher live weight. The 

3 Results  

Figure 10 PCA score plot illustrating the correlation among the four breeds in the external spread-
sheet from the SKARA dataset. It seems like the purebred breeds cluster and that the crossbred ani-
mals are more similar.  
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purebred steers however tend to have more average fat and a higher marbling grade. 
The distribution of marbling grade among breeds is illustrated in Figure 13. The 
marbling was evaluated by an experienced grader. 

 
 
 

 

 

Figure 11 PCA loading plot describing the correlation between the explanatory variables from the 
external spreadsheet from the SKARA dataset. Carcass traits seem to correlate.  

Figure 12 Bi-plot of the SKARA dataset, showing how the scores correlate with the loadings. Scores 
that cluster close to a loading indicate correlation, the closer distance between the loading and the 
score the higher the correlation. 
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Figure 13 Violin boxplot describing the distribution of marbling grade among breeds in the SKARA 
dataset. The marbling grade was acquired manually by an experienced grader. The width of the box-
plots represent the number of samples per class. The more samples in one class the wider the box-
plot. The width of the violin describes the distribution of the samples for each class. 
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3.2 Training of pixel data for modelling classification and 
quantification  

3.2.1 RGB images 
In the Breeze software, each representative spectra is referred to as a pixel. The 
classification matrix (Table 4-5) shows the total number of classified pixels for both 
the train and the test subsets. A classification matrix enables visualisation of the 
performance of the model. The matrix illustrates the pixels included of known “true” 
values and how often the model predicted the pixel class accurately. The classifica-
tion model discriminated between fat and protein, showing a classification accuracy 
of 0.93 for fat and protein.  
 
The PLS model used for quantifying fat showed a R2=0.95 which indicates a good 
performance of the model. 

 
Table 4 Classification matrix for the train subset of the RGB classification model. The column ”To-
tal” shows the amount of pixels with known (“true”) class included in the modelling. The matrix 
shows a classification accuracy of 99.5%. 1.7% of the fat pixels have been wrongly classified as pro-
tein. 

Classes Total Protein Fat 

Protein 725 725 (100%) 0 (0%) 

Fat 295 5 (1.7%) 290 (98.3%) 

    

#Predicted 1020 (100%)   

Correctly 1015 (99.5%)   

Incorrectly  5 (0.5%)   
 

Table 5 Classification matrix for the test subset of the RGB classification model. The matrix shows a 
classification accuracy of 95.5%. 7.3% of the protein pixel have been wrongly classified as fat. 

Classes Total Protein Fat 

Protein 495 459 (92.7%) 36 (7.3%) 

Fat 313 0 (0%) 313 (100%) 

    

#Predicted 808 (100%)   

Correctly 772 (95.5%)   

Incorrectly  36 (4,5%)   
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The distribution of fat content, predicted by Breeze, at different marbling grades is 
illustrated in Figure 14.  
The boxplot indicates the minimum, the first, second and third quantile and the max-
imum value of the group of sample. 
 
 

  

3.2.2 Hyperspectral dataset 
The number of pixels in each subset (train and test) for building the model and the 
outcome of classification are illustrated in Table 6-7. All pixels in both the train and 
test subsets were correctly classified (100%). The model performed classification 
with high accuracy for the four constituents with a classification accuracy 0.96 for 
fat, 0.95 for protein and 0.98 for background and plastic. The results indicate that 
the classification model performs well and accurately classifies the different con-
stituents in the sample.  
 
The PLS model used for quantifying the constituents showed a high R2=0.94, which 
indicates a good performance of the model. 
 
 

Figure 14. Distribution at different marbling grades from subjective analysis and the average fat 
percentage predicted by Breeze from the RGB. The width of the boxplots represent the number of 
samples per class. The more samples in one class the wider the boxplot. 
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Table 6 Classification matrix for the train subset of the HS classification model. The matrix shows a 
classification accuracy of 100%.  

Classes Total Bgr Plastic Protein Fat 

Bgr 1851  1851 (100%) 0 (0%) 0 (0%) 0 (0%) 

Plastic 1018 0 (0%) 1018 (100%) 0 (0%) 0 (0%) 

Protein 1172 0 (0%) 0 (0%) 1172 (100%) 0 (0%) 

Fat 1433 0 (0%) 0 (0%) 0 (0%) 1433 (100%) 

      

#Predicted 5474 (100%)     

Correctly 5474 (100%)     

Incorrectly       

 
Table 7 Classification matrix for the test subset of the HS classification model. The matrix shows a 
classification accuracy of 100%. 

Classes Total Bgr Plastic Protein Fat 

Bgr 1604 1604 (100%) 0 (0%) 0 (0%) 0 (0%) 

Plastic 946 0 (0%) 946 (100%) 0 (0%) 0 (0%) 

Protein 1586 0 (0%) 0 (0%) 1586 (100%) 0 (0%) 

Fat 912 0 (0%) 0 (0%) 0 (0%) 912 (100%) 

      

#Predicted 5048 (100%)     

Correctly 5048 (100%)     

Incorrectly       

 
The spectral fingerprint for each pixel and its specific class is illustrated in Figure 
9. When applying a PCA model on pixels of different classes, they cluster as shown 
in Figure 15. As shown in Figure 9, the constituents have unique spectral signatures. 
This is confirmed also in the PCA where the classes are separated based on their 
spectral differences. The clustering indicate that fat and protein are more similar in 
their spectral profile than plastic and background, yet they can be separated.  
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3.2.3 Effect of plastic package  
When analysing the samples in Evince, the images with plastic do not differ from 
the images without plastic, as they do not cluster separately in the PCA scatter plot, 
but overlap. This indicates that the pixels in the samples with plastic are similar to 
those in the samples without plastic. Similar results were obtained with a PLS-DA 
model, indicating that the classes cannot be separated (Figure 16). Figure 17 illus-
trates the comparison of the average fat % between the groups with and without 
plastic. The fat content was predicted by Breeze, using a quantification model. A 
0.8 coefficient of determination was computed, indicating a high positive correla-
tion between the two groups.   

Figure 15 PCA model used to separate the pixels based on their spectral signature and class. It is 
shown that the four constituents cluster apart with fat and protein being the constituent with highest 
similarities.  

 



38 
 

 

y = 1,15x - 1,12, R² = 0,8

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

W
ith

 p
la

st
ic

Without plastic

Serie1

Linjär (Serie1)

n = 20

Figure 17 Comparison of the calculated average fat content in samples imaged with and without 
plastic from the HS dataset, The scatter plot illustrating the linear correlation between calculated 
fat content for the group "with plastic package" and the group "without plastic package ".  

Figure 16 Samples from the hyperspectral dataset were used to analyse the average fat content when 
imaged with plastic package and without the plastic package. Evince was used to compare the pixels 
in the images, with and without plastic package. The pixels were classified as either with or without 
plastic. A PLS-DA model was used to separate the two classes of pixels belonging to either WITH 
plastic or WITHOUT plastic. The green colour represent the pixels WITH plastic and the blue colour 
represents the pixels WITHOUT plastic. The two classes overlap, indicating little difference between 
the pixels in both classes.  
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3.2.4 Analysis of fat distribution of both sides of the cut  
The PLS-DA model indicate that the pixels in the FRONT class cannot be separated 
from the pixels in the class BACK (Figure 18). It seems that the distribution and fat 
content are similar for both the front and back sides.  
 

 
When including all 40 images, the result indicate that the distributions of the pixels 
are similar for both the front and backside. However, when selecting and classifying 
pixels of fat and protein respectively, it is shown that the amount and distribution of 
fat differs within pair of samples (Figure 19). These results indicate that there might 
be some biases in the PLS-DA model when the pixels are classified as a group and 
compared against several samples, which do not correlate with each other.  
 

Figure 18 Samples from the hyperspectral dataset were used to analyse the distribution of fat on 
both sides of the sample. Evince was used to compare the imaged front and backside, by classify the 
pixels as FRONT or BACK. A PLS-DA model was used to separate the two pixel groups. The green 
colour represent the pixels BACK and the blue colour represents the pixels FRONT. The two classes 
overlap, indicating little difference between the pixels in both classes.  
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Figure 20 and figure 21 show the average fat content and the fat distribution values, 
calculated by Breeze for both BACK and FRONT. The linear scatterplot show a low 
coefficient of correlation between both fat content and fat distribution, indicating 
that the streaks of fat does not follows throughout the whole sample. This is con-
firmed when paired samples are compared, as the amount and distribution of fat is 
different between front and side in the majority of the samples (Figure 19). 
 
 
 
 

 
 
 

 
 

 
 
 

 

Figure 19 Merge of samples imaged from front and back side of the beef cuts in the HS dataset. Fat 
is marked as green. The red marker indicate front samples. The green square indicted a pair of 
samples with the front side sample above the back side sample. This is equal for all samples in the 
merged image. The image indicate that fat content and distribution differs between front and back.  
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Figure 20 Comparison of the calculated average fat content in samples imaged from both sides of 
the sample from the HS dataset. The scatter plot illustrating the linear correlation between calcu-
lated fat content for the group "FRONT " and the group "BACK".  
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Figure 21 Comparison of the calculated fat distribution in samples imaged from both sides of the 
sample from the HS dataset. The scatter plot illustrating the linear correlation between calculated 
distribution for the group "FRONT " and the group "BACK".  
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3.3 Comparison of objective fat analysis and subjective 
marbling grading  

 
The objective average fat % was compared to a subjective grading of the marbling 
for each sample. The subjective grading was performed by the same experienced 
grader who graded the beef samples in the SKARA dataset.  
 
A violin-boxplot shows the distribution of the predicted fat content at different mar-
bling levels. The figure indicates that marbling grade seem to increase with higher 
fat content. However, the fat content varies within class and also different grades 
get the same fat content. To see how the marbling value (subjective), fat distribution 
% and average fat % correlated the numbers were transferred to a spreadsheet and 
then loaded into Evince. A PCA model was applied to show the clustering of the 
three variables (Figure 23). Fat percentage and fat distribution seem to be highly 
connected, while the subjective grading and the other traits are negatively corre-
lated.  
 
 

Figure 22 The average fat percentage predicted by Breeze for the HS dataset was compared to the 
marbling grade, which was acquired visually (subjectively) by an experience grader. It seems like 
higher marbling grade is correlated with higher fat percentage. Violin boxplots shows the distribution 
between the objectively predicted fat % and the subjectively analysed marbling. The width of the box-
plots represent the number of samples per class. The more samples in one class the wider the boxplot. 
The width of the violin describes the distribution of the samples for each class.  
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3.3.1 Comparison of the accuracy between RGB image and HS image 
based analysis 

Comparing the classification accuracy, the model based on HS images showed bet-
ter performance with no incorrect classification. For the RGB image dataset, 4.5% 
of the pixels in the test subset and 0.5% in the training subset were classified wrong. 
 
The quantification model for the RGB images resulted in a R2=0.95, and of 0.94 for 
the HSI. However, for the RGB images the results show some odd outcomes where 
some samples with no fat get high values and some samples get negative values, 
even though they have visible fat streaks. The fat values and distribution for the HS 
dataset are much more consistent with the sample images. 

Figure 23 PCA loading plot, showing the relationships of the subjectively analysed marbling grade 
and the fat distribution and fat percentage predicted by Breeze for the HS dataset. Distribution and 
fat content are clearly clustered.   
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4.1 Intercorrelation of the SKARA dataset variables 
According to the PCA loading plot, marbling seems to correlate with distribution 
and average fat. A high fat proportion together with a low distribution should not 
generate a good marbling grade, since the marbling depends on both amount and 
homogenous distribution of fat in the meat cut (Velásquez et al. 2017; Xiong et al. 
2014). With that in mind it is positive that marbling and distribution seem to have a 
high correlation and also that it connects with the fat percentage.  
 
For the carcass traits; (i) fat class, (ii) form class, (iii) carcass ratio and (iv) carcass 
weight, there is a high correlation between them all except for the fat class. In this 
study, approx. half of the dairy animals were crossbred with a later maturing breed. 
Those breeds, in general, receives a higher form class than the early maturing breeds 
and dairy breeds. They also put on less fat and gain a lower fat class. It is therefore 
expected that they receive a higher form class and also higher carcass weight and 
carcass ratio (Albertí et al. 2008; Clarke et al. 2009).  
 
Marbling did correlate with age, which has been found in earlier studies (Albrecht 
et al. 2006; Venkata et al. 2015). The animal will deposit fat in the muscle last, 
therefore the older the animal gets, the more likely it is that it gets a high marbling 
grade. Also the dairy breeds SLB and SRB generated the highest marbling grades 
in general. It should be expected since they are growing older before slaughtered, 
and thus have the time to deposit fat into the muscles (Albrecht et al. 2006; Venkata 
et al. 2015). They are also maturing earlier, putting on more fat compared to the 
crossbred steers. The crossbred steers are influenced by the late maturing beef breed 
and should be leaner, with higher carcass ratio (Pfuhl et al. 2007). However, the 
diversity in marbling among the breeds are not high, so it cannot be concluded that 
the differences are caused only by breed. The differences within each breed does 
indicate that there are individual traits that affect the marbling grade as much as 
breed, age and sex. 

4 Discussion 
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4.2 Classification and quantification of the meat 
components  

4.2.1 SKARA dataset 
When evaluating the classification, the RBG model performs the classification of 
constituents with high accuracy.  
 
However, there are some problems finding the small streaks of intramuscular fat in 
the samples. It seems that the majority of the surface has been classified as protein, 
even though it by eye is possible to see the intramuscular fat. This indicates that the 
small areas of fat have been misclassified as protein pixels.  
 
The pixels that were derived from the manual selection were randomly chosen by 
the software. When selecting those small areas of intramuscular fat, it is possible 
that pixels from both fat and protein have been mixed. When the whole selection is 
divided into 10 pixels, it is probable that some of them belonged to protein when 
classified as fat. The class “fat” would then include pixels with spectral values from 
both pure fat, but also protein. This could be an explanation of why the model have 
had problems classifying the narrow streaks of intramuscular fat in the cuts.  

 
When quantifying the amount of fat in the cuts, the prediction of average fat per-
centage in also indicate some unrealistic results. The average fat percentage of the 
surface values shows unexpected high numbers, e.g. measurements indicating ap-
prox. 20% fat, which is unlikely to be true when analysing the sample by eye. How-
ever, the images having the most unreliable results also seem to have been photo-
graphed with another light settings. The badly quantified images appear much 
brighter in colour compared to samples that have been given more likely fat values. 
The different light settings when taking the images may cause the misclassification, 
due to colour differences among pixels with the same class.  
 
The high average fat values are still questionable – however they are likely to be 
caused by the fat cap and bigger lumps of fat that are still left in some images.  
These factors will cause overestimated values for the average fat % and also the 
distribution, resulting in a poor correlation with the subjective marbling estimation. 
The lowest marbling grade (1) includes predictions that have the same average fat 
% as marbling grade 3. Since marbling level increase with higher fat content 
(Lucherk et al. 2016), a lower marbling grade should contain less fat. This is con-
sistent for all levels of marbling.  
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A subjective grading do not take into account the fat cap or big lumps of fat. It 
focuses on the clean cut and its fat content and distribution of the streaks of fat 
(Stenberg 2013). Some of the images have very little intramuscular fat, but large 
parts of fat still left from the trimming. In the subjective grading it got a low mar-
bling grade, but from Breeze it receives a high fat value (percentage or marbling).  
 
The correct evaluation of fat content (e.g. marbling) is dependent on accurate seg-
mentation of the analysis area. The evaluation will be incorrect if parts of fat cap or 
other types of tissue (e.g. connective tissue) are mistakenly included in the analysis 
(Jackman, Sun, and Allen 2011). With that in mind, it would have been more rele-
vant to choose an area of interest in the RGBs. The analysis would then only take 
into account the area with intramuscular fat and exclude the big fat lumps and the 
fat cap, which very probably would be more equal to the subjective analyse.  

4.2.2 Hyperspectral dataset 
The classification model performed well for the HS dataset with a high classification 
accuracy for both the train and test subset. Manual selections and class definition of 
pixel groups worked fine for the dataset.  
 
However, selecting the areas of pixels manually may have resulted in mixing of fat 
and protein pixels, as for the SKARA dataset. The selection and classification of 
pixels are relying on subjective methods. The human judgment should be considered 
as a potential risk for inconsistent classification (Xiong et al. 2014). Even though 
the models perform well, they may have been even more accurate if the reference 
data had been built on more accurate samples.  
 
For example it would have been possible to scan samples with varying amounts of 
fat and collect the average spectrum for each sample. The true fat value could then 
have been measured, after homogenisation of the sample, by using a suitable meas-
uring technique. Then the average spectral value could have been connected with 
the measured fat content and used as reference data to calibrate a HS imaging system 
with high accuracy (Wold et al. 2011).  
 
The quantification model works fine and correctly discriminates fat from protein. 
The average fat % and values and the fat distribution values are relevant for the 
majority of the samples. However some of the samples score very high compared to 
the subjective analysis. This indicates that there are some biases in the model or in 
the subjective analysis, which makes them uncorrelated.  
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The main cause of the high fat values compared to low grading are most likely as 
with the SKARA dataset: the samples contain either a fat cap or big lumps of fat 
that are not concerned when grading the meat subjectively. Choosing an area of 
interest in the centre of the sample would have been preferable to avoid the big areas 
of fat (Xiong et al. 2014). Also, the subjective analysis does not care for the connec-
tive tissue. Since the connective tissue is a protein based constituent it should have 
a reflectance more like protein than fat. However, the connective tissue can visually 
appear much like fat. It is suggested that large streaks of connective tissue and une-
ven streaks of marbling flecks may cause difficulties to discriminate between con-
stituents (Konarska et al. 2017). Since the reference data has been manually se-
lected, there is a risk that some streaks of connective tissue has been mistaken to be 
intramuscular fat. Hence, its spectral information will be added to the fat class and 
the connective tissue will be misclassified as fat.  
 
To avoid this, one way for further analysis will be to scan samples of known com-
position, to evaluate the spectral curve for each constituent and then be able to ac-
curately compare them against each other. Also, the reference data should include 
samples of pure connective tissue to add for the classification, since it will be very 
likely that the surface cut will include more or less connective tissue. That spectral 
information would be added for calibration the system (Wold et al. 2011). 
 
Despite the differences among fat % and the subjective grading, the box-plots indi-
cate that higher fat % generates a higher marbling grade (Figure 22). Even though 
the same amount of fat generates two different marbling grades and vice versa, the 
correlation between fat content and marbling level looks positive. The reason for 
the varied results could be either as stated above, due to big fat lumps, or due to less 
distribution of the fat streaks. If the same amount of fat is more distributed over the 
whole surface area, it will generate a better grading (Velásquez et al. 2017; Xiong 
et al. 2014). 
 

4.2.3 Effect of plastic package 
The transparent plastic package did not affect the results, which gives the oppor-
tunity to scan beef cuts that are already packed. This could generate the possibility 
to label each single piece of meat based on its quality attributes, also when it is 
packed. The disadvantage is that the pieces must be packed in such a way that the 
entire surface area is exposed, or at least the area of interest for marbling evaluation 
(Xiong et al. 2014). It may decrease the possibility to pack batches with several 
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pieces in one container, hence the method will be suited for single packed meat 
products.  
 
Further studies needs to be done to compare different types of plastics. It is likely to 
believe that different brands of plastics, that are used to pack meat, have different 
reflectance. If so, the camera will have to be calibrated based on the plastic that is 
used in the facility.  

4.2.4 Analysis of fat distribution of both sides of the cut  
The distribution analysis of both sides indicate that there is differences in the amount 
of fat and how well it is distributed within the sample. It would have been positive 
for the distribution to be similar on both front and back side of the meat cut, since 
the analysis with the camera only generates a result based on surface cut. As it is 
today, the marbling grade is based on a surface cut between the 10th and 11th rib 
(Stenberg 2013). If the results are to be trustworthy, that cut and the grade should 
be representative for the whole carcass. If the pattern of fat distribution does not 
follow through the whole sirloin, that cut will not be representative. Here the values 
indicate differences for both sides. 
 
However, this could be due to some biases in the area of analysis. If one side of the 
sample contain a big lump of fat and the other not, it will affect the result in a way 
where one side will have higher estimated fat and poorer distribution. It would be 
more adequate to image a smaller area and exclude big fat lumps, only take into 
account the small fat streaks (Xiong et al. 2014).  
 
It could also be possible that collagen tissue have been misclassified as fat tissue. In 
this study, no difference have been noticed. It may be that fat tissue and connective 
tissue have spectral similarities, which have been unseen when classifying single 
pixels. As stated earlier, the spectral curve of collagen should be individually exam-
ined in order to discriminate between constituents based on spectral fingerprinting 
(Wold et al. 2011).  

 
Some of the bigger streaks of tissue shown in Figure 19 may be streaks of connective 
tissue, misclassified as fat. It has been personally experienced, while collecting data 
on the slaughterhouses for the assessment of marbling, that connective tissue can be 
seen at only one side of the beef cut and hereby lure the eye as similar to intra mus-
cular fat. It is then experienced that if a new cut is made, what first appeared to be 
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fat in fact was connective tissue (Wallin 20191). This may be the reason to different 
fat content and distribution in the front and back side of the sample, combined with 
wrong classification of pixels of connective tissue increasing the amount of fat 
(falsely). 
 
It would also be of further interest to estimate how representative that surface cut is, 
and if the marbling grade (and fat content) that is generated from that cut follows in 
different cuts. If it is so, it would give the value based on a single surface cut more 
reliability.  

4.3 Comparison of the accuracy of the models built on 
RGB and HS images 

When evaluating the spectral information from a fat pixel, the differences between 
a RGB and a HS images becomes clearer. For a fat pixel of a RGB image, the aver-
age spectrum is covered by 3 spectral bands, whereas for the HS each pixel gets an 
almost continuous spectrum with a reflectance value for more than 200 bands. Each 
pixel gets its own spectral fingerprint.  
 
For both RGB images and HS images, the classification model seem to perform 
well. The model based on hyperspectral reference data however does not misclassify 
any pixels, while the RGB based model incorrectly classifies a few pixel of both fat 
and protein.  
 
Even though the model performed a good classification, the PLS-R quantification 
model seems to have difficulties to correctly quantify pixels of fat and protein when 
based on RGB images. The RGB based model shows that it is possible to quantify 
the percentage of fat in the samples, but that the model have some problems to cor-
rectly predict all pixels. This is probably caused by the poorer spectral information. 
The same result was shown when comparing RGB imaging and HS imaging for 
evaluation of the colour evolution in apples during storage time (Garrido-Novell et 
al. 2012). The colour evolution could be measured using RGB imaging, but the hy-
perspectral imaging system showed higher accuracy and greater classification po-
tential.  
 
In a study (Taghizadeh, Gowen, and O’Donnell 2011), the HS based models per-
formed much better then RGB based models when evaluating the changes in texture 
                                                      

1 Wallin, K., 2019. Discussing the process of subjective marbling grading in carcasses [email] 
(Personal communication, 14 January 2019) 
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of mushrooms during storage time. The HS based model contained more infor-
mation on the changes in surface texture of the mushrooms and the decline in mush-
room quality could easily be observed. The RGB model did not manage to perform 
so well due to a lack of spectral information, the texture differences could not be 
seen using RGB imaging. 
 
The poor quantification results of the RGB based model are probably a result of its 
limited spectral information. Pixels of different class are too much alike to be dis-
criminated and separated, hence they are incorrectly classified and the results are 
unreliable. It could be compared to the conclusion in a study performed by (Al-
Mallahi, Kataoka, and Okamoto 2008). A system of RGB imaging versus HSI were 
evaluated and compared. When one of the objects in this study changed its charac-
teristics from moist to dry, it became too much alike the other object. The RGB 
model could not manage to separate them since the difference was reduced. The HSI 
system managed to discriminate between the two objects regardless of the moisture 
content  
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Imaging techniques show high potential in predicting meat constituents by sorting 
pixels into classes based on chemical composition and its spectral information. Us-
ing PLS-DA, the RGB imaged based classification model were able to separate pix-
els of fat and protein with an accuracy of 0.93. For the hyperspectral dataset, the 
PLS-DA model were able to separate fat and protein pixels with an accuracy of 0.96 
for fat and 0.95 for protein. Moreover, the HSI based quantification model was more 
successful in accurately predicting the amount and distribution of fat in the beef 
samples. It should be concluded that the higher accuracy for the HS image based 
models are caused by the more complex spectral information in hyperspectral im-
ages.  
 
Scanning the beef with plastic did not affect the results. The average fat content was 
similar in the sample regardless of the plastic. Further studies should be done to 
compare different brands of plastic and evaluate the potential differences in reflec-
tance.  
Average fat and fat distribution was not consistent for both sides of the sample, 
resulting in a 0.53 coefficient of determination for fat content and 0.43 for distribu-
tion. To increase accuracy and area of interest should be chosen to exclude big fat 
lumps. It should be of interest to follow the fat distribution throughout the whole 
ribeye, to evaluate how accurate one surface cut is for the whole carcass.   
 
It is of interest to evaluate if hyperspectral imaging analysis could be used to predict 
the level of marbling in carcasses. In this study, correlation was found between 
higher marbling grade and increased fat content. However, there are some biases 
between the visual (subjective) evaluation of marbling grades and the objectively 
predicted fat content. This is probably caused by differences in the two methods. 
Despite the differences between the objective and subjective analysis, the HS imag-
ing method should be further investigated since it shows promising results in help-
ing to identify the amount of intra muscular fat in beef.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 Conclusions 
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