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Abstract  
 
At present, there are no clear guidelines for when and where ditch network maintenance (DNM) should 

be performed in Sweden. Recently there have been attempts to create tools that indicate the need for 

DNM, one of these tools is the Ditch Flow Tracker (DFT). The DFT determines the catchment area 

(CA) and soil type to predict if a ditch segment does not need DNM. The tool is based on the hypothesis 

that ditches with small CA’s do not need maintenance because they do not function to drain enough 

water to improve tree growth. The overall goal of this study was to ground truth the DFT by testing how 

well the CA, soil type and water flow divided into category can predict ditch function in terms of tree 

growth. Since the decision of DNM should take into account the ecological impacts the ability of the 

DFT to predict biodiversity of plants was also tested. 

 

A field study was conducted in the Krycklan Catchment Study at 18 drained sites with different CA’s 

and soil types. At each site, different ditch characteristics were measured as well as forest variables at 

different distances from the ditch. The analyses indicated that soil type had an effect on the increase in 

tree growth caused by ditches. Ditch segments in till soils had a higher volume in plots closest to the 

ditch as well as a higher volume overall compared to peat soils. Contrary to my hypothesis, CA did not 

affect the effectiveness of a ditch segment. Instead, water flow divided into categories seemed to effect 

the growth effect from drainage. Ditch segments with a high water flow had the highest standing volume 

as well as had a gradient of decreasing volume away from the ditch. CA did however indicate the 

biodiversity of plants within a ditch segment. The analysis showed that ditches with larger CA (1-2 ha) 

had a significantly higher plant diversity than the ditches with smaller CA’s. Neither soil type nor CA 

showed any influence on the long term growth effect of ditching when tree rings were examined. 

However this was calculated from only 10 of the 18 sites due to too few trees having been established 

when the ditches were first dug, which brings into question how strong this result was. The findings as 

a whole indicate that soil type and water flow category can be used to predict the effectiveness of a ditch 

segment in terms of affecting tree volume, while CA can be used to predict the biodiversity of plants of 

a ditch.  

  

 

Keywords: Ditch cleaning; Ditch network maintenance; Drainage effect; Forest drainage; Indicators

  

  
 

  



Sammanfattning 
 
Det finns idag inga riktlinjer för när och var underhåll av diken bör utföras i det svenska 
skogslandskapet. För att underlätta beslutet om dikesunderhåll har flera verktyg utvecklats. Ett av 
dessa verktyg är ”Ditch Flow Tracker” (DFT) som kan indikera om ett dikessegment är i behov av 
underhåll genom att avgöra dikets avrinningsområde och jordart. Verktyget DFT baseras på teorin att 
ett mindre avrinningsområde inte behöver underhållas då det inte dränerar tillräckligt med vatten för 
att förbättra trädens tillväxt. Målet med denna studie var att utvärdera verktyget DFT genom att testa 
hur avrinningsområde, jordart och vattenflöde indelat i kategorier kan förutse ett dikessegments 
funktion. Eftersom beslut att utföra dikesunderhåll även bör baseras på hur åtgärden påverkar de 
ekologiska förutsättningarna, testades även DFT’s möjlighet att indikera ett dikessegments 
biodiversitet. 
 
En fältstudie utfördes inom Krycklans avrinningsområde på 18 områden med olika storlek på 
avrinningsområde och jordarter. Inom varje område mättes dikets egenskaper samt skogliga variabler 
på olika avstånd från diket. Analyser av fältdata indikerade att jordarten påverkade dikenas effekt på 
trädens tillväxt. Dikessegment i morän påvisade en högre volym, både nära diket och generellt, jämfört 
med torvmark. I motsats till hypotesen hade avrinningsområdets storlek ingen påverkan på ett 
dikessegments effektivitet. På grund av detta ersattes avrinningsområdets storlek med variabeln 
vattenflöde indelat i tre kategorier. Dikessegment med högst vattenflöde hade den högsta stående 
volymen och en avtagande stående volym med ökande avstånd till diket. Däremot kunde 
avrinningsområdets storlek ge en indikation om ett dikessegments biodiversitet. Diken med större 
avrinningsområde (1-2 ha) hade signifikant större artdiversitet bland de undersökta växterna. Varken 
avrinningsområde eller jordart påverkade dikenas långsiktiga tillväxteffekt. Detta resultat var dock 
baserat på endast 10 av de totalt 18 områdena eftersom för få träd var etablerade då dikena grävdes på 
8 av de studerade områdena, vilket gör underlaget till detta resultat mer osäkert. Fynden som helhet 
indikerar att jordart och vattenflödet (indelat i kategorier) kan användas för att förutsäga effektiviteten 
av ett dikessegment när det gäller trädtillväxt, medan avrinningsområdets storlek kan användas för att 
förutsäga den biologiska mångfalden av växter i ett dike. 
  
 
Nyckelord: Dikningseffekt; Dikesrensning; Dikesunderhåll; Indikatorer; Skogsdikning 
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Abbreviations 
 

AIC  Akaike information criterion 

 

BA  Basal area 

  

CA  Catchment area 

 

DBH  Diameter at breast height 

 

DFT A combination of GIS and flow accumulation modelling used to determine the 

catchment area of ditches called the “DitchFlowTracker” 

 

DNM  Ditch network maintenance  

 

dplR   The dendrochronology program library in R  

 

ha  Hectare 

 

KCS  Krycklan Catchment Study  

 

LMM  Linear mixed effects model  

 

l/s  Liter per second 

 

m3sk/ha  Cubic meter standing volume per hectare/ forest cubic meter per hectare 

 

REML  Restricted maximum likelihood 

 

RWI   Ring-width indices 

 

s/cm  Seconds per centimeter 

 

SE  Standard error 

 

SGS  Swedish Geological Survey 

 

SNFI  The Swedish National Forest Inventories  

 

TRADER  Tree Ring Analysis of Disturbance Events in R 

 

VWC  Volumetric water content 

 

%GC  Percentage growth change 
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1 Introduction  
 

1.1 Background 
 

Sweden and Finland are the most peatland rich countries in Europe, containing almost a third of the 

European peatlands, with about ten million hectares (ha) each (Hånell 1990; Montanarella et al. 2006; 

Päivänen & Hånell 2012). Out of Sweden’s total peatland area only half, approximately five million 

hectares, is considered productive with an annual forest production of at least one cubic meter standing 

volume per hectare (m3sk/ha) (Hånell 2004). These five million hectares make up about 21 % of 

Sweden’s total productive forest land (Riksskogstaxeringen 2017). The amount of peatland that has been 

drained for forestry in Sweden is difficult to calculate since most of the ditches are old and not registered 

properly (Hånell 1990). Estimates have been done using data of the length of ditches dug every year 

from 1873 to 1982 as well as registered ditches in the Swedish National Forest Inventories (SNFI). 

These calculations indicated that the drained forest areas make up around 1.5 to 2 million hectares 

(Päivänen & Hånell 2012). Meaning that roughly a third of the productive peatlands in Sweden have 

been drained at some point (Drott 2016). Since most of the ditches we see today were dug a long time 

ago without any real plan for how they may function, their placement in the landscape may not always 

be ideal (Hånell 1990). Previously, ditches were dug under the assumption that all peatland could be 

made into productive forest land no matter what the initial conditions were (Päivänen & Hånell 2012). 

It is estimated that about 250 000 hectares of drained forest land remains non-productive even after 

drainage (Hånell 2004), making further efforts such as ditch network maintenance (DNM) unnecessary 

in these areas.   

 

The drainage of Swedish peatlands started in the late 1700s or early 1800s with the purpose to improve 

growth and yield, though it did not start at a larger scale until the 1900s (Lundberg 1914), with peaks 

around 1930s and 1980s (Hånell 1990). The first peak in the 1930s was due to government funding for 

forest drainage that was introduced in an attempt to mitigate the Great Depression. The second peak 

occurred in 1980s when remedial ditching, which is the digging of shallow ditches with a depth less 

than 0.5 m, became a popular method to prevent waterlogging during the reforestation phase (Hånell 

1990). Starting with an increased awareness of the negative environmental consequences of ditching 

and a change in legislation during the 1990s, the use of drainage has gradually decreased. However, in 

recent years the Swedish Forest Agency has seen an increased interest in peatland forestry which raises 

the questions of how, when and if ditches should be managed and maintained (Drott 2016). Today there 

are three different types of forest drainage activities: traditional forest drainage, remedial drainage, and 

DNM. 
 

1.1.1 Traditional forest drainage 
 

Traditional forest drainage involves the creation of new ditches, deepening of existing ditches or other 

measures aimed to improve drainage in an area. This is done with the intention of permanently lowering 

the ground water table to increase forest growth (The Swedish Forest Agency 2017). However, 

traditional forest drainage always requires permission from the County Administrative Board according 

to chapter 11. 9b§ in the Swedish Environmental Code (SFS 1998:808). Because drainage is prohibited 

in Southern and Central Sweden, the permit could be difficult to get and often requires special 

circumstances to be approved (The Swedish Forest Agency 2017). 
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1.1.2 Remedial drainage 
 

Remedial drainage is made up of temporary ditches dug with the intention of avoiding waterlogged 

conditions during the regeneration phase. These ditches are shallow, with a depth less than 0.5 m, and 

are not allowed to be cleaned in the future (The Swedish Forest Agency 2017). Remedial drainage 

always needs to be announced to the Swedish Forest Agency at least six weeks before the work is about 

to start according to 14§ in the Forestry Act (SFS 1979:429). 

 

1.1.3 DNM 
 

DNM is the cleaning of old ditches down to the original ditch depth. Studies have shown that DNM can 

have a positive effect on tree growth as long as the site is not lacking in nutrients or that the peat soil 

has compacted and decomposed to such an extent that the site is permanently changed (Ahti & Päivänen 

1997; Ahtikoski et al. 2008). The main reason for DNM is that ditches deteriorate over time, for example 

when the ditch bottom fills up with sediment or vegetation, which leads to a decreased drainage effect 

and in turn a negative effect on tree growth (Paavilainen & Päivänen 1995; Sikström & Hökkä 2016; 

Drott 2016). Another reason for the decrease in ditch depth is the subsiding of the peat layer 

(Heikurainen 1957; Leifeld et al. 2011). In many cases a consultation with the Swedish Forest Agency 

is required before DNM can commence according to the Swedish Forest Agency regulations (SKSFS 

2013:3) and chapter 12. 6§ in the Swedish Environmental Code (SFS 1998:808). This applies, for 

example, if the cleaning can have a negative effect on lakes and waterways or if the ditch is located close 

to areas with high environmental values. The role of these consultations are to ensure that the cleaning 

does not affect downstream aquatic environments or that the ditches are so old that the effect of cleaning 

them will be the same as the original, traditional forest drainage. Before DNM, the work needs to be 

carefully planned and the economic gain needs to be weighed against the environmental consequences 

to make sure no unnecessary DNM will be performed (The Swedish Forest Agency 2017).    

   

1.2 Function of ditches 
 

The main purpose of forest drainage is to increase tree growth by increasing root respiration. This is 

done by lowering the ground water table and thereby making the soil more air-filled (Glinski & 

Stepniewski 1985; Koivusalo et al. 2008; Sikström & Hökkä 2016). This aeration of the soil can in turn 

result in an increased tree height and diameter, as long as no other factors are limiting. This positive 

effect on tree growth has been confirmed by a number of studies and is generally agreed upon (Payandeh 

1973; Hånell 1988; Freléchoux et al. 2000; Choi et al. 2007: Socha 2012). Drainage of forest land can 

also lead to an increase in the number of trees per hectare due to more favorable conditions for plants 

(Päivänen & Hånell 2012). Furthermore, drainage can enable afforestation on certain types of wetlands 

as well as facilitate reforestation on sites that suffer from paludification after harvesting of the previous 

stands (Lõhmus et al. 2015). The effect of drainage is also greatly affected by the site type (Hånell 1988), 

stands with thick peat soil are more likely to lack sufficient amount of nitrogen (N), phosphorus (P), 

potassium (K) and magnesium (Mg) which may restrict tree growth despite drainage (Päivänen & Hånell 

2012; Moilanen et al. 2015). Even though drainage can have positive effects on tree growth, it can have 

negative environmental impacts on both the ecology and hydrology of forest landscapes. Drainage, both 

traditional forest ditching and DNM, leads to an increase in dissolved elements such as Mn, Ca, Mg as 

well as other nutrients, pH and suspended solids in downstream waterways (Joensuu et al. 1999; Åström 

et al. 2001; Nieminen et. al 2010; Hynninen et al. 2011; Nieminen et al. 2017). This increase is primarily 

caused by erosion and soil deposition (Stenberg et al. 2015a) and is greatest during the first year after 

DNM and during the first spring flood after DNM (Stenberg et al. 2015b). These changes, caused by 

drainage, are damaging for downstream watercourses and the organisms that live there (Manninen 1998; 

Ecke 2009; Stenberg et al. 2015b).  
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The hydrology in forest landscapes is also greatly altered by drainage, and can stay altered for decades 

(Lõhmus et al. 2015). The biggest alteration is the lowering of the ground water table, caused by both 

drainage and the increased evapotranspiration and interception from the additional forest growth and 

afforestation on the site (Kopp et al. 2013). The lowering of the ground water table, in turn, alters the 

whole ecosystem of the forest. Some species may be favored by this, while others may disappear from 

the area. The overall number of species is not necessarily affected by drainage but the species 

composition can be altered where the mire species are at disadvantage (Korpela 1999). However, there 

are studies indicating that species richness of plants can be higher in ditches than in the surrounding 

forest. This is mainly due to the altered condition in light and moisture that ditches create, making it 

possible for several different species to live together (Zielinska et al. 2013). These specific conditions 

in ditches may allow mire species to survive in the ditches while they disappear from the rest of the 

forest (Korpela 1999). Studies have also shown that the plant species richness increase with the stream 

size. The reason for this have been theorized to be the increase riparian area that an increased stream 

size causes which in turn allows for more species. Another possible explanation is that larger stream 

have a larger CA which in turn increase the possible area to collect seeds from (Kuglerová et al. 2015).  

This correlation between stream size and plant species richness are very likely to also exist for ditches 

of different sizes. 

 

1.3 Forest drainage today 
 

Due to the extensive history of drainage in the Swedish forest landscape there is now approximately 

360 000 km of ditches across Sweden (Hånell 1990), many with unknown location or function. Most of 

these ditches were made without a thought of where they would be most suited in the landscape, making 

it difficult to determine which ditches should be maintained (Hasselquist et al. 2017).  

 

Most of the ditches in the Swedish forest are more than 80 years old and may be in need of DNM to 

retain or regain their drainage capabilities. Ditches can deteriorate over time and gradually lose their 

drainage effect, resulting in a loss of the positive growth response of trees (Paavilainen & Päivänen 

1995; Sikström & Hökkä 2016; Drott 2016). According to Hånell (2004), there are approximately 

120 000 hectares of drained forest land in Sweden with non-functioning ditches. Studies have shown 

that ditches may be in need of DNM 20-30 years after the initial drainage to maintain a growth effect 

(Ahti et al. 2008; Ahtikoski et al. 2008) due to the subsistence of the peat layer (Heikurainen 1957; 

Leifeld et al. 2011) or blockage caused by collapsing walls or vegetation (Timonen 1983; Silver & 

Joensuu 2005). This deterioration of ditches is mainly affected by time and peat thickness (Sikström & 

Hökkä 2016). However, it has been indicated that the age, quality and depth of ditches are insufficient 

indicators of whether a site is in need of DNM (Sikström & Hökkä 2016). This leads to the issue of 

DNM in today’s forestry, because even though there is widely reported that DNM can have positive 

effects on tree growth (Ahti & Päivänen 1997; Ahtikoski et al. 2008), clear guidelines for when and 

where DNM should be performed are still lacking. In 2016, the Swedish Forest Agency pointed out the 

lack of clear and simple recommendations for when DNM should be performed in specific stands (Drott 

2016), drawing attention to the need of more studies on the subject. 

 

There are recommendations that DNM may be beneficial after clear-cutting to counter the elevation of 

the ground water table (Lundin 1979; Dubé et al. 1995) that otherwise may hinder the regeneration phase 

(Lieffers & Rothwell 1986; Lewty 1990; Lieffers & Macdonald 1990). Clearing out older ditches may 

increase drainage and make up for the loss of evapotranspiration that the harvest of the tree layer causes 

(Roy et al. 2000). However this recommendation is general, and does not take into account different site 

factors that can affect the functionality of the ditches. There have been attempts to find a way to 

determine the need of mid-rotation DNM in different sites. One of the most recent being the creation of 

the DitchFlowTracker (DFT), a semi-automatic tool that determines the catchment area (CA) for ditch 

segments which in turn can help to determine if the ditches are likely to have enough CA to drain the 

surrounding area.  Ditch segments with a CA smaller than 0.4 hectares are unlikely to have an effect on 

tree growth in the surrounding forest (Ågren et al. 2015; Hasselquist et al. 2017). In addition to the CA, 
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the soil type could also be an important factor in determining the drainage function of ditches. Soil 

characteristics such as pore space, organic matter content and particle size are what determine the 

retention and movement of water (Fisher & Binkley 2000). Till soils can drain faster and deeper than 

peat since they have a higher hydraulic conduciveness (Fisher & Binkley 2000). Because of this, peat 

sites are more likely to benefit from drainage than till sites. Peat and till soil types will be the main focus 

in this study, since those are the most commonly occurring and the sites in peat and till soil (mostly 

likely represents wet mineral soil) are the most likely to be in need of DNM (Hasselquist et al. 2017). 

 

The ability of the DFT to prioritize DNM will be evaluated in this Master’s thesis. Older ditch segments 

with different CA’s and in different soil types will be evaluated to see if they initially increased, and 

continue to increase, tree growth. Water flow in ditches will also be investigated because the condition 

of the ditch, indicated by the water flow, could also predict the influence of ditch segments on tree 

growth. Creating better recommendations for DNM will not only benefit profitability by increasing tree 

growth and reducing unnecessary work and costs, it might also help to minimize the ecological problems 

that ditching and DNM can cause for downstream waterways  (Sikström & Hökkä 2016).  
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1.4 Primary questions 
 

The overall objective of this Master’s thesis was to ground truth the DFT as a way to identify ditches 

that does not need DNM. This was done by testing the explaining variables that affect the tree growth 

such as CA, soil type and water flow. DNM operations should be decided by weighing the economic 

benefits against the negative ecological impacts of the DNM (Sikström & Höökä 2015). The DFT might 

help this prioritization by, in addition to the growth effect, predicting the biodiversity of a ditch segment. 

To test this, the effect of CA and soil type has on plant diversity in ditches will also be explored. 

Hopefully this study will be a step towards developing guidelines for when and where DNM is needed 

on the ditch segment level. The primary questions of this thesis were:    

 

(i) Does the drainage effect on tree growth vary with CA or soil type? 

 

(ii) Have ditches at sites with different CA and soil type had similar effects on tree growth over time?  

 

(iii) Can water flow, soil moisture and humus depth be used as indicators of a ditch segments 

effectiveness? 

 

(iv) Does CA affect the plant diversity in and close to the ditch? 

1.5 Hypotheses 
 

(i) The drainage effect on tree growth will decrease with distance from the ditch (Miina et al. 1991; 

Päivänen & Hånell 2012). Ditches with smaller catchments areas (< 1 ha) will not show any relationship 

between increased tree growth and distance from ditch while the largest CA (1-2 ha) will. Peat sites are 

more likely to benefit from drainage than till soils and will therefore show an increase in growth nearer 

the ditch (Hasselquist et al. 2017). 

 

(ii) Tree growth will initially increase after drainage and then the effect will level off with time as the 

ditch deteriorates or other factors become limiting (for example nutrients) (Paavilainen & Päivänen 

1995; Ahti & Päivänen 1997; Ahtikoski et al. 2008; Sikström & Höökä 2015). Small CA’s is not likely 

to carry any flowing water and will therefore have no influence on a ditch effect on tree growth. Larger 

CA’s between one and two hectares is likely to initiate flow and therefore influence the drainage effect 

on tree growth. Sites in till soils have a better drainage capacity than peat soils and will therefore not 

benefit as much from drainage as peat (Hasselquist et al. 2017).   

 

(iii) Previous studies has shown that ditch segments needs to be cleaned because of ditch deterioration 

caused by vegetation and collapsing walls (Timonen 1983; Paavilainen & Päivänen 1995; Silver & 

Joensuu 2005). The deterioration of ditches could possibly be explained by the flow of water in the 

ditch. Where deteriorated ditches with low flow, high soil moisture and thick humus depth have low or 

no effect of tree growth. 

 

(iv) Diversity in ditches has been shown to originate from differences in flow permanence, depth, 

amount of water flow and altitude (Williams et al. 2004). Since the flow should be higher in larger CA’s 

the biodiversity of ditches should also rise with the size of the CA (Ågren 2015). 
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2 Method 
 

2.1 Study area 
 

The sites included in this study were located in the Krycklan Catchment Study (KCS), a research 

catchment in northern Sweden situated 60 km north-west of Umeå (Laudon et al. 2013). KCS is 

approximately 6 780 hectares of boreal landscape with forests, mires, streams and lakes. There is 

estimated to be about 150 km of ditches within the KCS (Figure 1) (Hasselquist et al. 2017). 

 

The sites in this study were spread throughout the KCS in mixed forested stands taller than seven meters 

(older thinning stands) with mainly Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and 

birch (Betula L.). Stand delineation was done by the Department of Forest Resource Management using 

their standard forest classification system. For inclusion in the study, sites needed to contain a ditch 

situated at least 150 m from any other type of drainage in one direction so that the plots farthest away 

from the ditch were not affected by ditches or streams other than the focus ditch. Half of the sites were 

located on peat soils and the other half on till soils based on Swedish Geological Survey (SGS) maps.  

In Sweden, the definition of peatland and mire is divided into two categories: peatlands, where the peat 

is thicker than 30 cm, and wet mineral soils, where the peat thickness is less than 30 cm and the bottom 

layer of the vegetation is dominated by species adapted to wet conditions (Päivänen & Hånell 2012). 

The thickness of the peat layer may compact and decompose (subside) after drainage, meaning that some 

of the areas that are today counted as “wet mineral soils” might once have been peatland (Päivänen & 

Hånell 2012). Henceforth in this thesis the mention of peatland will mean both areas peatland and wet 

mineral soils. Sites with steep slopes were avoided (<5 m elevation change over 75 m). The size of the 

CA’s used in this study was determined by the DFT (Hasselquist et al. 2017). The ditching history for 

most of the sites was unknown but they were probably dug in the 1930s when the digging of ditches 

were extensive in the area. Only one of the sites, number 61, were drained sometime between year 1963 

and 1968 according to old aerial photos. 
 

 

 

 

Figure 1. Krycklan Catchment Study area with waterways and soil type delineated (Figure by Eliza Maher Hasselquist). 
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2.2 Field data collection 
 

Three different CA sizes were included in the study: i) >0,4 ha, ii) 0,4 - 1 ha and iii) 1 - 2 ha. These CA 

sizes were used in the development in the DFT and therefore is the most interesting to evaluate. About 

80 % of the ditches within the KCS are located on till and peat soils (Hasselquist et al. 2017) and because 

they are likely to have different drainage functions (Eriksson et al. 2005),  sample sites from these two 

different soil types were included (Figure 2) (Hasselquist et al. 2017). With three replicates of these six 

different combination of sites, a total of 18 sites were studied (3 catchment areas x 2 soil types x 3 

replicates = 18).  

At each of the 18 sites included in the study, three transects were placed perpendicular to the study ditch. 

Each transect was made up of four sample plots distanced 5.65, 17, 40 and 75 m from the middle of the 

ditch. The sample plot located 75 m from the ditch was used as a control since no effect from the ditch 

should be acquired from this distance (Sikström & Höökä 2015). Each sample plot had a radius of 5.64 

m and was named with an individual ID (Figure 3). This radius was chosen since it makes it easier to 

scale up the result, the observations within each plot only needs to be multiplied by 100 to get number 

of observations per hectare. This is because the area of the plots is approximately 100 m2 which 

multiplied with 100 is 1 hectare (10 000 m2). In each sample plot the following site data were collected: 

site type, soil type, soil texture, soil moisture class, field layer type, moss layer type, humus layer 

thickness and volumetric water content (VWC) (Appendix 1). The VWC was measured three times in 

each sample plot using a soil volumetric water content probe called a HydroSense II (Cambell Scientific) 

fitted with twelve cm long probes. In the first sample plot on each transect a plant species list was 

compiled as well as several measurements of the ditch, including  width, depth, water depth and water 

flow velocity (if water was present). The water flow were calculated by measuring how long it took for 

a few drops of colored dye (Fluorescein sodium salt, Sigma-Aldrich) to travel ten cm (s/10cm).  

 

Figure 2. Location of the sites within the KCS included in the study with CA size and soil type (Figure by Eliza 

Maher Hasselquist). 
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All trees within each sample plot were numbered and their diameter was calipered at breast height 

(DBH); trees smaller than five cm in DBH were not included in the study. The heights of four trees 

within each plot were measured; the two largest diameter trees, the smallest diameter tree and a tree 

from the middle of the range in diameters for the plot. These measurements were used to create a height 

model to predict the height of the rest of the measured trees. In addition, an increment core sample (5 

mm in diameter) was collected from the tree with largest DBH in each sample plot with an increment 

corer, resulting in twelve increment cores per site and a total of 216 cores from all sites. The cores were 

stored in paper straw and dried in a drying oven at 60°C for at least 24 hours before storage (Speer 2010).  

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Analysis of field data 
 

At each site, the tree heights taken from the four measured trees within each plot were regressed against 

their DBHs to find a function that best could explain their relationship, in this case a logarithmic 

function. This function was then used to estimate the height of the remaining trees measured in the plot: 

 

hi= c0 + c1 × ln(di) 

 

Where hi is the estimated height for tree number i, c0 and c1 are coefficients determined by the 

logarithmic function and di is the diameter for tree number i. The estimated tree heights were then used 

to calculate the individual tree volume: 

 

vi= BAi × hi × 0,47 

 

Where vi is the volume for tree number i, BAi is the basal area for tree number i, hi is the height for tree 

number i and 0,47 is a coefficient that takes into account the trees conical shape. All individual tree 

volumes where then averaged for each sample plot. Basal area (BA) were estimated from DBH, in meter, 

for each tree from which an average was calculated. This average for each plot where then scaled up to 

basal area per hectare to make it easier to compare between the sample plots. The following formula 

was used: 

 

BA/ha= ((∑ (DBH/2)2×ℼ)/n) × 100 

Figure 3. Location of sample plots divided into three transects perpendicular to the ditch with distance from ditch 

and id number for each plot.  
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Stems per hectare were estimated by taking the total number of stems with a diameter at breast height 

over five cm and multiplying with 100.  

 

The flow rate by volume in liter per second (l/s) for each ditch was calculated by first converting the 

field measured flow rate from s/10 cm to m/s. This flow rate was then multiplied by the water depth and 

width within the ditches to calculate m3/s and then converted to l/s. The water flow data where log 

transformed to meet assumptions of normality for statistical tests, but because of many zeros in the data 

we could not meet these assumptions. To continue to use the flow data in analyses, they were divided 

into three categories. Those that had No flow (~ 0 l/s) were one category and the other two categories 

were the based on the shape of the normal distribution of the non-zero log-transformed flow data: the 

lower half of the bell curve was designated as ‘Low flow’ (~ 0.006-0.8 l/s) and the upper half of the bell 

curve as ‘High flow’ (~ 0.8-77 l/s).     

 

All statistical analyses were performed in R, a language and software environment for statistical analyses 

and graphics (R Development Core Team 2017). To assess the impact of CA, soil type and distance 

from the ditch on the different forest productivity variables, linear mixed effects models (LMM) with 

restricted maximum likelihood (REML) was used. This model, called ‘lmer’ in R, tested the fixed effects 

of soil, CA, distance from ditch and their interactions while taking into account the random effect of the 

transect or site. These analyses where carried out on the three forest productivity variables that had the 

best correlation to the rest of the forest variable; volume (m3sk) which correlated with basal area, mean 

diameter which correlated with height, and stems per hectare which did not have a high correlation with 

any other forest productivity variables and therefore had to be added. The strong correlation made the 

other forest variables redundant to analyze which resulted in a total of three models (volume, mean 

diameter and density (stems per hectare)). The models were started with all fixed effects and their 2-

way interactions and were then simplified when certain effects were shown as insignificant. The 

different models for each forest variable were evaluated against each other using Akaike information 

criterion (AIC). The AIC estimates the relative quality of the models, where the lowest AIC-value 

indicates the best model. The models were completed when they consisted of only significant fixed 

effects and the AIC- values were lower than for the previous model. When the linear mixed effect models 

were reduced to only significant factors for each forest variable, a pair wise comparison were performed 

to determine how the significant fixed effects affected the forest variables. The initial models indicated 

that CA had no effect on tree growth. Instead of Ca the water flow divided into categories, which had a 

high correlation to Ca, was added in the models. LMMs were also performed for the factors of soil 

moisture, humus depth and water flow to assess how these factors were affected by CA, soil type and 

distance from ditch. This was done to evaluate if any of these factors could explain why CA, soil type 

and distance from the ditch effected the forest productivity. 
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2.4 Reconstruction of stand growth over time 
 

Before the tree ring analysis the dried tree cores were soaked in water overnight. This gave the cores the 

right degree of humidity to be planed on one side in a sliding microtome. The planed tree cores were 

then scanned and analyzed using WinDENDRO, an image processing an analysis tool that measure tree 

rings automatically (Guay et al. 1992). The tree ring width was measured for each year with an accuracy 

of 0,001 mm. The age range of the increment cored trees varied greatly, between 45 to 185 years, which 

is an unnecessary large range of data to work with. Since the most of the ditches were dug before 1990’s 

according to the oldest aerial photos and the fact that a vast majority of forest drainage were done after 

the 1900’s (Lundberg 1914; Hånell 1990; Drott 2016) only ring width data from year 1897 to 1990 were 

used. Ring width data were analyzed in TRADER (Tree Ring Analysis of Disturbance Events in R) an 

open source software package in R. TRADER uses a number of steps to analyze tree growth history and 

disturbance events (Altman et al. 2014). The first step was to detrend and convert the tree width data 

into ring-widths indices (RWI) using a negative linear model in CRUST (Melvin & Briffa 2014). The 

CRUST method was chosen since it is one of the most commonly used methods for detrending (Sullivan 

et al. 2016). The RWI data were then averaged for each year using the arithmetic mean to create a 

standard chronology. This was done with the ‘chron’ function in the dendrochronology program library 

in R (dplR) (Bunn 2008).  

 

The RWI data contains information of increases and decreases in tree growth during the time period the 

tree was alive. An increase that exceeds a set threshold are called releases and are used to identify events 

that have had a positive effect on tree growth, in this case drainage. To calculate releases, the TRADER 

function ‘growthAveraginALL’ was used which implements the method: radial-growth averaging 

criteria (Nowacki & Abrams 1997). This method calculates percentage growth change (%GC) using the 

average radial growth for the preceding ten year period (M1) and the average radial growth for the 

subsequent 10 year period (M2) (Altman et al. 2014): 

 

% GC = [(M2-M1)/M1] × 100 

 

To be able to differentiate minor and substantial disturbances, the releases were divided into two classes: 

moderate and major magnitude releases (Altman et al. 2014). The release thresholds were 25 % GC for 

moderate releases and 50 % GC for major releases (Nowacki & Abrams 1997). The moderate and major 

releases for trees within the same site and with the same distance from the ditch were averaged to create 

two release values for each distance (5.6, 17, 40 and 75 m). The releases were then plotted in a table 

together with the information of how many sample trees that existed during that time period. The total 

number of releases and their magnitude (minor or major) where averaged for each distance within a site 

and plotted into an area graph in Minitab 17. These area graphs together with the table of moderate and 

major releases were used to calculate the most likely year of ditching and how long the release lasted 

(Appendix 2; Appendix 3). The length of the releases only shows how long the growth increased from 

previous years (the peak of growth) and not how long the higher level of growth were sustained. To find 

the total years of increased growth the yearly basal area growth was calculated from the ring width data. 

The yearly basal area growth for each tree was then averaged into ten year periods to reduce the impact 

of other disturbances that could affect growth. Finally, the trees from the same site that existed during 

the time of the ditching and that showed a major or moderate release were averaged to get the growth 

history for each site. From this data the length of each drainage induced growth increase for each site 

could be calculated (Appendix 3). However, not all stands were old enough to have trees from the time 

of the initial drainage, making these calculations only possible for ten out of the 18 sites. The length of 

the releases and the total growth effect where analyzed with a linear mixed effects model (LMM) with 

restricted maximum likelihood (REML). This model tested how the fixed effects of soil type, CA and their 

interactions affected the long term effect of drainage while taking into account the random effect of the site.  
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2.5 Analysis of plant diversity 
 

The final question included in this study was to examine how CA and soil type effect plant diversity. 

The number of species of vascular plants and bryophytes were combined to determine species richness. 

The Shannon index (Spellerberg & Fedor 2003) was used to analyze the plant diversity because it takes 

into account both abundance and evenness of the occurring species and is widely used by researchers 

all over the world (Hughes 1977). Only CA and soil type were used as fixed factors, and not distance 

from the ditch, in the analysis because plant species data were only taken at the plots nearest the ditch. 

In addition to Shannon’s diversity index, a LMM were created with the number of plants, CA and soil 

type. 
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3 Result  
 

3.1 Drainage effect on forest volume, density and diameter 
 

The hypothesis that ditches with smaller catchments areas (< 1 ha) would not show any relationship 

between forest productivity and distance from ditch while ditches with the largest CA (1-2 ha) would, 

was rejected. CA did not significantly explain any variation of the measured forest productivity 

variables. Instead, soil type in combination with distance from ditch, were significant in the models 

(Appendix 4). Density (stems per hectare) and mean diameter were also significantly affected by 

distance from the ditch independent from soil type (Appendix 4). When CA was replaced by flow 

category, some of the variance in the forest variables could be explained by the models (Table 1).  
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Table 1. Statistical analysis of variance on the effect of soil type, flow category and distance on different forest 

variables. 

Model Factor df F P 

Volume Soil 1 12,07 0,003** 

 Flow Category 2 3,24 0,043* 

 Distance 3 3,66 0,013* 

 Flow category*Soil 2 0,38 0,683 

 Soil* Distance 3 3,58 0,014* 

 Flow category* Distance 6 2,33 0,034* 

Density Soil 1 0,07 0,792 

 Flow Category 2 4,62 0,012* 

 Distance 3 10,63 <0,0001*** 

 Flow category*Soil 2 7,38 0,001** 

 Soil* Distance 3 14,44 <0,0001*** 

 Flow category* Distance 6 1,13 0,347 

Mean diameter Soil 1 4,71 0,043* 

 Flow Category 2 0,1 0,907 

 Distance 3 2,90 0,036* 

 Flow category*Soil 2 0,71 0,494 

 Soil* Distance 3 9,25 <0,0001*** 

 Flow category* Distance 6 2,53 0,022* 

Soil moisture Soil 1 0,02 0,88 

 CA 2 0,71 0,51 

 Distance 3 32,07 <0,0001*** 

 Soil*CA 2 0,48 0,63 

 Soil* Distance 3 12,1 <0,0001*** 

 CA* Distance 6 1,3 0,26 

Average humus depth Soil 1 0,33 0,576 

 CA 2 1,09 0,366 

 Distance 3 20,93 <0,0001*** 

 Soil*CA 2 1,11 0,360 

 Soil* Distance 3 1,66 0,178 

 CA* Distance 6 3,06 0,007** 

Plant diversity Soil 1 0,02 0,878 

 CA 1 5,14 0,038* 

 Soil*CA 1 0,15 0,702 



25 

 

 

 

 

 

 

The forest volume was explained by flow category where the volume was higher closer to the ditch in 

ditches with low- and high flow (Table 1; Figure 4). Volume in stands with a ditch segment with high 

flow had higher stand volume than stands with no flow and low flow (Table 1; Figure 4). 

 

The forest volume was higher closer to ditches in till soil. There was no significant difference in volume 

5.6 m and 17 m from the ditch. However the volume at both these distances was significantly higher 

than the volume 40 m from the ditch and the control plot. There were no significant differences in 

volume between the control plot and the different distances from the ditch in peat soils (Figure 5).  

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Mean tree volume with ± 1 SE divided by soil type and distance from the ditch, 5.6 m, 17 m, 40 m and 

the control plot, distanced 75 m from the ditch. The letters above the bars indicate statistically significant 

differences among the volumes at different distances (P<0.05). 

Figure 4. Forest volume with ± 1 SE (Standard error) by flow category and distance from the ditch, 5.6 m, 17m, 

40m and the control distance, 75 m. 
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The tree density (stems per hectare) had the opposite relationship than volume where the density was 

higher close to the ditch in peat soil, but not in till soil. The density in peat was significantly higher 5.6 

m from the ditch than any other distance, including the control plot. The density 17 m from the ditch 

was also higher than the control plot. The density in till soil did not change significantly with distance 

from the ditch (Figure 6). 
 

   

Figure 6. Tree density with ± 1 SE by soil type and distance from the ditch, 5.6 m, 17m, 40m and the control 

distance, 75 m. The letters above the bars indicate statistically significant differences between the density at 

different distances (P<0.05). 
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The mean diameter was lower closer to the ditch in peat, but not till. The lower mean diameter could be 

seen at distance 5.6 m and 17 m from the ditch in peat soils. There was no significant difference in mean 

diameter from the distance 40 m from the ditch and the control plot.  In till soil, the mean diameter was 

higher closer (5.6 m and 17 m) to the ditch than in the control plot, while there were no differences 

between the mean diameter of trees at 40 m away from the ditch and the control plot (Figure 7). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 7. Mean diameter of trees with ± 1 SE divided by soil type and distance from the ditch, 5.6 m, 17m, 40m 

and the control distance; 75 m. The letters above the bars indicate statistically significant differences among the 

mean diameter of trees at different distances from the ditch (P<0.05). 
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The soil moisture were highest closest to the ditch (5.6 m) and got significantly lower for each distance 

away from the ditch (17, 40 and 75 m) (Table 1).  This clear gradient is only visible in peat while the 

soil moisture in till only were higher closest to the ditch compared to the distance 17 m and the control 

plot (Figure 8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The average humus depth were affected by CA and distance from ditch (Table 1). In the ditches with 

the smallest CA’s (< 0.4 ha), and the largest (1-2 ha) the humus depth was thickest closest to the ditch 

(Table 1). The humus depth at 5.6 m and 17 m from the ditch were significantly higher than at 40 m 

from the ditch and the control plot. In the ditches with medium CAs (0.4 - 1 ha) there were no significant 

differences between humus depth and distance from ditch (Figure 9).  

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 8. Soil moisture with ± 1 SE divided by soil type and distance from the ditch. The letters above the bars 

indicate statistically significant differences among the mean diameter of trees at different distances from the ditch 

(P<0.05). 

Figure 9. Average humus depth with ± 1 SE divided by CA and distance from the ditch.  
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3.2 Stand growth over time 
 

From the 18 sites included in this study only ten (56 %) had trees old enough to have existed at the 

presumed time of the ditching. Out of these ten sites, 50 % were located in peat soil and 50 % in till soil. 

A majority of these sites were located in the smaller (<0.4 ha) and larger (1-2 ha) CA’s with 40 % each 

while only 20 % of the sites were located in a CA of 0.4-1 hectare (Table 2).  Of these ten sites, 70 % 

showed evidence of a release that could be linked to a likely year of drainage (Appendix 4). There were 

no significant difference between the length of a release or the growth effect between the sites with 

different soil types or CA size (Table 2). The mean length of a release for all sites was approximately 

14 years and the mean length of the total growth effect was approximately 29 years. 

 
 

Table 2. Mean length of releases and growth effects divided into soil type and CA with number of sites (N) and 

range. 

  

 Peat 

N=5 

Till 

N=5 

CA 0.4 

N=4 

CA 0.4-1 

N=2 

CA 1-2 

N=4 

Sites (N) with a 

release (%)  

60 80 50 50 100 

Mean length of 

release (years) 

12 15 16 14 12 

Range in release 

length 

(years)(max – 

min) 

9 7 4 14 10 

Mean length of 

growth effect 

(years) 

47 20 45 20 28 

Range in growth 

effect length 

(years) (max – 

min) 

20 20 30 20 30 
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3.3 Plant diversity  
 

Unlike tree growth, plant diversity in and close to the ditch was significantly (p =0.038) affected by CA 

size and not by soil type. The ditches with the largest CAs (1-2 ha) had the highest number of plant 

species (vascular and bryophytes combined) (Figure 10). This significance could only be seen with a 

linear mixed effects model and not with Shannon’s diversity index, even though it was close to show a 

significance (Appendix 4).  

  

Figure 10. Number of plant species separated by the CA size. 
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4 Discussion 
 

4.1 CA and soil types influence on the drainage effect 
 

The results from this study suggest that a sites soil type affects the tree growth response to drainage 

while CA is less important. All the measured forest productivity variables were affected by both the soil 

type and the distance from the ditch, meaning that the ditch initiated the difference seen between the soil 

types. Together, this rejects the hypothesis that both soil type and CA would affect the response of tree 

growth. 

 

The forest volume was higher closer to the ditch in till but not in peat (Figure 5). This indicates that the 

drainage only had an effect in till soils which rejects the hypothesis that peat sites would show an effect 

while till sites would not. One explanation for this could be that the potential growth effect in peatland 

is mitigated by a lack of nutrients that prevents tree growth despite the increased root respiration 

(Päivänen & Hånell 2012). The soil type was also connected to soil moisture where there was a clear 

gradient of higher soil moisture closer to the ditch in peat that decreased away from the ditch, but not in 

till soils (Figure 8). Previous studies has also shown that the groundwater table is lowered less in deep 

peat sites than sites with other soil types (Koivusalo et al. 2008). It might be that the ditches in peat soils 

are not effective enough to drain the site and therefore do not aerate the soil enough to show a growth 

effect on the trees. The fact that most of the ditches in the study are more than 80 years old makes it 

likely to assume that the drainage effect could have lessened and might even be non- existing today. 

This theory is supported by the fact that previous studies have suggested that ditches need to be cleaned 

approximately 20 to 30 years after the initial drainage to maintain their effect (Heikurainen 1957; Ahti 

et al. 2008; Ahtikoski at al. 2008).  

 

The stem density was higher closer to the ditch in peat soil but not in till soils where there was no 

difference in the number of stems at any distance from the ditch (Figure 6). This difference in till and 

peat soil is more likely due to management practices than as an effect of forest drainage. In most peatland 

sites, a buffer zone seemed to have been placed around the ditch were they had not thinned or done any 

other management practices, resulting in a higher number of stems closer to the ditch. In till sites there 

were no apparent buffer zones since the sites had been thinned right up to the edge of the ditch. Many 

of the ditches in this study are old and have started to resemble streams, especially ditches in peat, which 

may explain why a buffer zone was placed there. The mean diameter was also lower closer to the ditch 

in peat than in till (Figure 7), likely because of the higher density of trees. A higher number of stems has 

been shown to give a low mean diameter because the crown is negatively affected by the lack of light, 

which in turn affects tree growth (Pettersson 1993; Ulvcrona et al. 2007). In till soil, the mean diameter 

was higher close to the ditch compared to the control plot (Figure 7). This is likely due to the density 

since there were fewer stems close to the ditch in till than at the control plot (Figure 6) even if it was not 

statistically significant (Table 1).  

 

The soil type seemed to influence the effectiveness of a ditch segment to increase tree growth. The 

influence on density and mean diameter is likely more connected to management practices around 

wetlands instead of soil type. Forest volume, on the other hand, showed a more clear connection between 

soil type and drainage effect where stands in till soil had a higher growth (Figure 5). The strong effect 

the different soil types had on the drainage effect were somewhat unexpected since the mapping of the 

SGS did not match the soil types identified in the field. All of the till sites were correctly classified but 

only one of the nine presumed peat sites had humus layers over 30 cm and were, in fact, peat. This 

classification error could have been caused by the ditches since drainage can compact and decompose 

the peat layer which may turn them into wet mineral soils (Päivänen & Hånell 2012). However the 

difference that could be seen today in tree growth between the peat and till soils sites could still be valid. 

This is because the classified peat sites that today are till sites may have been peat soils at the time of 

the initial drainage and at the early stage of the trees growth. This means that the differences that can be 
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seen today are legacies of the initial drainage conditions when the stands were established. It is also 

possible that the classification error stems from the SGS maps since they are made by using aerial photos 

and therefore not always accurate. The way the sample plots were placed in the field could also have 

affected the difference between the classified and the actual soil type. The control plot needed to be 

placed at least 75 m from other ditches which made it difficult to lay the sample plots towards peatlands 

which often are more densely ditched than other areas (Hasselquist et al. 2017). Before the soil type is 

used to identify the need of DNM the result from this study needs to be verified since it was an 

unexpected result that till soils showed an effect while peat soils did not, which contradicted the 

hypothesis and previous studies. Future studies should also test the available nutrients at each site to rule 

out if the lack of growth response is due to a lack of nutrients or any other factor. 

 

It was surprising that the CA seems to have had no influence on the growth effect caused by drainage 

which contradicted the hypothesis. The reason that the CA of ditches does not seem to explain patterns 

of tree growth could be that the CA sizes included in this study were too similar in size to show an effect. 

According to Ågren (2015) the stream initiation threshold is approximately two hectare or one hectare 

if the site is drained by forest ditches during conditions of high flow, while the flow initiation threshold 

is 10 to 15 hectares during baseflow. It might be better to compare ditches with CA’s larger than two 

hectares against ditches with CA’s smaller than two hectares to determine if CA influences a the  

drainage effect of a ditch. Another possible explanation for this result could be that the CA’s calculated 

by the DFT is incorrect. The DFT assumes that all ditches have a depth of one meter when calculating 

CA while the real ditch depths varies greatly. A better result might be achieved if the DFT calculated 

CA with the actual depth of each ditch. Humus depth was significantly explained by CA (Figure 9), so 

if CA would have had an influence on the drainage effect these factors might be used as indicators to 

locate possible candidates for DNM.  

 

Since CA had no effect on tree growth (Appendix 4) another variable with a strong correlation to CA, 

water flow category (Appendix 4), was used instead. The water flow, divided into three categories, 

seemed to explain the variation in tree volume where ditches with high water flow had higher tree 

volume than the sites with low flow or without any flow. Ditch segments with either low or high flow 

had higher volumes of trees closer to the ditch compared to the control plot (Figure 4). This difference 

in volume related to water flow is probably due to the drainage effect; a ditch with high flow is more 

likely to have a good drainage ability and therefore aerate the soil thus benefiting root respiration 

(Glinski & Stepniewski 1985; Sikström & Hökkä 2016). Ditches with no flow, on the other hand, 

indicate that the ditch does not drain the nearby area and therefore has no effect on tree growth.    

 

This result indicates that water flow is a variable that could predict a ditch function and therefore 

determine the need for DNM which supports the hypothesis. Ditch flow was calculated using water 

depth, width and flow speed (s/cm) which, the hypothesis said can indicate how deteriorated a ditch is. 

These variables are also relatively simple to collect in the field which makes water flow easy to use as 

an indicator of ditch function. Since water flow is explained by CA (Appendix 4) the DFT might be able 

to identify ditch segments that are likely to have high water flow with the help of CA. These sites could 

then be measured in the field to measure the actual water flow. The obvious problem with this method 

is that it is difficult to interpret the result. For example, does a ditch segment with no flow indicate the 

need for DNM or that it is an “unnecessary” ditch that should not be cleaned at all. The same problem 

exists with ditches with low- and high flow. Even if these ditches show an effect on tree growth it is 

difficult to know if this means that the ditches work and are in no need of DNM or if the growth effect 

could be improved by DNM. One possible solution to this problem could be to look at the long term 

effect of ditches and find a variable that could be used together with water flow to predict the long term 

drainage effect. Water flow itself cannot be used to predict the long term effect of drainage since it is a 

highly changeable variable that are dependent on many variables that change with time. Water flow can 

be seen as a snapshot of the ditch function at a particular point in time and it is impossible to know how 

the water flow in the ditch was even two years ago, let alone 80 years ago. The high variation of this 

variable is also what makes it uncertain to predict the ditch function today. The water flow is dependent 

on the weather when the water flow was measured as well as which season the measurements were done. 
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A period with high rainfall could give a high water flow regardless of the ditch function over the whole 

year. Measurements during early spring could also give a high water flow due to the spring flood and 

not necessarily the ditch function. All the measurement of water flow in this study were taken in 

September which means that the seasonal changes are not taken into account. More accurate results 

might be achieved if measurements were taken for every season or even every month. This is also true 

for the variable soil moisture that was mentioned above.  

 

Further studies should be done to evaluate the use of water flow to predict the need for DNM while 

taking into account how the weather and season affect the result. It would also be interesting to measure 

more sites and use more flow categories than three to better understand how water flow affect the ability 

of a ditch segments to drain water and increase tree growth. Another interesting development of this 

study would be to make a multivariable analysis of all the data used in this study, for example water 

flow category, CA, Soil, vegetation type etc. This could be a way to find a combinations of variables 

that can determine when a ditch segment is in need of DNM. 

 

4.2 CA and soil types influence of the long term effect of drainage 
 

The analysis of the long term drainage effect showed a growth effect that, on average, persisted 29 years. 

This is a longer growth effect than Ahti et al. (2008) and Heikuranen (1957) suggested but the growth 

responses in this study could vary as much as 30 years between sites. The wide range of the growth 

effect response could not be linked with either soil type or CA, indicating that neither soil type nor CA 

can be used to specify the effectiveness of drainage on the long term stand growth. There is however 

some issues with the calculation of the long time drainage effect in this study that needs to be mentioned. 

The main concern was that only about 20 % of the total number of sample trees were established during 

the time of the ditching. Since the cored sample trees had the highest diameter and therefore presumed 

to be the oldest at each sample plot it could be assumed that most stands are younger that the presumed 

drainage year. This made it only possible to use 55 % of the sites for the analysis and these site did not 

have a full set of trees resulting in a very small dataset. Studies of the long term effect on drainage needs 

be done on older stands that were established during the time of the drainage. However, stands like that 

is difficult to find and taking into account the other necessary requirement for the study sites, such as 

distance between ditches,  makes it near impossible. There were also no separation between tree species 

in this study which may affect the result since spruce and pine have different growth patterns. Studies 

has shown that pine have a more fluctuating ring growth while the ring growth for spruce is more level 

and stay closer to the mean. The tree ring growth of pine is also more likely to be affected by the weather 

during the growth season than pine (Eklund 1954). This means that the tree growth response from 

drainage could be easier to detect in pine than spruce. A better result might be achieved if the tree ring 

data from spruce and pine were separated and analyzed independently. 

 

4.3 Biodiversity in drained sites 

 

The diversity patterns between ditches with different CA’s is difficult to evaluate since there are few 

studies to compare the results to. Most studies, for example Williams et al. (2004) and Verdonschot 

(1990), compare diversity in ditches with other waterways such as streams.  However in the comparison 

between these two studies there were one noticeable difference. Williams et al. (2004) showed that 

ditches had lower diversity than other waterways while Verdonschot (1990) showed that ditches had 

similar species diversity to other waterways. Williams et al. (2004) theorized that the difference in the 

result is due to location. The ditches in the Verdonschot (1990) study were located in low-lying areas 

and mostly had permanent flow, while the ditches in William et al. (2004) study were small and had 

highly seasonal flow. This suggests that the diversity is affected by water flow which in turn is affected 

by CA size. The higher flow in ditches with a CA size of 1-2 hectares could explain why the species 

diversity in this study was higher there than in ditches with a smaller CAs. Another possible explanation 
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could be that the larger CA increases the possible collection of seeds from the surrounding landscape 

and thus resulting in higher diversity (Kuglerová et al. 2015). The result from this study indicate that the 

DFT could be helpful in predicting the plant diversity of a ditch segment based on their CA. Which in 

turn could be an important part of evaluating if DNM should be performed from the ecological point of 

view. Future studies should continue to explore the possibility to use CA to predict plant diversity to see 

if this correlation exist with CA larger than two hectares.  

 

4.4 Conclusion  
 

In today’s forestry there is a need of clear guidelines for where and when DNM should be performed. 

In a response to this need the DFT was created, a semi-automatic tool that uses CA and soil type to 

predict the need for DNM. The purpose of this study was to evaluate how CA and soil type of ditches 

affects forest productivity, this was done by collecting and analyzing data from 18 sites in the Krycklan 

Catchment Study. The results indicated that a sites soil type had a significant effect on tree growth while 

the ditch’s CA had no effect. The long term growth effect, determined with tree rings, showed no 

correlation with either CA or soil type. However the data set used in this analysis were quite limited 

since many sites were not old enough to have been established at the time of the initial ditching, which 

brings the result into question. There needs to be more studies done with older sites that were established 

at the time of the ditching and with a known drainage and maintenance history. 

 

Water flow seems to be a promising tool to indicate the effectiveness of a ditch segment which confirms 

the hypothesis that ditch depth, width and water flow velocity could be used as an explanatory factors 

for a ditch segments function. Ditch segments with high water flow had higher mean tree volumes than 

those with no or low flow. Since water flow is strongly correlated to CA it might be possible to use the 

DFT to identify ditch segments in need of DNM with CA combined with water flow. Soil type also 

influenced the effectiveness of a ditch segment, where drainage in till soil gave a clear growth response 

on volume close to the ditch while sites in peat did not. Because this trend cannot be seen in the long-

term growth effect as determined by tree ring analysis, there needs to be more studies done with better 

data to verify this result. Future studies should only include older stands that were established during 

the initial drainage. Future studies also needs to explore the possibility to use water flow as an indicator 

of a ditch’s function which has been suggested in this study. Especially how predictability of water flow 

is affected by precipitation and season needs be explored.  Ditches with larger CAs had a higher plant 

species richness and diversity. This is likely because the water flow was higher in ditches with larger 

CA’s and the fact that larger CA’s has a more area to collect seeds from.  If future studies show that 

CA’s size does influence the tree growth response of ditches the higher diversity of larger CA’s needs 

to be involved in the discussion if these ditches should be cleaned.  
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Appendices 
 

6.4 Appendix 1. Field form 

  
Fätblankett

Datum:

Område: Beståndstyp:

Objektsnr: X: Y:

Dikesålder: H.ö.h:

Transekt: 

Dikesbredd: Avst. Trädkant:

Dikesdjup: Vattendjup:

Dikesfunktion: Synligt vatten:

Provyta nr

a b c d

Markslag 1. Fastmark

2. Torvmark

Jordart 1. Sediment m. hög sorteringsgrad

2. Sediment med låg sorteringsgrad

3. Morän

4. Häll

5. Torv

Texturklass 1 Block

2 Sten

3. Grus

4. Sand

5. Mo ( Can barely be roled)

6. Mjäla (Role 4-6 m

7. Ler (Role 1- 3 m)

Markfuktighetsklass 1. Torr

2. frisk

3. Frisk- fuktig

4. Fuktig

5. Blöt

Fältskikt:

Fastmark 1. Högört utan ris

2. Högört m. blåbärsris

3. Högört m. ris

4 Lågört utan ris

5. Lågört m. blåbärsris

6. Lågört m. ris

7. Utan fältskikt

8. bred bladig grästyp

9. Smalbladig grästyp

10. Starr-fräkentyp

11. Blåbärstyp

12. Lingontyp

13. Kråkbär- ljungtyp

14. fattigristyp

Torvmark 1. Högörtstyp

2. Lågörtstyp

3. Blåbär- fräkentyp

4. Högstarrtyp

5. Lingon- odon- skvattramtyp

6. Klotstarrtyp

7. Lågstartyp

8. Rosling- tranbärstyp

Bottenskikt 1. Lavtyp

2. Lavrik vitmosstyp

3. Lavrik typ

4. Vitmosstyp (Sphagnum)

5. Sumpmosstyp (Björnmossor, Polytrichum)

Brunmossor (Drepanocladus, Scorpidium, 

paludella, Calliergon, Tomentypnum, Campylium

6. Friskmosstyp (Vägg- hus och kvastmossa)

Humustjocklek

Torvdjup

Moisture

Diameter 1 T- G- B T- G- B T- G- B T- G- B

2 T- G- B T- G- B T- G- B T- G- B

3 T- G- B T- G- B T- G- B T- G- B

4 T- G- B T- G- B T- G- B T- G- B

5 T- G- B T- G- B T- G- B T- G- B

6 T- G- B T- G- B T- G- B T- G- B

7 T- G- B T- G- B T- G- B T- G- B

8 T- G- B T- G- B T- G- B T- G- B

9 T- G- B T- G- B T- G- B T- G- B

10 T- G- B T- G- B T- G- B T- G- B

11 T- G- B T- G- B T- G- B T- G- B

12 T- G- B T- G- B T- G- B T- G- B

13 T- G- B T- G- B T- G- B T- G- B

14 T- G- B T- G- B T- G- B T- G- B

15 T- G- B T- G- B T- G- B T- G- B

16 T- G- B T- G- B T- G- B T- G- B

17 T- G- B T- G- B T- G- B T- G- B

18 T- G- B T- G- B T- G- B T- G- B

19 T- G- B T- G- B T- G- B T- G- B

20 T- G- B T- G- B T- G- B T- G- B

Höjd:

Trädkärna: 
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6.5 Appendix 2. Table for number of releases 
 

 

Appendix 2. Number of trees showing major and moderate (*) release for each site and five year period. Values 

in parenthesis are the total number of sample trees existed during that five year period.  

 

 

  

Site 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 

6   2(3)         2(8) 3 (9)   1(9)           2(9) 3(9) 

11                                   

40           1(3) 2(3) 1 (3)       2 (5) 1(7) 1(9)       

89                     2(9)       2(9)     

100                               2(9)   

101   1(2)   1(2) 1(2)   1(3)   2(8)         4(9)     1(9) 

4                         1(8) 1(9)       

41       1(2)           1(7)   1(8) 2(8),    

1(8)* 

3(8),    

1(8)* 

1(8)     

44                                 1(9) 

8                         2(9)         

43           1(1)         3(8)   1(9) 1(9)       

94           3(5) 1(7)           2(9)     1(9)   

15         1(1)               1(9)         

103         1(1)                         

61             1(4)   1(7)       6(9) 1(9)       

85 1 (9) 3(9)   3(9) 4(9) 3(9) 1(9)                     

104                 1(6)     1(7) 2(8)         

90                                   
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6.6 Appendix 3. Table for length of releases and growth effect 
 

Appendix 3. Probable drainage year and length of release and growth effect in years for each site.  

*Sites where the sample trees were not old enough exist during the drainage.  

 

 

 

 

 

 

 

 

  

Soil Type Peat Till 

CA <0,4 0,4-1 1-2 <0,4 0,4-1 1-2 

Site 6 11 40 4 41 44 15 103 89 100 101 8 43 94 61 85 104 90 

Year of 

drainage 

0 * 1930 * 0 * 1925 1925 * 0 1965 * * 1925 1960 1920 * * 

Length of 

release 

0 * 18 * 0 * 9 9 * 0 14 * * 14 12 19 * * 

Years of 

growth 

effect 

0 * 60 * 0 * 40 40 * 0 30 * * 20 10 20 * * 
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6.7 Appendix 4. Table of statistical analysis using CA 
 

Appendix 4 Statistical analysis of variance on the effect of soil type, CA and distance on different forest variables. 

 

Model Factor df F P 

Volume Soil 1 7,65 0,017* 

 CA 2 1,62 0,24 

 Distance 3 2,52 0,06 

 Soil*CA 2 0,07 0,93 

 Soil* Distance 3 6,32 0,00046*** 

 CA* Distance 6 0,66 0,68 

Density Soil 1 0,06 0,81 

 CA 2 2,48 0,13 

 Distance 3 10,79 <0,0001*** 

 Soil*CA 2 0,19 0,83 

 Soil* Distance 3 14,37 <0,0001*** 

 CA* Distance 6 0,51 0,80 

Mean diameter Soil 1 0,06 0,82 

 CA 2 2,48 0,13 

 Distance 3 10,79 <0,0001*** 

 Soil*CA 2 0,19 0,83 

 Soil* Distance 3 14,37 <0,0001*** 

 CA* Distance 6 0,51 0,80 

Soil moisture Soil 1 0,02 0,88 

 CA 2 0,71 0,51 

 Distance 3 32,07 <0,0001*** 

 Soil*CA 2 0,48 0,63 

 Soil* Distance 3 12,1 <0,0001*** 

 CA* Distance 6 1,3 0,26 

Average humus depth Soil 1 0,33 0,58 

 CA 2 1,09 0,37 

 Distance 3 20,93 <0,0001*** 

 Soil*CA 2 1,11 0,36 

 Soil* Distance 3 1,66 0,18 

 CA* Distance 6 3,06 0,0071** 

Water flow  Soil 1 0,23 0,64 

 CA 2 9,73 0,0031** 

 Distance 3 1,23 0,30 

 Soil*CA 2 2,16 0,16 

 Soil* Distance 3 1,04 0,38 

 CA* Distance 6 0,89 0,50 

Plant diversity Soil 1 0,09 0,76 

(Shannons index) CA 1 0,058 0,058 

 Soil*CA 1 0,84 0,84 
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