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Abstract

Accurate and large area tree species classification is an important
subject with problems that have not yet been completely solved. For
both nature conservation and wood production purposes, a detailed de-
scription of tree species composition would be useful. The objective of
this master’s thesis is to explore how tree species differ in spectral and
structural properties using multispectral airborne laser scanning data
from the Optech Titan X system. Remote sensing data was gathered
from Remningstorp, Västra Götaland in Sweden on 21st July 2016. Field
data contained 179 solitary trees from nine species. Two new methods
for feature extraction are tested and compared to features of height and
intensity distributions. The features that were most important for tree
species classification were those from the upper part of the crown. Spec-
tral features provided a better basis for tree species classification than
structural features. Using single, first or all returns gave only a small dif-
ference in cross-validation correctness rate. The best classification model
was created using multispectral distribution features of all returns, with
an correctness rate of 77.09 %. Spruce and pine had a 100 % overall clas-
sification accuracy and were not confused with any other species. Linden
was the deciduous species with a large sample that was most frequently
confused with many other deciduous species.
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1 Introduction

Airborne laser scanning (ALS) has been used to produce nationwide estima-
tions of forest variables, such as height, volume and basal area, with high accu-
racy (Næsset et al. 2004; Nilsson et al. 2017; Skogsstyrelsen 2016). Estimations
are made by using regression analysis of height distribution and density features
of the ALS-derived point cloud. As an alternative to the common subjective,
manual inventory used when making a forest management plan, an efficient,
automated and objective forest inventory can be performed with only a few
existing field plots and remote sensing data. Some forest properties however,
have not yet been possible to estimate using remote sensing techniques, e.g.,
nature conservation values and tree species.

In Sweden, half of the close to 2,300 forest-dwelling and red-listed species
are dependent on deciduous tree species and many of these rely on a single tree
species for survival (Sandström et al. 2015). By using information on stand
tree species composition and distributions in the landscape, it is possible to
make predictions on where certain threatened species might occur. If species
of trees in a stand can be classified, the possible habitats in that area may also
be evaluated (Reese et al. 2002).

The most common groups to use when classifying tree species in Sweden are
spruce, pine, and other, all deciduous species fall in the other -class (Dalponte
et al. 2013; Holmgren and Persson 2004). Some have tried to classify different
deciduous species, but with moderate success (Brandtberg 2007; Brandtberg
et al. 2003). Several different data sources have been used, from passive multi-
spectral array sensors (Reese et al. 2003) to terrestrial laser scanning (Lin and
Herold 2016), as well as combinations of data sources (Holmgren, Persson, and
Söderman 2008).

Multispectral data have previously only been obtainable through passive
optical sensors, such as cameras and electro-optical scanners, where an aver-
age brightness within each pixel is recorded (Lillesand, Kiefer, and Chipman
2007). Manual stereo interpretation of aerial photographs have long been the
standard when making estimations of vegetation (Åge 1983). The method re-
lies on differences in reflectance and texture visible in photographs. In general,
deciduous species will reflect more light in the near infrared spectrum than
coniferous, and spruce have different crown structure than pine (Axelson and
Nilsson 1993). Automated methods for tree species classification using aerial
photography have been developed (Dalponte et al. 2013), but these deal with
data from the surface of the canopy which is visible from the camera position.
The top layer is the one reflecting most of the sunlight, and a measurement us-
ing passive sensors provides more information about the surface than spectral
characteristics further down in the canopy. Other limitations are that shadows

3



and lighting conditions may affect each image differently due to varying solar
angle.

The ongoing technological evolution is affecting ALS so that even more
information can be produced than before, such as intensity values of returns
in multiple wavelengths and full waveform returns. At the time of writing,
an operational multispectral ALS system is a new technology, first used in
2015 (Matikainen, Hyyppä, and Litkey 2016), and not yet fully evaluated for
forestry purposes. When using such a laser scanner, colors further down in
the canopy are revealed (Cottin, Fleming, and Woodhouse 2015), and this
information might be very well suited for tree species estimations (Lindberg et
al. 2015). Both data from multispectral ALS, using only intensity values, (St-
Onge and Budei 2015) and geometric information from ordinary ALS (Lindberg
et al. 2014) has already been shown to provide a good basis for tree species
classification. Equipment providing an inherent combination of these data may
be the future for remote sensing in forestry.

1.1 Goals

The objective of this master’s thesis is to explore how different Swedish tree
species differ in spectral properties and structure as measured with multispec-
tral ALS. Since the technology is so new, no consensus on how to use data
exists and an exploration of data will be needed to know how it could be used
in the future. The conventional way of estimating forest variables is by using
height distributions (Næsset et al. 2004). This method uses information in one
dimension only and does not utilize the three dimensional nature of ALS-data.
Using distributions must not necessarily be the best method when working
with multispectral data. To achieve the goal, a number of questions were to be
answered:

1. What features are the most effective for tree species classification and
what are their commonalities?

2. How do spectral and structural features contribute to tree species classi-
fication accuracy?

3. Should spectral and structural information from all returns, first returns
or single returns be used?

4. What are the differences in classification accuracy between the best fea-
ture combination, the best combination of only spectral features and the
best combination of only structural features?
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2 Materials and Methods

2.1 Data

The study area was Remningstorp, located in Västra Götaland, Sweden (N
58°27′18.35′′, E 13°39′08.03′′). The scanned area includes the estate of Remn-
ingstorp, as well as the nature reserve of Ea hage and forested grazing lands
around. Remningstorp estate has an area of more than 1,500 hectares, covered
mainly with spruce in stands managed for wood volume production. Ea hage is
dominated by different deciduous species, mainly oak (Quercus robur L.) and
linden (Tilia cordata Mill.). The wood pastures were also mainly covered with
deciduous trees but they were distributed more sparsely.

2.1.1 Laser scanner data

Multispectral laser data had been gathered on 21st July 2016 using the Optech
Titan X ALS-system. Three channels was produced by the system: 1550 nm
(channel 1, short wave infrared), 1064 nm (channel 2, near infrared) and 532 nm
(channel 3, green) (Teledyne Optech 2015). Due to the scanning being per-
formed at a low altitude, this data had a very high resolution and a precise
measure of intensity of the return signal. To make a digital terrain model for
height normalization, laser data from the Swedish land survey was used.

ALS data was in the form of discrete returns, with no full waveform data
of the return pulse. Each peak intensity was identified as a return, or point,
with a coordinate that can be seen as the vector from where the airplane was
located at the time of measurement. The set of coordinates can be seen as a
point cloud where the returns are plotted three-dimensionally.

2.1.2 Field inventory data

During the autumn of 2016, field measurements were made on 195 individual
trees of nine genera (classes): spruce (Picea abies (L.) H. Karst), pine (Pinus
sylvestris L.), birch (Betula pendula Roth and Betula pubescens Ehrh.), oak
(Quercus robur L.), ash (Fraxinus excelsior L.), linden (Tilia cordata Mill.),
wild cherry (Prunus avium L.), maple (Acer platanoides L.), and alder (Alnus
glutinosa (L.) Gaertner). The only genera where more than one species were
present was Betula, therefore the term species has been used to describe the
other species as well as the Betula genera. For each tree a number of properties
were recorded: species, height and live crown height. GPS-coordinates delin-
eating the tree crown were also recorded, with a minimum of three coordinates.
Trees standing close to each other compete and their crown shapes change. To
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accommodate for this difference in shape, if a tree stood close to other trees,
additional points were recorded between them. This was done to improve the
accuracy of the crown boundary and let a deformation of the crown shape,
caused by a neighbouring tree, weigh in on the final crown position and radius,
as specified in section 2.2.1. The device used was an RTK-GPS that use fixed
base stations to improve positioning accuracy. Live crown height was defined
by the height from ground to the point where the first living branch met the
stem. Any additional information that might be of value, such as diseases or
damages, was also noted.

Since only one spruce (P. abies) with a free standing crown was found during
inventory, a number of circular field plots from another inventory—first made
in 2014 with a follow-up inventory in 2016—were used to get more observations
in that class. These field plots were visited to measure live crown height while
other variable values of the plots were available from the 2016 inventory. Trees
in the plots were manually delineated in software (Quick Terrain modeler) from
the multispectral point cloud. Points for delineation were chosen in the same
way as those collected with GPS for other trees.

Due to the nature of wood pastures and the history of the area around
Remningstorp and Ea hage, some tree species was very easily identified by
height alone. Oaks in the area were very large while the largest ashes found
were dead or almost dead due to ash dieback. The only ashes found that was
healthy enough to have a full crown of leafs were much smaller than the oaks.
To investigate structural patterns the features had to be size independent.

2.2 Data management and feature design

2.2.1 Preprocessing

Some trees with missing live crown height or height values were removed from
the field data. Individual trees that had several stems had a height measure-
ment for each stem. Since multiple stems of one tree together form a single
crown, the highest value of height and lowest of live crown height were chosen
as values for the individual tree.

To classify species, features of the tree crown were to be used. The exact
location of the stem was therefore not as relevant as cutting the whole crown
from the point cloud. That was done using the horizontal spread of the crown
rather than a circle with a center where the stem meets the ground. To produce
a center coordinate for the horizontal spread of the crown, a center of mass for
the delineating coordinates was used, i.e., the mean horizontal coordinate for
the delineating coordinates. Then the mean distance from the crown center to
delineating coordinates was used as radius for a circle when cutting the point
cloud.

Return intensity had been recorded by the ALS system as measured. The
return intensity, Pr, of a laser pulse is inversely proportional to the distance
squared, and was calculated as

Pr = ρ
M2A

2πR2
Pt, (2.1)

where ρ is reflectivity of the target, M is atmospheric transmission, A is il-
luminated area (the footprint, which in this case is assumed to be the same
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as target area), 2π is linked to the assumption of the target’s bidirectional re-
flectance distribution function (BRDF, in this example, a lambertian surface),
R is the distance from target to scanner, and Pt is transmitted power (Balt-
savias 1999). All points of a certain wavelength are assumed to have the same
values for atmosperic transmission, footprint, BRDF, and transmitted power.
Using the distance, which was calculated using the vector components, ~x, ~y,
and ~z, of each return:

R2 = ~x 2 + ~y 2 + ~z 2, (2.2)

the intensity can be corrected so that it describes the target’s reflectivity as a
relative value.

The z-coordinates of the point cloud was normalized as height above ground,
instead of height above sea level, using the National Land Survey laser data
and constructing a triangulated irregular network (TIN) from points classified
as ground points. Some points were removed based on height and live crown
height values in the field data. All points 10 meters above the tree height
were removed to avoid error sources such as birds. In some cases points below
the live crown height were also removed when constructing certain features as
specified in section 2.2.2.

2.2.2 Features

First and subsequent returns of a pulse will have return intensities dependent
on each other. A function of first return intensity can be used to predict
the intensity of the second return (Wagner et al. 2008). As the first return
contains information on subsequent returns, the main comparisons of feature
sets were made using a point cloud of first returns. Nevertheless, to examine
the importance of return number within a pulse, all feature sets were calculated
separately for point clouds of all, first, and single returns.

Three types of feature sets were calculated: ellipsoid layers, horizontal lay-
ers, and distributions, these were produced for each channel. A visualization
of ellipsoid and horizontal layer features is shown in fig. 2.1. Each feature set
contained two types of features: structural and intensity features. The struc-
tural part of the distribution feature set would look similar to the horizontal
layer feature set, if viewed from the side, but the separating planes would have
different distance depending on point density height-wise.

The channel from which a given feature was derived is denoted as a super-
script (C1, C2 or C3) to that feature. Intensity and structure subsets of the
features in each feature set were made to determine the subsets’ importance
for classification.

Ellipsoid layers

This way of describing laser data was designed to catch differences in the density
and reflectance of tree crowns from the outside and in. Maple (A. platanoides)
has a very dense crown with large flat leaves, while ash (F. excelsior) grows
more sparse with thinner leaves. These differences might be measurable if an
ellipsoid is fitted to the crown and ellipsoidal layers are compared to each other.

Features were computed using a point cloud where points below the field
measured live crown height were removed. Three main feature types where
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(a) Ellipsoid layers of a tree crown
viewed from the side.

(b) Horizontal layers of a tree crown
viewed from the side.

Figure 2.1. Two feature set calculation methods visualized. The
stripes on the ground are also present in the tree crown above, but
less apparent. This pattern is inherent to the scanner type.

computed: JCxy , ECx
y , and AC. The intensity features, J , are the mean return

intensity within layers or the mean intensity outside the outmost ellipsoid.
Structural features, E, are relative point densities within ellipsoidal layers or
the percentage of all points that falls outside of the outmost ellipsoid. AC is
also a structural feature, namely the ratio of a and c (see eqs. (2.3) and (2.4)),
describing the ellipsoid shape (a value of 1 would be a perfect sphere). Super-
script variable x is the channel number (1, 2, or 3) and subscript variable y is
the ellipsoidal layer ranging from 0 (outmost) and up to the innermost. y may
also be set to e which denotes that this is a value taken from outside of the
outmost ellipsoid. E with a subscript e stands for the percentage of all points
that fall outside of the outmost ellipsoid, and J with a subscript e stands for
the mean intensity outside the outmost ellipsoid.

An example of what a tree crown might look like is presented in figure 2.1a.
Using the general shape of the point cloud, an ellipsoid was fitted to the crown.
The ellipsoid equation used was

x2
s

a2
+
y2
s

b2
+
z2
s

c2
= 1,

where (xs, ys, zs) are coordinates for any point on the surface of the ellipsoid,
and a, b, and c are shape-determining constants detailed in eqs. (2.3) and (2.4).
To make the ellipsoid horizontally symmetrical (a spheroid), b was set to be
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equal to a. The center of the tree was defined as

xc = x̄p,

yc = ȳp, and

zc =
max zp −min zp

2
,

where xp, yp, and zp are x-, y-, and z-coordinates for the points in the point
cloud of the tree. For the outmost ellipsoid, the shape-determining variables
were calculated using each point’s distance from the center of the tree,

a =2×
√

(xp − xc)2 + (yp − yc)2

95
(2.3)

c = max |zp − zc|. (2.4)

The value of a being defined as two times the 95th percentile of the distances
from the center to a point results in ellipsoids stretching outside of the point
cloud. The motive to have a horizontal radius much larger than the data extent
is that many fully grown deciduous trees have a flat top of the crown; if only
the 95th percentile had been used, too many points would fall outside of the
outmost ellipsoid for the analysis to make any sense. There are also parts of
the crown that are not inside any ellipsoid. Points in these areas were also
analyzed.

All subsequent ellipsoidal layers were created using the same values but with
a constant of 0.5 meter subtracted from each radius. The number of ellipsoid
layers were determined by dividing the smaller value of a and c by the layer
thickness constant and truncating the result. For each layer like those in figure
2.1a, the point density, in points per cubic meter, was divided by the mean
density inside of the outmost ellipsoid. In this way the density within the layer
was compared to the density within the crown, eliminating size as a factor for
tree species determination.

Horizontal layers

The horizontal layer feature set was created in a similar way as the ellipsoid
feature set. This feature set was also computed using a point cloud where points
below field measured live crown height were removed. The main features types
were KCx

y and LCx
y , where x is a channel number and y is the layer numbered

from top to bottom starting from zero. The intensity features, K, are the mean
return intensities within layers, and structural features, L, are relative point
density within layers.

With the same constant layer thickness as when computing the ellipsoid
feature set, the point cloud was sliced from the top and in each layer mean
intensity and relative point density were computed. Relative point density was
calculated using a cylinder, defined by the layer thickness and a radius set to
the maximum horizontal distance from the center to any point, the density in
the layer was then divided by the density in the whole cylinder. Figure 2.1b
shows an example of layers in a tree crown.
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Distributions

A common way for estimating forest variables from ALS-data is by using fea-
tures describing the height distribution of the point cloud. One common fea-
ture variant is height percentiles (Koenig and Höfle 2016), i.e., the height under
which a certain percentage of returns are found (Wonnacott and Wonnacott
1990). Percentiles describe a distribution, it can be applied to height values or
intensity values. A point cloud where ground points were included was used to
compute the distribution features. The distribution feature subsets consisted
of the features presented in table 2.1. Subscripts to percentile features indi-
cates what percentile it is, 1 stands for the 1st percentile and 95 for the 95th.
To make the height percentiles independent of the tree height, they were all
normalized by dividing them with the 99th height percentile. These features
describe height and intensity distribution separately, but not any relation be-
tween them.

Feature type Structural Intensity

Percentiles P1, P5, P10, P25, P50, P75,
P90, P95

Q1, Q5, Q10, Q25, Q50, Q75,
Q90, Q95, Q99

Average Q̄
Skewness α β
Kurtosis γ δ
Canopy density dns

Table 2.1. Features of the distribution feature set. Percentile is
denoted as a subscript.

2.3 Classification model and feature selection

Classification of tree species was made using linear discriminant analysis (LDA)
models, which is a well known method for classification using continuous fea-
tures (Fisher 1936). The method is susceptible to overfitting, meaning that, if
used with too many explanatory features and a too small sample size, it will
be able to classify all of the training data perfectly but not necessarily classify
evaluation data well. To minimize overfitting, by selecting a limited number of
features, two methods for feature selection were used: feature ranking (Guyon
and Elisseeff 2003) and stepwise feature selection (Weihs et al. 2005). When
selecting features, the criterion to stop adding more features was that the fea-
ture combination had to have fewer features than there were classes (genera).
Stepwise feature selection was also restricted so that additional features were
not allowed to make the classification accuracy worse; if no additional feature
was found, the algorithm would terminate with less than the maximum number
of features.

Single feature performance was evaluated using the F-ratio (also known as
Fisher’s criterion or the F statistic, commonly used in ANOVA, see Samuels,
Witmer, and Schaffner 2012), which describes how much variability there is
between the classes compared to within classes. This ranking is optimal for
LDA (Guyon and Elisseeff 2003) and features could be ordered by their F-ratio.
To compare which individual features that contained the most information on
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tree species, the best performing in each feature set and feature subset were ex-
tracted and used for an LDA. Results were recorded as a model where included
features were ordered by their F-ratio and a correctness rate for the model.
Correctness rate is the number of accurately classified trees as a percentage of
the total in a leave-one-out cross-validation (Garczarek 2002).

Two features that by themselves provide a good basis for classification must
not be the best combination, if they tend to provide the same information
(Guyon and Elisseeff 2003). There is for every feature set one or many com-
binations with the highest correctness rate, but to find one of those, an ex-
haustive search must be performed. Due to computational limitations this was
not feasible, and an heuristic approach was taken. To create a combination
of features for classification, a stepwise feature selection algorithm, in which
each subset was evaluated using correctness rate, was used (Weihs et al. 2005).
This method does not necessarily find the best combination, due to its heuristic
nature, but it does find a good combination.

2.4 Species level classification accuracy

Accuracy can be evaluated in different ways. To examine classification accuracy
and confusion between species, confusion matrices were used (Lillesand, Kiefer,
and Chipman 2007). The confusion matrix contains a summary of classification
results for each actual class, as well as user’s, producer’s and overall accuracy.
The user’s accuracy is the number of individuals which have been correctly
classified as a percentage of all those that have been classified as that particular
class. Producer’s accuracy is the number of actual instances of a class that have
been classified correctly, as a percentage of the total number of actual instances
of that class. Overall accuracy is the number of correctly classified trees as a
percentage of the total number of trees, irrespective of class. Note that these
accuracies are different from the correctness rate described in section 2.3.

To investigate how structural and spectral features contributed to classifi-
cation accuracy of different species, a number of confusion matrices were made.
The most interesting model should be the one that performs best, so one con-
fusion matrix was made using the feature combination that gave the highest
correctness rate in cross-validation. An LDA-model was created using those
features and all field inventoried trees. The model was then applied to classify
the same trees. As a result of using the same data for training and evaluation,
some overfitting might have occured. Due to the feature selection made, the
effect of overfitting should be small. Additional confusion matrices were cre-
ated for models built on only spectral and structural subsets of the feature set
from which the best performing model was acquired.
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3 Results

Complete cross-validation and feature selection results are presented in the
tables of appendix A.

3.1 Features for tree species classification

Features used for tree species classification chosen by their F-ratio is presented
in table 3.1, ordered from the feature with the best (highest) F-ratio in that
feature set to the worst of the eight presented, those with a lower F-ratio are
not included.

Feature set Feature

1 2 3 4 5 6 7 8

Ellipsoid JC1e JC2e JC3e JC11 JC12 JC10 AC JC21

F-ratio 61.85 41.07 35.14 28.10 27.09 23.71 23.67 16.86

Horizontal KC1
2 KC1

3 KC1
4 KC2

2 KC1
1 KC1

5 KC1
0 KC3

1

F-ratio 25.74 24.44 20.88 20.86 19.86 17.74 17.24 16.53

Distribution QC1
75 QC1

50 Q̄C1 QC1
90 QC2

99 QC2
95 QC2

90 QC1
95

F-ratio 75.25 72.20 71.23 65.86 61.09 60.58 59.44 57.90

Table 3.1. Features ranked by their F-ratio. Only first returns and
complete feature sets were used. Feature number one was the best
in the feature set to use if only one were to be used for classification.
J , K and Q are intensity variables, and AC is a value describing
the shape of the ellipsoid. Superscripts signifies channel. Subscripts
of J indicates ellipsoidal layer enumerated from the outmost (0)
to the innermost and e pertains to what is outside the outmost
ellipsoid. Subscripts of K signifies horizontal layer enumerated from
the topmost (0) to the bottommost. Subscripts of Q is the intensity
percentile number, and Q̄ is the mean intensity. A summary of all
subscripts and superscripts are available in table A.1, in appendix
A.

The ellipsoid data had four ellipsoid layers, numbered, outside and in, from
zero to three, and data from outside of the outmost ellipsoid, with an e as
subscript. In horizontal-layer data, seven layers had been constructed, num-
bered from zero to six with no features from outside the top or bottom layer.
As described in section 2.2.2, the distribution statistics had 11 features for the
intensity distribution and height distribution each. Percentiles used in both
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intensity and height percentile features were 1, 5, 10, 25, 50, 75, 90, and 95.
There was also a 99th intensity percentile.

When the eight features with the highest F-ratio were selected, the only
structural feature among them were the AC-ratio, i.e., the ellipsoid shape of
the crown. Another notable property of these features is that only two are from
the 532 nm (C3) data, namely intensity outside of the ellipsoid and intensity
in the second layer from the top, the rest are from 1064 nm (C2) and 1550 nm
(C1).

In general features containing information from the upper part of the tree
contained more information on tree species. The three features from the ellip-
soid feature set with the highest F-ratio was those with intensity information
from outside the outmost ellipsoid. Horizontal layers ranging in number from
zero to five were among the top eight when ordered by F-ratio, but five of eight
features were from the three top horizontal layers. From the distribution fea-
ture set, only features from the average or median height and up (depending on
distribution skewness) are among the eight best features; none of the 1st, 5th,
10th of 25th percentile features were among the eight with the highest F-ratio.

Combinations of features that could be used to produce a model with a
high correctness rate are presented in table 3.2. Each row presents the best
combination of features from that feature set, that was found using stepwise
feature selection.

Feature set Features

Ellipsoid JC10 JC1e JC22 JC2e ĒC2 JC30 JC3e AC
Horizontal KC1

2 KC1
4 LC1

0 KC2
2 KC3

4 KC3
5 LC3

1 LC3
2

Distribution PC1
90 Q̄C1 QC1

05 QC1
50 QC2

90 QC2
95 QC3

01 QC3
90

Table 3.2. Features from different feature sets selected by stepwise
feature selection. Only first returns and complete feature sets were
used. J , K and Q are intensity features. E, AC, L and P are
structural features. Superscripts signifies channel. Subscripts of J
indicates ellipsoidal layer enumerated from the outmost (0) to the
innermost and e pertains to what is outside the outmost ellipsoid.
Subscripts of K and L signifies horizontal layer enumerated from
the topmost (0) to the bottommost. Subscripts of P and Q are
height and intensity percentile number respectively. Q̄ is the mean
intensity. A summary of all subscripts and superscripts are available
in table A.1, in appendix A.

When features were combined to create an accurate classification model us-
ing stepwise feature selection, features from all channels were selected and all
combinations had both spectral and structural features present. The combina-
tion from the ellipsoid feature set was primarily composed of intensity metrics
from the outer parts of the tree crown; the only structural feature was AC.

The feature combination from the horizontal layer feature set used four in-
tensity features and three structural features. Only one, an intensity feature,
was from channel 2, i.e., 1064 nm. In the combination selected from the distri-
bution feature set, intensity percentiles from the 1st to the 95th were included.
Only one height distribution was selected by the algorithm: PC1

90 .
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3.2 Spectral and structural information

Regardless of what feature set was used, multispectral data always gave a higher
cross-validation correctness rate than monospectral data, as shown in table 3.3.
The model using multispectral data and all features from the distribution data
set had the highest correctness rate. The greatest difference between multi-
spectral and monospectral data was found when all variables were available
for selection. The smallest difference between monospectral and multispectral
data in correctness rate was in the models produced with structural features
only.

Feature subset Ellipsoid Horizontal Distribution

Multispectral
Intensity 65.36 58.66 75.98
Structure 43.02 34.64 41.34
All 68.72 60.34 76.54

Monospectral (1064 nm)
Intensity 44.13 40.78 67.60
Structure 40.22 30.73 35.75
All 56.42 43.58 66.48

Table 3.3. Correctness rate as a percentage for models built using
first returns only. Rows are subsets of either intensity, structure or
all features from the feature sets that are the columns. Accuracies
using multispectral and monospectral (1064 nm) data are presented.
For accuracies in other channels, see appendix A.

3.3 Return number

Table 3.4 shows the correctness rate for different feature sets when using dif-
ferent kinds of returns. In two of three cases, the multispectral data using all
returns gave the highest correctness rate in cross-validation. The exception
was the ellipsoid feature set where first returns gave a better classification ac-
curacy. When looking at the monospectral data, both ellipsoid and horizontal
layer feature sets had their respective highest correctness rate when using all
returns. The distribution feature set from multispectral data gave the same
accuracy when using first and single returns. The horizontal layer feature set
from monospectral data also resulted in the the same correctness rate whether
first or single returns were used. Differences in correctness rate depending on
return type was less than one percentage point in the multispectral distribution
feature sets. The largest difference between return types, in percentage points,
was found in the ellipsoid feature set from monospectral data.
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Returns Ellipsoid Horizontal Distribution

Multispectral
Single 63.13 59.78 76.54
First 68.72 60.34 76.54
All 67.60 62.57 77.09

Monospectral (1064 nm)
Single 44.13 43.02 64.25
First 56.42 43.58 66.48
All 57.54 48.60 70.39

Table 3.4. Correctness rate as a percentage using point clouds of
either all returns, only first returns or only single returns. Each
feature set was computed separately for these point clouds. Models
were created using stepwise selection with both spectral and struc-
tural features available.

3.4 Species level classification accuracy

The model with the highest cross-validation correctness rate was created using
the distribution feature set and consisted of spectral features only. As a result,
only two confusion matrices are presented in tables 3.5 and 3.6.

Classification† Known types† User’s (%)

AL M B AS S C P O L

AL 0 0 0 0 0 0 0 0 0 —
M 0 12 0 0 0 0 0 0 2 86
B 0 0 24 0 0 3 0 0 4 77
AS 1 0 0 19 0 1 0 2 2 76
S 0 0 0 0 15 0 0 0 0 100
C 0 0 0 0 0 1 0 0 0 100
P 0 0 0 0 0 0 29 0 0 100
O 5 0 1 4 0 0 0 35 7 67
L 1 1 1 0 0 0 0 1 8 67

Producer’s (%) 0 92 92 83 100 20 100 92 35 80

Table 3.5. Confusion matrix for the best performing model. †: AL,
alder; M, maple; B, birch; AS, Ash; S, spruce; C, cherry; P, pine; O,
oak; L, linden. Features used in the model were computed from all
returns. Features used were: QC1

10 , QC1
75 , maxQC2, QC2

90 , QC2
95 , QC2

99 ,
QC3

05 and QC3
75 .

In the confusion matrix of table 3.5, classification accuracy of the best
performing model is presented. The stepwise feature selection algorithm chose
only intensity features (QC1

10 , QC1
75 , maxQC2, QC2

90 , QC2
95 , QC2

99 , QC3
05 and QC3

75 )
from the distribution feature set. The resulting model had a cross-validation
correctness rate of 77.09 %. As producer’s accuracy shows, none of the alders
were correctly classified, and cherry and linden classification performed poorly.
Spruce and pine on the other hand, got 100 % classification accuracy both in
producers and users accuracy. Classification accuracy of maple, birch and ash
was fairly high, both in user’s and producer’s accuracy. Producer’s accuracy
of oak was 92 % but only 67 % in user’s accuracy. The overall accuracy of
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classification was 80 %, a little bit higher than the cross-validation correctness
rate of 77.09 %.

Classification† Known types† User’s (%)

AL M B AS S C P O L

AL 1 0 1 0 0 0 0 0 1 33
M 1 7 0 2 1 0 0 2 1 50
B 1 1 14 2 1 2 0 2 3 54
AS 0 2 2 13 2 0 1 2 0 59
S 0 0 0 0 9 0 1 1 0 82
C 0 0 0 0 1 1 0 0 1 33
P 0 0 0 0 0 0 25 0 0 100
O 1 1 7 5 1 2 2 28 6 53
L 3 2 2 1 0 0 0 3 11 50

Producer’s (%) 14 54 54 57 60 20 86 74 48 61

Table 3.6. Confusion matrix for the structural feature subset of the
feature set providing the best performing model. †: AL, alder; M,
maple; B, birch; AS, Ash; S, spruce; C, cherry; P, pine; O, oak; L,
linden. Features used in the model were computed from all returns.
Features used were: PC1

75 , dnsC1, αC2, PC2
1 , PC2

25 , αC3, PC3
25 and PC3

95 .

The confusion matrix of the model built with only structural features (PC1
75 ,

dnsC1, αC2, PC2
1 , PC2

25 , αC3, PC3
25 and PC3

95 ) in table 3.6 shows that such a model
does not perform as well overall as the model built with spectral features. The
overall accuracy of the model was 61 % while the cross-validation correctness
rate was 55.31 %. No species was perfectly discriminated from the others. Only
alder had a producer’s and user’s accuracy higher than in table 3.5. Linden
had a higher producer’s accuracy, but lower user’s accuracy, meaning that more
trees have been classified as linden. Cherry had the same producer’s accuracy
but lower user’s accuracy. Maple, birch, ash, spruce, pine and oak had a lower
producer’s accuracy, and all these except pine had a lower user’s accuracy as
well.
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4 Discussion

4.1 Conclusions

When features were evaluated by their F-ratio, the best features for tree species
classification were those that describe the upper part of the tree crown. F-ratio
describes how large the between-group variability is compared to within-group
variability. When using LDA, this is the optimal way to rank variables, since
the classification method works similarly (Guyon and Elisseeff 2003).

The highest F-ratios for the different feature sets were found in intensity
features. The only structural feature among all the best features from all data
sets was the AC-ratio. This indicates that spectral data is highly relevant for
tree species identification, which is known to be the case when using infrared
aerial photography (Axelson and Nilsson 1993). Of all the features in table 3.1,
only two came from the 532 nm data (C3).

In the feature combinations (table 3.2) produced by stepwise feature selec-
tion, there were also more spectral features than structural. Nevertheless, each
combination contained at least one structural feature. Eight features were from
the 532 nm data. This indicates that, while 532 nm data might not be useful as
a single source of information, it is useful when combined with other channels
as it provides new information to the model.

The exact cause of the relatively poor performance of 532 nm data can not
be identified without further studies. There are nonetheless some ways in which
channel 3 differs from the other two channels. Due to eye safety regulations, the
divergence had to be greater for visible light than for NIR and SWIR channels.
As a result, the footprint of the green channel was larger and had less power
per area. Some atmospheric effects might also be more prominent for different
wavelengths of light. These are two things that might be further examined.

Multispectral information gave a higher correctness rate than the 1064 nm
channel separately. A combination of spectral and structural features, us-
ing first returns only, provided the highest correctness rate. When using first
returns only, subsets of features containing only intensity or structural infor-
mation provided a lower correctness rate. This was true even when only the
near infrared channel was used. Classifying tree species with only structural
features when spectral information for the returns is available would not be ad-
visable. Even when using only one channel, the intensity features gives a higher
correctness rate than the structural features. The fact that 1064 nm gives a
correctness rate of 67.6 % when only intensity distribution features were used is
interesting. Many ALS-systems have an adaptive output effect, meaning that if
there is a drop in return intensity, the output effect will increase. The value of
the output intensity is not always recorded and this limits intensity-based clas-
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sification to data from those ALS-systems that do have either constant output
effect or records the output effect. In the Optech Titan X system the output
effect is held constant, allowing return intensity variations to become apparent.

Whether single, first or all returns were used to compute features did not
seem to matter much. The best performing model was built on distribution
features from all returns, with a correctness rate of 77.09 %. On the other
hand, both first and single returns gave an correctness rate of 76.54 %, which
in a practical application would be a negligible difference compared to 77.09 %.
This small difference suggests that most of the information is available in the
first or only return, something that agrees with previous studies (Wagner et al.
2008). Nevertheless, there seems to be at least some information in the returns
following the first, which results in the slightly higher correctness rate. No
feature set was created where relations between return numbers were used for
classification. Proportions of first and last returns have been used as basis for
tree species classification, with a high accuracy for classifying pine and spruce
(Holmgren and Persson 2004). Return intensity was corrected by distance but
could also be corrected by the intensity of previous returns of the same pulse,
there is, however, no established method for doing this. Using proportion of
returns or return intensity corrected by previous return intensity is something
that might be interesting to examine in multispectral ALS-data in future stud-
ies.

Spruce, pine and deciduous classes are easily discriminated from each other,
by using features in multispectral intensity data, as shown in the confusion
matrix of table 3.5. The species that were confused with each other are the
deciduous. Alder and cherry trees were relatively few in this sample, seven
and five respectively, which made errors in those classes more difficult to in-
terpret. Linden, with 23 individual trees, seemed to be easily confused with
any other species. When comparing tables 3.5 and 3.6, Pine seems to be easily
classified when using either spectral or structural features. Oak also have a
fairly high producer’s accuracy when using structural features. Maple, birch
and ash seems to be much easier to distinguish in spectral than in structural
features. Spruce seems to be more difficult to classify correctly using only
structural features, this might have to do with the fact that spruces were al-
most exclusively found in closed-canopy stands. A closed canopy might affect
structural features so that spruce trees in this sample does not have a typical
shape. Spruce crowns may grow into each other and become difficult to sep-
arate, meaning that structural features no longer describe an individual tree,
but rather a mixture of neighboring trees.

It is clear that multispectral ALS data provides plenty of information on tree
species. Features best suited for species classification are from the upper parts
of the crown, and intensity features contain more information than structural
features. Cross-validation correctness rate was the main metric by which model
performance was measured. The model with an correctness rate of 77 % had
an overall accuracy in the confusion matrix of 80 %, which may be due to
some overfitting when all trees was used both for training and evaluating the
model. With such a high overall accuracy, combined with the fact that pine
and spruce were perfectly discriminated from deciduous species, a model built
with these features might be very useful for both nature value inventory and
forestry planning. Further studies are needed to examine the cause of specific
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error rates, e.g., why linden have been confused with so many other tree species
and how a larger sample of alder and cherry would affect the result.

The model with the highest correctness rate was one that used only in-
tensity features. On the other hand, the best performing model in table 3.3
was the multispectral where features had been selected from both intensity and
structure features. The difference between these two models is that the features
in the first model were computed using first returns only, and the features in
the second were computed using all returns. There are some possible explana-
tions as to why the best performing model used only spectral features, e.g., the
returns subsequent to the the first provided more intensity information, the
subsequent returns introduced noise in structural information, or that statis-
tical noise affected output of the feature selection algorithm. Since the model
where features were computed using all returns provided a higher correctness
rate, it is probable that the subsequent returns provided more information on
intensity, allowing a better classification to be made. Nevertheless, the higher
correctness rate might also be a result of the heuristic approach in the feature
selection algorithm, i.e., suboptimum combinations might have been selected.

Feature sets performed differently from each other: distribution features
gave the highest correctness rate followed by ellipsoid layer features and lastly
horizontal layer features. The ellipsoid and horizontal layer features were con-
structed to find combinations of spectral and structural features within an
ellipsoid or horizontal layer that could be used for tree species identification;
spectral features were related to structural features by deriving them from the
same ellipsoid or horizontal layer. Distribution features on the other hand,
did not relate height and intensity distribution to each other in such a way.
The idea that trees such as ash, with a sparse and light green crown, could
be separated from maple, with a dense and dark green crown, using ellipsoids
or horizontal layers proved to be functional but was surpassed by features de-
scribing height and intensity distributions of the tree as a whole.

4.2 Weaknesses and the future

There are some areas where materials and methods could be improved for future
studies. Both the field and ALS data are very specific. Only solitary trees were
used, the reason being that this kind of ALS data had not been thoroughly
examined, and clearly distinguishable crowns made exploration of data easier.
A more real-world usage would be in closed-canopy forest stands using either
single-tree or area-based methods. Solitary trees differ in shape from trees
in a closed canopy, but since the best features for tree species classification
came from the upper part of the canopy, the data should be usable in closed
stands as well. Some features may be more difficult than other to construct
without information about the live crown height. Ellipsoid features might have
to be adapted for a real-world usage. One way to adapt them could be by
using segmentation algorithms and fit half an ellipsoid over the automatically
segmented crown. The ALS-data were gathered from a fairly low flying altitude
of 400 meters. This is not practical as each swath will only cover a small area.
As a comparison, the New National Height model of Sweden was created using
data gathered from an altitude of 1,700 to 2,300 meters (Lantmäteriet 2016),
400 meters is not even a quarter of that altitude.
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When choosing and calculating candidate features, a number of completely
subjective choices were made. The ellipsoid and horizontal layer thickness
was set to 0.5 meter. There was no reason behind this other than that it
resulted in a decent number of ellipsoidal layers. The horizontal layer thickness
was set to match the the ellipsoidal layers. Distribution features were also
chosen subjectively. There were more high percentiles than low, because it
was presumed that a high value might be more interesting than a low, as low
values in height would be the ground and low intensity values could have been
the result of light scattering so that only a small fraction of the output effect
returned to the scanner. This assumption seems to be true, as none of the lower
percentiles was included in table 3.1 or table 3.2. The only spectral features
used were taken from the intensity distribution, either within an ellipsoid,
horizontal layer or the whole tree, of each channel separately. No combination
of intensities in different channels, analogue to NDVI (Normalized Difference
Vegetation Index, for more information see Axelson and Nilsson 1993), was
used as a feature. The feature sets used have been treated as separate, there
is however no restriction for combining different feature sets. These subjective
choices were made because there is an endless amount of different theoretical
features that could be extracted from a point cloud. Technically the amount
of information is reduced when any data points are averaged, this is done to
reduce complexity of data. An objective alternative to manual feature design
is machine learning algorithms, such as neural networks, that creates features
as the particular algorithm finds fit. The drawback with such a method would
be that features could become very synthetic and hard to interpret.

There is a multitude of different feature selection algorithms. The two used
were chosen on grounds of simplicity (F-ratio) and optimal performance in re-
lation to the classification method (stepwise feature selection). Some examples
are: other ways to rank variables than by F-ratio and using principal com-
ponents of features. Guyon and Elisseeff (2003) with their paper, titled An
Introduction to Variable and Feature Selection, provides an overview of many
different options.
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A Selected variables

Variable Description

CR Correctness rate
E Density in ellispoid layer
J Intensity in ellipsoid layer
L Density in horizontal layer
K Intensity in horizontal layer
P Height percentile
Q Intensity percentile
I Intensity
α Height skewness
β Intensity skewness
γ Height kurtosis
δ Intensity kurtosis
AC Ratio of ellipsoid a- and c-values

Sub- and superscript Description

Xe External, values outside ellipsoid
X̄ Arithmetic mean of X
Xmin Minimum of X
Xmax Maximum of X
Xn n is a number signifying which in order
XCn n is 1, 2 or 3 and signifies channel number

Table A.1. Explanation of variables
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Feature set CR Feature

1 2 3 4 5 6 7 8

All points
All 65.92 JC1

e JC3
e JC2

e AC JC1
0 JC3

2 JC1
1 JC1

2

Intensity 62.01 JC1
e JC3

e JC2
e JC1

0 JC3
2 JC1

1 JC1
2 JC2

0

Structure 36.87 AC EC2
e EC1

e EC3
e EC3

0 EC1
1 EC1

1 P̄C3

First returns
All 65.36 JC1

e JC2
e JC3

e JC1
1 JC1

2 JC1
0 AC JC2

1

Intensity 60.34 JC1
e JC2

e JC3
e JC1

1 JC1
2 JC1

0 JC2
1 EC2

2

Structure 35.75 AC EC1
e EC2

e EC3
e EC1

1 EC3
0 P̄C3 EC1

1
Single returns

All 60.89 JC1
e JC3

e JC2
e AC JC1

1 JC1
0 JC2

1 JC2
0

Intensity 55.31 JC1
e JC3

e JC2
e JC1

1 JC1
0 JC2

1 JC2
0 JC3

1

Structure 30.17 AC EC1
e EC3

e EC1
1 EC2

1 EC2
e P̄C3 EC1

1

Table A.2. Ellipsoid layer features ordered by F-ratio.

Feature set CR Feature

1 2 3 4 5 6 7 8

All points
All 52.51 KC1

2 KC1
3 KC1

4 LC2
2 KC3

5 KC1
1 KC1

0 KC3
1

Intensity 52.51 KC1
2 KC1

3 KC1
4 LC2

2 KC3
5 KC1

1 KC1
0 KC3

1

Structure 34.08 LC3
1 LC2

1 LC1
1 LC1

1 LC1
1 LC1

2 LC2
2 LC3

0
First returns

All 48.6 KC1
2 KC1

3 KC1
4 LC2

2 KC1
1 KC1

5 KC1
0 KC3

1

Intensity 48.6 KC1
2 KC1

3 KC1
4 LC2

2 KC1
1 KC1

5 KC1
0 KC3

1

Structure 30.17 LC3
1 LC1

1 LC2
1 LC1

1 LC1
1 LC1

2 LC3
0 LC3

2
Single returns

All 54.19 KC1
2 KC1

1 KC1
0 KC1

3 LC2
2 KC2

1 KC1
4 KC3

1

Intensity 54.19 KC1
2 KC1

1 KC1
0 KC1

3 LC2
2 KC2

1 KC1
4 KC3

1

Structure 27.93 LC1
2 LC1

1 LC3
0 LC1

4 LC3
4 LC2

2 LC1
1 LC1

1

Table A.3. Horizontal layer features ordered by F-ratio.

Feature set CR Feature

1 2 3 4 5 6 7 8

All points
All 68.72 QC1

90 QC1
75 QC1

95 QC2
99 QC2

95 Q̄C1 QC2
90 QC3

90

Intensity 68.72 QC1
90 QC1

75 QC1
95 QC2

99 QC2
95 Q̄C1 QC2

90 QC3
90

Structure 40.22 γC3 PC2
10 PC1

10 PC2
05 PC2

25 αC3 PC1
25 PC3

10
First returns

All 68.72 QC1
75 QC1

50 Q̄C1 QC1
90 QC2

99 QC2
95 QC2

90 QC1
95

Intensity 68.72 QC1
75 QC1

50 Q̄C1 QC1
90 QC2

99 QC2
95 QC2

90 QC1
95

Structure 34.08 dnsC1 dnsC3 PC1
10 dnsC2 PC1

05 PC2
10 PC1

25 PC3
10

Single returns
All 58.1 QC1

50 QC1
75 QC1

25 Q̄C1 QC1
10 QC1

05 QC2
75 Q̄C2

Intensity 58.1 QC1
50 QC1

75 QC1
25 Q̄C1 QC1

10 QC1
05 QC2

75 Q̄C2

Structure 40.22 dnsC1 dnsC2 dnsC3 PC2
10 PC1

10 PC2
05 PC2

01 PC1
25

Table A.4. Distribution features ordered by F-ratio.

22



Feature set CR Feature

1 2 3 4 5 6 7 8

All points
1550 nm 53.07 Je AC J0 J1 J2 Ee E0 E1

1064 nm 51.96 Je AC J0 J1 J2 Ee P̄ E0

532 nm 56.98 Je AC J2 J1 J0 Ee E0 P̄
First returns

1550 nm 52.51 Je J1 J2 J0 AC Ee E0 E1

1064 nm 51.96 Je AC J1 J2 J0 Ee E2 E0

532 nm 52.51 Je AC J2 J0 J1 Ee E0 P̄
Single returns

1550 nm 46.93 Je AC J1 J0 Ee E1 E0 P̄
1064 nm 35.75 Je AC J1 J0 E1 Ee P̄ E0

532 nm 47.49 Je AC J1 J0 Ee P̄ E1 E0

Table A.5. Ellipsoid layer features for each channel ordered by F-
ratio.

Feature set CR Feature

1 2 3 4 5 6 7 8

All points
1550 nm 34.08 AC Ee E0 E1 P̄ E2

1064 nm 40.22 AC Ee P̄ E0 E1 E2

532 nm 37.43 AC Ee E0 P̄ E2 E1

First returns
1550 nm 36.87 AC Ee E0 E1 P̄ E2

1064 nm 36.31 AC Ee E2 E0 P̄ E1

532 nm 36.31 AC Ee E0 P̄ E2 E1

Single returns
1550 nm 30.73 AC Ee E1 E0 P̄
1064 nm 31.28 AC E1 Ee P̄ E0

532 nm 30.73 AC Ee P̄ E1 E0

Table A.6. Ellipsoid layer structural features for each channel or-
dered by F-ratio.

Feature set CR Feature

1 2 3 4 5 6 7 8

All points
1550 nm 44.69 Je J0 J1 J2
1064 nm 39.11 Je J0 J1 J2
532 nm 41.9 Je J2 J1 J0

First returns
1550 nm 45.25 Je J1 J2 J0
1064 nm 41.34 Je J1 J2 J0
532 nm 39.66 Je J2 J0 J1

Single returns
1550 nm 46.93 Je J1 J0
1064 nm 39.66 Je J1 J0
532 nm 38.55 Je J1 J0

Table A.7. Ellipsoid layer spectral features for each channel ordered
by F-ratio.
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Feature set CR Feature

1 2 3 4 5 6 7 8

All points
1550 nm 36.87 K2 K3 K4 K1 K0 K5 K6 L1

1064 nm 38.55 K2 K1 K3 K4 K0 K5 L1 L0

532 nm 47.49 K5 K1 K2 K4 K6 K3 K0 L1

First returns
1550 nm 41.34 K2 K3 K4 K1 K5 K0 K6 L1

1064 nm 35.75 K2 K1 K3 K4 K0 K5 K6 L1

532 nm 43.58 K1 K2 K5 K3 K4 K6 K0 L1

Single returns
1550 nm 45.81 K2 K1 K0 K3 K4 L2 L4 L0

1064 nm 39.66 K2 K1 K3 K0 K4 L0 L2 L1

532 nm 36.87 K1 K2 K0 K3 K4 L0 L4 L1

Table A.8. Horizontal layer features for each channel ordered by
F-ratio.

Feature set CR Feature

1 2 3 4 5 6 7 8

All points
1550 nm 36.31 L1 L0 L2 L3 L4 L6 L5

1064 nm 28.49 L1 L0 L2 L4 L3 L5 L6

532 nm 26.82 L1 L0 L2 L4 L3 L6 L5

First returns
1550 nm 32.4 L1 L0 L2 L3 L4 L6 L5

1064 nm 27.37 L1 L0 L2 L4 L6 L5 L3

532 nm 26.26 L1 L0 L2 L6 L4 L5 L3

Single returns
1550 nm 19.55 L2 L4 L0 L1 L3

1064 nm 20.11 L0 L2 L1 L4 L3

532 nm 21.23 L0 L4 L1 L2 L3

Table A.9. Horizontal layer structural features for each channel or-
dered by F-ratio.

Feature set CR Feature

1 2 3 4 5 6 7 8

All points
1550 nm 42.46 K2 K3 K4 K1 K0 K5 K6

1064 nm 34.64 K2 K1 K3 K4 K0 K5 K6

532 nm 44.13 K5 K1 K2 K4 K6 K3 K0

First returns
1550 nm 39.66 K2 K3 K4 K1 K5 K0 K6

1064 nm 32.96 K2 K1 K3 K4 K0 K5 K6

532 nm 40.78 K1 K2 K5 K3 K4 K6 K0

Single returns
1550 nm 48.04 K2 K1 K0 K3 K4

1064 nm 39.11 K2 K1 K3 K0 K4

532 nm 34.64 K1 K2 K0 K3 K4

Table A.10. Horizontal layer spectral features for each channel or-
dered by F-ratio.
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Feature set CR Feature

1 2 3 4 5 6 7 8

All points
1550 nm 62.57 Q90 Q75 Q95 Q̄ Q50 Q99 P10 P25

1064 nm 63.69 Q99 Q95 Q90 Q75 Q̄ Qmax δ Q50

532 nm 53.07 Q90 Q75 Q95 Q̄ Q50 γ Q99 α
First returns

1550 nm 60.34 Q75 Q50 Q̄ Q90 Q95 Q25 Q10 Q99

1064 nm 60.89 Q99 Q95 Q90 Q̄ Q75 Q50 Qmax Q25

532 nm 56.98 Q90 Q95 Q75 Q̄ Q50 Q25 Q10 Q05

Single returns
1550 nm 46.37 Q50 Q75 Q25 Q̄ Q10 Q05 Q01 Q90

1064 nm 49.72 Q75 Q̄ Q90 Q95 Q50 Q99 Q25 Q10

532 nm 41.34 Q75 Q50 Q25 Q10 Q05 Q̄ Q01 Qmin

Table A.11. Distribution features for each channel ordered by F-
ratio.

Feature set CR Feature

1 2 3 4 5 6 7 8

All points
1550 nm 33.52 P10 P25 P05 P50 dns P75 P90 P95

1064 nm 31.28 P10 P05 P25 P50 P75 dns P01 P90

532 nm 37.99 γ α P10 P25 P05 P50 dns P75

First returns
1550 nm 35.75 dns P10 P05 P25 P50 P75 P01 α
1064 nm 30.73 dns P10 P25 P05 P01 P50 P75 α
532 nm 40.22 dns P10 γ P25 α P01 P05 P50

Single returns
1550 nm 30.73 dns P10 P25 P05 α γ P50 P01

1064 nm 34.08 dns P10 P05 P01 P25 P50 P90 P75

532 nm 31.28 dns P25 P05 P10 P01 P90 P75 P50

Table A.12. Structural distribution features for each channel ordered
by F-ratio.

Feature set CR Feature

1 2 3 4 5 6 7 8

All points
1550 nm 55.31 Q90 Q75 Q95 Q̄ Q50 Q99 Q25 β
1064 nm 63.69 Q99 Q95 Q90 Q75 Q̄ Qmax δ Q50

532 nm 49.16 Q90 Q75 Q95 Q̄ Q50 Q99 Q25 Q05

First returns
1550 nm 60.34 Q75 Q50 Q̄ Q90 Q95 Q25 Q10 Q99

1064 nm 60.89 Q99 Q95 Q90 Q̄ Q75 Q50 Qmax Q25

532 nm 56.98 Q90 Q95 Q75 Q̄ Q50 Q25 Q10 Q05

Single returns
1550 nm 46.37 Q50 Q75 Q25 Q̄ Q10 Q05 Q01 Q90

1064 nm 49.72 Q75 Q̄ Q90 Q95 Q50 Q99 Q25 Q10

532 nm 41.34 Q75 Q50 Q25 Q10 Q05 Q̄ Q01 Qmin

Table A.13. Distribution spectral features for each channel ordered
by F-ratio.
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Feature set CR Selected features

All points
All 67.6 JC1

e EC1
1 JC2

e JC3
e AC

Intensity 63.69 JC1
0 JC1

e JC2
e JC3

e
Structure 43.58 EC1

e EC3
2 AC

First returns
All 68.72 JC1

0 JC1
e EC2

2 JC2
e P̄C2 JC3

0 JC3
e AC

Intensity 65.36 JC1
0 JC1

e JC2
1 EC2

2 JC2
e JC3

0 JC3
e

Structure 43.02 EC1
e EC2

e AC
Single returns

All 63.13 JC1
1 JC1

e EC1
1 JC2

e EC1
1 EC2

1 JC3
e

Intensity 60.89 JC1
e JC2

e JC3
e

Structure 35.75 EC1
1 EC1

e P̄C1 EC1
1 EC3

1 EC3
e P̄C3 AC

Table A.14. Ellipsoid layer features selected using stepwise feature
selection

Feature set CR Selected features

All points
All 62.57 KC1

2 KC1
4 LC1

2 LC2
2 KC2

5 LC2
3 KC3

4 KC3
5

Intensity 59.78 KC1
2 KC1

3 KC2
4 KC3

5

Structure 40.78 LC1
1 LC1

1 LC1
4 LC2

5 LC3
0 LC3

1 LC3
2

First returns
All 60.34 KC1

2 KC1
4 LC1

1 LC2
2 KC3

4 KC3
5 LC3

1 LC3
2

Intensity 58.66 KC1
2 LC2

2 KC3
4

Structure 34.64 LC1
1 LC1

3 LC2
1 LC3

4
Single returns

All 59.78 KC1
1 KC1

2 KC1
4 KC3

1 LC3
4

Intensity 60.34 KC1
1 KC1

2 KC1
4 KC3

0 KC3
1 KC3

4

Structure 27.37 LC1
1 LC1

1 LC1
4

Table A.15. Horizontal layer features selected using stepwise feature
selection

Feature set CR Selected features

All points
All 77.09 QC1

10 QC1
75 QC2

max QC2
90 QC2

95 QC2
99 QC3

05 QC3
75

Intensity 77.09 QC1
10 QC1

75 QC2
max QC2

90 QC2
95 QC2

99 QC3
05 QC3

75

Structure 55.31 PC1
75 dnsC1 αC2 PC2

01 PC2
25 αC3 PC3

25 PC3
95

First returns
All 76.54 PC1

90 Q̄C1 QC1
05 QC1

50 QC2
90 QC2

95 QC3
01 QC3

90

Intensity 75.98 Q̄C1 QC1
05 QC1

50 QC2
90 QC2

95 QC3
01 QC3

90

Structure 41.34 PC1
10 dnsC1 PC2

10 PC3
25

Single returns
All 76.54 PC1

05 Q̄C1 QC1
10 QC1

90 Q̄C2 QC2
10 QC2

75 QC3
75

Intensity 74.3 Q̄C1 QC1
10 QC1

50 Q̄C2 QC2
10 QC2

75 QC3
min QC3

75

Structure 43.58 γC1 PC2
10 dnsC2 αC3 PC3

90

Table A.16. Distribution features selected using stepwise feature
selection
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Feature set CR Selected features

All points
1550 nm 59.22 J2 Je Ee AC
1064 nm 57.54 J2 Je E1 E2 Ee AC P̄
532 nm 59.22 Je Ee AC

First returns
1550 nm 56.98 J2 Je E1 Ee AC
1064 nm 56.42 J2 Je E0 Ee AC P̄
532 nm 57.54 Je E0 Ee AC

Single returns
1550 nm 50.84 J0 Je Ee AC
1064 nm 44.13 Je E0 AC
532 nm 50.84 Je Ee AC P̄

Table A.17. Ellipsoid layer features of each channel selected using
stepwise feature selection

Feature set CR Selected features

All points
1550 nm 41.9 Ee AC
1064 nm 40.78 E2 Ee AC
532 nm 41.34 E2 Ee AC

First returns
1550 nm 41.9 Ee AC
1064 nm 40.22 Ee AC
532 nm 42.46 Ee AC

Single returns
1550 nm 34.64 Ee AC P̄
1064 nm 34.08 Ee AC P̄
532 nm 33.52 Ee AC

Table A.18. Ellipsoid layer structural features of each channel se-
lected using stepwise feature selection

Feature set CR Selected features

All points
1550 nm 46.93 Je
1064 nm 41.9 Je
532 nm 43.58 J2 Je

First returns
1550 nm 49.72 J0 J2 Je
1064 nm 44.13 Je
532 nm 43.02 Je

Single returns
1550 nm 46.93 J0 J1 Je
1064 nm 43.02 Je
532 nm 41.34 Je

Table A.19. Ellipsoid layer spectral features of each channel selected
using stepwise feature selection
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Feature set CR Selected features

All points
1550 nm 50.28 K1 K3 K5 L0 L1 L6

1064 nm 48.6 K2 K3 K6 L0 L2

532 nm 48.04 K1 K2 K3 K6 L2 L6

First returns
1550 nm 49.16 K1 K2 K6 L0 L1 L3

1064 nm 43.58 K0 K2 L2 L4

532 nm 46.93 K1 K2 K3 L1 L2

Single returns
1550 nm 49.16 K0 K1 K2 K3 K4 L0

1064 nm 43.02 K0 K1 K2 L0

532 nm 41.34 K1 L1 L2 L3 L4

Table A.20. Horizontal layer features of each channel selected using
stepwise feature selection

Feature set CR Selected features

All points
1550 nm 37.43 L0 L1 L3 L4 L5

1064 nm 31.84 L0 L1 L2 L4 L5

532 nm 28.49 L0 L1 L2 L4 L6

First returns
1550 nm 33.52 L0 L1 L2 L3 L4 L6

1064 nm 30.73 L1 L2 L4

532 nm 32.4 L0 L1 L2 L4 L6

Single returns
1550 nm 27.37 L0 L1 L4

1064 nm 24.02 L0 L2

532 nm 27.93 L1 L4

Table A.21. Horizontal layer structural features of each channel
selected using stepwise feature selection

Feature set CR Selected features

All points
1550 nm 46.37 K3 K5

1064 nm 44.13 K2 K6

532 nm 46.37 K0 K1 K2 K4 K5 K6

First returns
1550 nm 44.69 K2 K4 K5

1064 nm 40.78 K2 K3 K6

532 nm 43.58 K0 K2 K3 K4 K6

Single returns
1550 nm 44.69 K0 K1 K4

1064 nm 43.02 K0 K1 K2

532 nm 39.11 K1 K2

Table A.22. Horizontal layer spectral features of each channel se-
lected using stepwise feature selection
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Feature set CR Selected features

All points
1550 nm 65.92 P10 P25 Q05 Q75 Q90

1064 nm 70.39 P01 P05 P25 δ Q05 Q90 Q95 Q99

532 nm 63.69 γ P10 Q05 Q10 Q25 Q75 Q95 dns
First returns

1550 nm 65.92 α P05 P75 Q25 Q50 Q75 Q99 dns
1064 nm 66.48 P01 P25 Qmax Q̄ Q10 Q25 Q99 dns
532 nm 67.6 P10 Q01 Q50 Q95

Single returns
1550 nm 65.36 γ P25 P90 P95 Qmin Q̄ Q10 Q25

1064 nm 64.25 γ P10 Qmin Q05 Q10 Q75 Q99 dns
532 nm 54.75 P25 Qmax Q01 Q50 Q99

Table A.23. Distribution features of each channel selected using
stepwise feature selection

Feature set CR Selected features

All points
1550 nm 40.22 P05 P25 P50 P95 dns
1064 nm 37.99 P01 P25 P75 P90 dns
532 nm 42.46 α P05 P75 dns

First returns
1550 nm 39.66 P10 dns
1064 nm 35.75 P25 P90 dns
532 nm 41.9 α γ P10 P25 P50 P95 dns

Single returns
1550 nm 39.11 γ P25 dns
1064 nm 40.22 α P10 P25 P75 dns
532 nm 37.43 α P25 P50 P75 dns

Table A.24. Structural distribution features of each channel selected
using stepwise feature selection

Feature set CR Selected features

All points
1550 nm 64.25 Q̄ Q05 Q25 Q75 Q90

1064 nm 67.6 Qmax δ Q05 Q90 Q95 Q99

532 nm 55.31 Q25 Q75 Q90

First returns
1550 nm 60.89 Q̄ Q25 Q50 Q75 Q99

1064 nm 67.6 Qmax Q̄ δ Q10 Q50 Q75 Q99

532 nm 56.42 δ Q25 Q95 Q99

Single returns
1550 nm 55.87 Q̄ Q50 Q75 Q90 Q95

1064 nm 56.42 Q̄ δ Q25 Q75

532 nm 46.93 Qmin Q̄ Q01 Q50

Table A.25. Distribution spectral features of each channel selected
using stepwise feature selection
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