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Plants have a complex innate immune system that detect and protect against patho-

gens and environmental sensors that, for example, help detect changes in tempera-

ture, water availability and circadian rhythm. It may happen that plants of the same 

population get temporarily split into two subpopulations by a physical reproductive 

barrier. Many generations later when the two closely related subpopulations eventu-

ally cross again, a few key changes in their DNA may have created a different prob-

lem. Two or more proteins that interact in the immune system may have changed 

between the subpopulations. The configuration of these proteins may no longer work 

together properly when combined in a hybrid offspring. This could cause autoim-

mune conflictions where the immune system is constantly activated, even though no 

disease-causing organisms are present. An active immune system costs resources and 

creates a competition of energy between growth and defence, leaving the hybrid plant 

stunted. The hybrids often fail to propagate and die prematurely. This creates a puri-

fying selection pressure against incompatible gene variants between the loci. 

 

Researchers have found several cases of hybrid autoimmunity occurring in wild pop-

ulations of Arabidopsis thaliana. Rubén Alcázar and his team of researchers have 

discovered a few genes involved in such a case in a population in Poland. Part of my 

project was to study signs of negative selection against incompatible alleles between 

two loci. One that encodes for a cluster of immune receptors, collectively called 

RECOGNITION OF PERONOSPORA PARASITICA1-like (RPP1-like) and a sec-

ond that produce a receptor-like protein called STRUBBELIG RECEPTOR FAM-

ILY 3 (SRF3). At least one RPP1-like protein functions to guard SRF3 from pathogen 

disturbances and SRF3 acts as a receptor for the innate immune system in Central 

Asian ecotypes. SRF3 function in European versions of A. thaliana plants is un-

known. I found statistical signs of negative selection in the population, but larger 

experiments with more individuals are needed to rule out genetic drift or neutral evo-

lution. 

 

While working with my master thesis I investigated the unknown function of Euro-

pean SRF3. My data showed European A. thaliana plants (Landsberg erecta) to have 

higher levels of expression of SRF3 when the plants detected and signalled drought 

stress. During the early stages of drought and salt stress the cellular osmotic potential 

changes. It is very important that the plants detect shortages in soil water content and 

react to store moisture. To further understand the role of SRF3 I subjected A. thaliana 

plants that had a defective SRF3 gene and plants that overproduces the protein to an 

osmotic stress. By decreasing the amount of biologically available water by dissolv-

ing an excess of sugar in the growth medium, the cells in the plant need to start pro-

ducing higher amounts of solutes in order to keep osmosis stable and not lose water. 

Popular science summary 



I wanted to see whether plants that overproduce SRF3 proteins had any growth ad-

vantage (tolerating the stress) and gain insights into its molecular functions in the 

plant but the results were inconclusive in a first trial.  

 

Researchers can also get new ideas on how to test molecular functions of a protein 

by studying which other genes co-regulate together with the gene of interest. Large 

amounts of publicly available gene expression data can be found online and analysed 

by anyone. I have performed these analyses for my gene of interest (SRF3). I found 

that several genes involved in abscisic acid related signalling (a major stress induced 

signalling hormone) co-regulate together with SRF3 during numerous types of stress 

factors. A few correlated genes functions during drought stress and production of 

protective sugars. These findings highlight a possible multi-functional role of a newly 

discovered receptor-like protein in A. thaliana. 

  



 
 

Populations of Arabidopsis thaliana have spread throughout temperate zones of the 

world and adapted to prevailing biotic and abiotic stress factors. Diverging popula-

tions of Arabidopsis accessions can evolve postzygotic hybrid incompatibility (HI). 

In some cases, HI is caused by incompatible epistatic interactions between genes that 

have functionally diverged between- and within species. Crosses between the Euro-

pean Landsberg erecta (Ler) and many central Asian accessions, like Kashmir-2 

(Kas-2) and Kondara (Kond) suffers from it. Genetic analysis of this incompatibility 

has revealed its basis in a polymorphic cluster of Toll/interleukin-1 receptor-nucleo-

tide binding-leucine rich repeat (TNL) RPP1 (Recognition of Peronospora parasitica 

1)-like genes in Ler and alleles of the receptor-like kinase Strubbelig Receptor Fam-

ily 3 (SRF3) in ecotypes Kas-2 and Kond, causing autoactivation of the plant innate 

immunity response. In this project I have analysed: I) the genetic variability of SRF3 

in a segregating population of Ler relatives originally from Gorsów (Poland) and II) 

the molecular function of SRF3. My analysis showed that SRF3 might be more con-

served in the Gorsow population compared to the Kas-2 and Kond accessions alt-

hough it does not provide insight in the evolution of incompatibility. Analysis of the 

role of SRF3 using overexpressing and mutant lines and in silico prediction indicates 

that it might be involved in both drought and salt stress. In summary, this project 

sheds light into the role of SRF3 as a stress-related gene and its implication in hybrid 

incompatibility. 

Keywords: Abiotic stress, Co-evolution, Hybrid incompatibility, Receptor-like ki-

nase   
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As sessile organisms, plants need to sense and react to daily and seasonal environ-

mental cues for healthy development, growth and fitness. Plants have evolved com-

plex stress-response networks to tune development to the dominant stress, leading 

to emerging phenotypic plasticity through genotype by environment interactions 

(Nicotra et al., 2010; Alcázar & Parker, 2011). Populations of Arabidopsis thaliana 

have spread throughout temperate zones of the world and have colonized a wide 

range of regions where they survive and adapt to biotic and abiotic stress factors. 

 

As a consequence of intra-specific genetic diversity, genetic drift and natural selec-

tion, spatially separated and segregating populations may no longer be compatible. 

This type of incompatibility has been hypothesized to occur due to epistatic interac-

tions between at least two segregating loci that have fixated for different alleles 

among subpopulations. These alleles function well together in the parental lineages 

but can lead to detrimental development effects in the F1 and F2 generation follow-

ing hybridisation (Figure 1). Such post-zygotic reproductive barriers are termed 

Bateson-Dobzhansky-Muller (BDM) incompatibilities (Orr, 1996; Weinreich et al., 

2005) and have been identified in crosses between several accessions of A. thaliana. 

Some detrimental effects of hybrid incompatibility (HI) include embryo lethality 

(Col-0/Cvi-0 reported by Bikard et al., 2009) or growth defects and chlorosis (Col-

0/Bur-0 reported by Vlad et al., 2010). The genetic basis for some of these incom-

patible accessions has been determined and involves auto-activation of immunity. 

Incompatible accessions include the cross between ecotype accessions UK1 and 

UK3 (Bomblies et al., 2007; Alonso-Blanco et al., 2009) and crosses between the 

European ecotype Landsberg erecta (Ler) and Kashmir-2 (Kas-2) and Kondara 

(Kond) in central Asia (Alcázar et al., 2009, 2010). 

1 Introduction 
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Figure 1. Illustration of the Bateson-Dobzhansky-Muller post-zygotic reproductive isolation 
theory. Different alleles at two or more distinct loci (a and b) fixate as a respons to local 
adaptation or genetic drift as a population is split into two subpopulations (green elipses). 
Hybridisation between the subpopulations yield epistatic interactions that may be 
detrimental (red elips). aa and bb = ancestral diploid genotype. A and B = new mutation, AA 
and BB = fixation of mutation. Adapted from Wu & Ting et al. (2004). 

The HI reported by Alcázar (2009, 2010) is conditional and temperature dependent 

within the normal range experienced by Arabidopsis populations in the wild (14 ºC 

to 22 ºC). Homeostatic control is lost in incompatible hybrid plants through allelic 

mismatches involving immune receptors. At moderate temperature (20 ºC) HI be-

comes suppressed and plants develop and reproduce normally. At moderately low 

temperature (14ºC) hybrid seedlings exhibit transcriptionally activated salicylic acid 

(SA) pathway defences leading to dwarfism, necrosis and reduced reproductive fit-

ness (Alcázar et al., 2009; Alcázar and Parker, 2011). Alcázar et al. (2009) previ-

ously fine mapped one of the interacting loci to a region in Ler that contain a cluster 

of RECOGNITION OF PERONOSPORA PARASITICA1-like (RPP1-like) Toll-In-

terleukin1 Receptor-nucleotide binding-Leucine-rich repeat (TNL) immune recep-

tor genes. The incompatible RPP1- like haplotype was found to be frequent in a 

population of Ler relatives in Górzow Wielkopolski (Gw), Poland. 30% of the Gw 

individuals carry alleles that are incompatible to Kas-2 and Kond allelic forms of 

the second HI locus (Alcázar et al., 2014). The second less known HI locus mapped 

to a membrane spanning Leucine Rich Repeat-Receptor Like Kinase (LRR-RLK) 

termed STRUBBELIG RECEPTOR FAMILY3 (At4g03390) in Kas-2 and Kond (Al-

cázar et al., 2010) (see a schematic representation in Figure 2). 

.

 
Figure 2. A schematic representation of the domain structure of the hybrid incompatibility 
locus protein SRF3. X = unknown domain, LRR = leucine rich repeat domain, PRR = proline 
rich region, TM = transmembrane domain, Kinase = kinase domain. Adapted from Eyüboglu 
et al. (2007). 
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It has been hypothesized that trans-membrane localized RLKs can be involved in 

sensing the environment, including perturbations of cellular homeostasis. Several 

cases have been investigated previously regarding abiotic stress and abscisic acid 

(ABA) signalling during drought, salt, oxidative stress, cold stress and osmotic 

stress (see review by Osakabe et al., 2013). Two examples of LRR-RLKs in A. tha-

liana that have been implicated as osmotic stress sensors include the positive regu-

lators of tolerance attributes ATHK1 and AHK1 (Tran et al., 2007; Wohlbach et al., 

2008). SRF3 belong to a family of 8 RLK members of which the precise molecular 

function is unknown (Eyüboglu et al., 2007), though it has been hypothesized that 

the SRF is multi-functional. SRF4 is known to be a regulator of leaf size (Eyüboglu 

et al., 2007) and Central Asian allelic versions of SRF3 confer disease resistance 

against Hyaloperonospora arabidopsidis (Alcázar et al., 2010). Previous un-

published results by the Alcázar group have indicated that SRF3 may also function 

during osmotic stress. 

 

A basic characterisation of the RPP1Ler-like incompatible SRF3 locus is needed 

since very little information exist. This project aims to shed light into the natural 

variation and role of SRF3. A known SNP dense part of the SRF3 was sequenced in 

the Gw population to identify natural genetic variation that may underly the 

RPP1Ler-like R-gene cluster incompatibility at low temperatures. A comparison be-

tween SRF3 alleles from accessions that contain (Gw+) and others that lack the in-

compatible RPP1Ler-like alleles (Gw-) may show signs of co-evolution. The allelic 

forms of SRF3 alleles may segregate in an incompatible RPP1Ler-like presence/ab-

sence manner. Lower genetic variability was found than expected which could be a 

sign of negative selection against the presence of incompatible alleles.  

 

Together with this, to further elucidate SRF3 function I have investigated the role 

of SRF3 as a potential stress-mediating gene. I have characterized the osmotic re-

sistance of three Col-0 homologous knockdown mutant lines, a Col-0 homologous 

overexpressing line and a Col-0 line with a Gw version of SRF3. Within treatment 

comparisons between the lines provided no significant differences among the ge-

netic lines. An in silico meta-data analysis revealed possible SRF3 transcriptional 

upregulation after 24hrs of drought and salt stress. These results show that further 

studies are needed for abiotic stress involvement of SRF3. Publicly available tran-

scriptome data was analysed in an additional in silico investigation to identify co-

expressed genes during abiotic stress. This analysis identified several genes in-

volved in ABA signalling to mutually co-express with SRF3, three directly involved 

in drought and salt stress and one annotated to osmotic stress tolerance. 
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The goal of this project was to identify genetic variability at the SRF3 locus in a 

European population of Landsberg erecta relatives and study a potential link to the 

evolution of an epistatic hybrid incompatibility with RPP1Ler-like alleles. Since the 

basic function of the SRF3 proteins is unknown this project also aimed to identify 

co-expressed genes that may be linked to its function and elucidate a possible in-

volvement in abiotic stress. 

 

 

Main goals of the project 

 

I. Identify genetic variability occurring at SRF3 and study potential co-evolu-

tion with RPP1Ler-like genes. 

 

II. Elucidate possible SRF3 involvement in abiotic stress. 

 

III. Identify SRF3 co-expressed genes. 

 

  

2 Aims of this project 
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3.1 The Gw population show signs of negative selection at 

SRF3 but alleles do not co-segregate with the RPP1Ler-

like cluster 

To investigate the natural variation at the SRF3 locus and possible co-evolution with 

the RPP1 Ler -like cluster in the Gw population, a previously known SNP dense re-

gion between exons 8-11 in incompatible Kas-2 and Kond was chosen as region of 

interest. Sequencing this region of the SRF3 gene among 22 accessions (10 Gw+ and 

12 Gw-) revealed less SNPs than previously reported inside exon 11 (Alcázar et al., 

2010). 1582 bases were sequenced using Sanger sequencing in two consecutive 

rounds using overlapping primers. Bases from 842 bp to 2423 bp downstream from 

the start codon of the gene were analysed. All accessions share 99% identity to the 

consensus sequence on TAIR except for Col-0 with 100% identity. Out of eight 

SNPs, five were located inside an exon and could be biologically relevant (Figure 

3). 

 
Figure 3. Schematic drawing of the SRF3 gene. Numbers in blue boxes indicate exons, ver-
tical blue lines indicate SNP locations and the yellow box indicate the sequenced region 
(842bp to 2423 bp downstream ATG. Intron/exon junctions were predicted bioinformati-
cally. Created from data provided by Alcázar et al. (2010). 

3 Results 
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Most SNPs inside exons are considered transitions compared to the consensus ref-

erence sequence and there are two SNPs that deserve attention. The T/C912 transition 

and G/T1740 transversion lead to predicted non-synonymous amino acid changes in 

the protein. (Table 1). The T/C912 SNP, predicted as a tyrosine to histidine non-syn-

onymous substitution, is however shared by all analysed accessions. The G/T1740 

phenylalanine to leucine substitution was present in one accession that does not con-

tain the RPP1Ler-like cluster. SNPs located outside exons can be viewed in Supple-

mentary Table 1. 

A total of four unique alleles were found among the sequenced accessions compared 

to the reference genome. Three of which had SNPs inside a predicted exon. No sig-

natures of co-evolution between the RPP1Ler-like gene cluster and the SRF3Gw could 

be implied using a phylogenetic analysis by maximum composite likelihood method 

of judging evolutionary distances (Saitou & Nei, 1987). The SRF3 alleles did not 

separate based on the presence or absence of the RPP1Ler -like cluster (Figure 4). 

Nor were any sequences from RPP1Ler-like incompatible SRF3 alleles from Kas-2 

or Kond compared to the SRF3Gw alleles. Teatralna (Gw-) was separated from the 

rest of the accessions due to the presence of 2 unique SNPs and C3-Spot-5-9 (Gw+) 

due to having unique SNPs inside intronic regions.  

 

The low genetic diversity (π = 0.0008) and a negative value of Tajima’s D (-1.28) 

can be interpreted to show an excess of high or low frequency alleles in the sampled 

part of the population. This could indicate a purifying selection at this locus unless 

the population recently has undergone a genetic bottleneck event (Table 2). How-

ever, a Z-test of neutral evolution that compared the relative abundance of synony-

mous and non-synonymous substitutions show that neutral evolution can’t be re-

jected (p-value = 0.824). No evolutionary basis could be confirmed on the genetic 

variation but a possible explanation for finding lower genetic variability than re-

ported in the region of interest in the Gw population compared to Kas-2 and Kond 

Table 1. Single nucleotide polymorphisms among 22 Gw accessions inside exons. 

SNP/locationa Exon Substitution Shared by 

T/C 912 6 Tyr to His All 

C/T 1551 10 -  C3-Spot4-1/ C3-Spot4-10 

T/C 1565  10 - All 

G/T 1740  10 Phe to Leu Teatralna-1 

C/T 2252   11 - Teatralna-1 

aPolymorphism location number of bases downstream from ATG 
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(Alcázar et al., 2014) could be speculated upon. The presence of incompatible RPP1 

alleles might limit genetic diversity at SRF3 by negative selection in Gw+ individu-

als and limit the occurrence of autoactivation of immunity. This does however not 

explain why the allelic diversity is equally low in Gw- individuals. 

Figure 4. The evolutionary history of the sequenced SRF3 locus within 22 accessions of 

the Gorzow population regarding presence or absence of the hybrid incompatibility inter-

acting locus of RPP1Ler-like cluster R1 to R8. Grey filled squares = RPP1Ler-like cluster 

present, black filled circles = RPP1Ler-like cluster absent, Red transparent circle = Kas-2 

outgroup, bar = evolutionary distance based on single nucleotide polymorfisms. The evolu-

tionary distances were computed using the Maximum Composite Likelihood method (Sai-

tou & Nei, 1987). 

 

Table 2. Results from Tajima's Neutrality Testa. 

m S Θ π D 
 

22 8 0.001373 0.000831 -1.280118 
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m S Θ π D 
 

a m = number of sequences, S = number of segregating sites, Θ = number of pairwise differences, π = nucleotide 

diversity, D = Tajima’s test statistic. 

 

3.2 Prediction reveal possible SRF3 transcriptional 

upregulation 24hrs post drought and salt stress 

Published meta-data was mined from the Arabidopsis eFP browser to identify pos-

sible stress factors that trigger SRF3 expression. This analysis was based on two 

replicates where the data for average relative expression was published for public 

use (Kilian et al., 2007). No standard deviation or significance could therefore be 

calculated. However, this data allows for an overview of how SRF3 behaves at the 

transcription level for several abiotic stress situations (Figure 5). The fold change 

in expression of SRF3 point towards that if SRF3 has a role in sensing osmotic stress, 

it’s function may stem from being downregulated to 60% of its expression during 

standard normal conditions at early stages of stress (within 6 hours) and then slowly 

re-establish its normal expression profile after 24hrs. This type of expression could 

indicate that SRF3 is a negative regulator of osmotic stress signalling that senses 

early onset of osmotic stress. It seems however more likely that SRF3 would func-

tion during drought or salt stress since the expression profile upregulates ~40% after 

24hrs for both types of stress and does not show any trend of re-establishing base 

levels at this time point. 
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Figure 5. In silico meta-data analysis of the SRF3 expression profile with different types of 
stress at different timepoints (0 – 24hrs). Black = cold, red = drought, green = heat, blue = 
osmotic, turquoise = oxidative, magenta = salt, yellow = UV-B and grey = wounding. 

3.3 SRF3 does not repress the plant osmotic stress 

phenotype   

SRF3 may have multiple functional roles including salicylic acid dependent defence 

signalling against pathogens as reported by Alcázar et al. (2010) and ABA-related 

environmental stress signalling. The preliminary in silico results seemed to involve 

SRF3 with resistance to drought and salt stress and unpublished data (from Rubén 

Alcázar) indicates SRF3 involvement in osmotic stress specifically. Since osmotic 

stress is a part of both drought and salt stress, I introduced a series of different os-

motic stress levels to homozygous SRF3 T2 mutants to elucidate a SRF3 function 

during abiotic stress. SRF3-OX (overexpressing SRF3 in Col-0), srf3-2, srf3-3 srf3-

4 (individual Col-0 homolog knockdown lines which have T-DNA insertions at dif-

ferent locations of SRF3) and SRF3Ler:GFP (SRF3 from Ler tagged with GFP intro-

duced to Col-0) were grown in vitro for 10 days. They were then transferred to agar 

plates containing 50, 100 and 150 mM mannitol. Plants were grown on these 
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conditions for 14 days before determining leaf area and plant biomass accumulation 

as a measure of stress tolerance. Even though some growth problems were evident 

in the control treatment, a discernible phenotype could be visually determined at 50 

mM mannitol. Stunted growth and chlorosis is visible across all genetic lines. At 

100 mM – 150 mM mannitol the effects are severe, indicating that toxic conditions 

were reached. At 200 mM mannitol the plants died 14 days post treatment (Figure 

6). 
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Figure 6. Phenotype of SRF3 14 days post mannitol stress 24 days post germination. Abbre-
viations: SRF3-OX = constitutive expression line, srf3-2, srf3-3, srf3-4 = knockdown mutant 
lines, SRF3Ler:GFP = Ler version of SRF3 fused to GFP in a Col-0 background. 
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A general linear model was implemented to predict which model best described the 

phenotypic data since it had an approximate normal distribution (QQ-plot not 

shown). No significances of biological meaning could be inferred on the intra-group 

treatment level analysing biomass accumulation and leaf area separately in a re-

duced model (leaf area or biomass explained by genetic line or treatment). Looking 

at biomass accumulation alone there was a slight increase in mass for the srf3-4 

knockdown line mock treatment compared to the other genetic lines and srf3-3 

(knockdown) had small but significant mass gain at 150 mM mannitol compared to 

the other lines (see discussion). Srf3-3 has its second quantile (median) in the same 

range as the other genetic lines and the differences of the group means range within 

0,047g ± 0,076 g (standard deviation) to Col-0 (p = 0,05) with similar results com-

pared to SRF3-OX srf3-2, srf3-4 and SRF3Ler:GFP. This shows that a few plants 

grew atypically large for srf3-3 at 150 mM. Interestingly, the overexpressing line 

(SRF3-OX) had a small but non-significant trend in biomass increase compared to 

the other lines at 150 mM. The SRF3-OX data contain several outliers that may have 

affected the trend (Figure 7). 

 

 
Figure 7. Boxplot of biomass accumulation of SRF3 lines after 14 days of stress at 50 mM, 
100 mM, and 150 mM mannitol treatment. Abbreviations:  SRF3-OX = constitutive expres-
sion, srf3-2, srf3-3, srf3-4 = knockdown lines, SRF3Ler = Ler version of SRF3 fused to GFP. 
The data consists of three biological replicates n = 32. 
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The data for leaf area looks comparable to that of plant weight. Again, the srf3-4 

knockdown line seem to have a small growth advantage compared to the rest of the 

genetic lines under control conditions, but no line grew better than any other in intra-

treatment comparisons (Figure 8). 

 

 
Figure 8. Boxplot of biomass accumulation of SRF3 lines after 14 days of stress at 50 mM, 
100 mM, and 150 mM mannitol treatment. Abbreviations:  SRF3-OX = constitutive expres-
sion, srf3-2, srf3-3, srf3-4 = knockdown lines, SRF3Ler = Ler version of SRF3 fused to GFP. 
The data consists of three biological replicates n = 32. 

The complete picture emerges when analysing the complete data set at the same 

time in a full model (plant weight and leaf area explained by genetic line and treat-

ment) (P << 0.001. R^2 = 0.54). See Supplementary Table 2 for the complete over-

view. Inter-treatment comparisons are significantly different in biomass accumula-

tion and leaf area but not in intra-treatment comparisons. These results taken to-

gether suggests that different levels of mannitol stress have a negative effect on plant 

growth. Overexpression of the SRF3 protein, seemingly, do not contribute to the 

overall health or growth capabilities of the plant 14 days post mannitol treatment. 
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3.4 Genes related to abiotic stress signalling pathways co-

express with SRF3 

An in silico meta-analysis of published Affymetrix ATH1 microarray data gathered 

from Genevestigator was performed to further the investigation of stress sensing by 

SRF3. The 25 most positively correlated genes with SRF3 expression when sam-

pling data from abiotic stress and their gene ontology was compiled in Table 3. 

Correlations are determined by Pearson’s correlation coefficient (r) and genes bio-

logically relevant to stress induction are highlighted with bold type. A circular cor-

relation plot with SRF3 in the centre show that three clusters of mutually correlated 

genes were found (an algorithm helps determine that correlations are not independ-

ent) (Figure 9). 

It is evident that SRF3 may be 

involved in a transcriptional 

reprogramming at the onset of 

stress because the list of most 

correlated genes changes 

completely when looking at 

genes in a standard normal 

condition (data not shown). 

Interestingly several of the 

most correlated genes are con-

nected to some form of stress 

response pathway including 

the gene TETRATRICOPEP-

TIDE-REPEAT THIORE-

DOXIN-like 4 (TTL4), which 

is required for osmotic stress 

tolerance (r = 0.98).  TREHA-

LOSE PHOSPHATASE/SYN-

THASE 11 (ATTPS11) is pre-

sumed to be involved in treha-

lose biosynthesis which accumulates under heat and chilling stress in A. thaliana 

and act as a membrane stabilizer (Fernandez et al., 2010). Several genes in the ABA 

signalling pathway co-express closely with SRF3 including a putative PROTEIN 

PHOSPHATASE 2C (PP2C15, r = 0.97), a possible regulator of ABA signalling 

during drought stress. Two genes involved in reactive oxygen species regulation, G-

BOX BINDING FACTOR 1 (GBF1, r = 0.98) and MULTIPROTEIN BRIDGING 

FACTOR 1C (MBF1C, r = 0.97) and two genes involved in ubiquitination (UBIQ-

UITIN-SPECIFIC PROTEASE 25 (UBP25, r = 0.97) and PHLOEM PROTEIN 2-

Figure 9. A circular correlation plot showing genes 
closely correlated to SRF3 during abiotic stress (r ≥ 
0.96). Genes that share mutual correlation of at 
least r ≥ 0.985 are connected a blue line. 
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A13 (PP2-A13, r = 0.97)). PP2-A13 is also included in the response to wounding. 

The MBF1C also annotates to be a transcriptional co-activator that upregulates dur-

ing drought and salinity stress. Two membrane bound genes that are involved in 

disease resistance also coregulates closely to SRF3. A TIR-class disease resistance 

protein (At1G61100, r = 0.98) and another putative receptor bound kinase 

(AT1G51890, r = 0.96) even though only samples from abiotic stress were analysed. 

Table 3. SRF3 co-expressed genes during abiotic stress in A. thalianaa. 

Nrb Gene Locus Rc Descriptiond 

1 MED19A AT5G12230 0.99 Upregulation of transcription from RNA polymerase II 

promoter 

2 - AT5G47430 0.98 Zinc ion binding, nucleic acid binding 

3 - AT2G25800 0.98 Hypothetical protein 

4 ATMPK17 AT2G01450 0.98 MAP kinase, protein autophosphorylation 

5 GK-2 AT3G57550 0.98 Guanylate kinase activity 

6 GBF1 AT4G36730 0.98 Negative regulation of gene expression, regulation of 

cell aging and hydrogen peroxide metabolic process 

7 - AT1G61100 0.98 Disease resistance protein (TIR class) 

8 TTL4 AT3G58620 0.98 Required for tolerance response to osmotic stress 

9 - AT1G61370 0.98 S-locus lectin protein kinase family protein 

10 ATTPS11 AT2G18700 0.98 Enzyme putatively involved in trehalose biosynthesis 

11 ARP3 AT1G13180 0.98 Actin filament organization, cell/ trichome morphogene-

sis and growth 

12 UBP25 AT3G14400 0.97 Ubiquitin-specific protease 

13 RRP6L 2 AT5G35910 0.97 rRNA processing 

14 MBF1C AT3G24500 0.97 Transcriptional coactivator. Elevated expression in re-

sponse to pathogen infection, salinity, drought, heat, 

hydrogen peroxide, and application of abscisic acid or 

salicylic acid 

15 GA2OX6 AT1G02400 0.97 GIBBERELLIN 2-OXIDASE 6  

16 KEA6 AT5G11800 0.97 K+ EFFLUX ANTIPORTER 6 

17 SWP AT3G04740 0.97 Mediator of RNA polymerase II transcription subunit 14 

18 - AT4G32160 0.97 Phox (PX) domain-containing protein, phosphatidylinosi-

tol binding 

19 PP2-A13 AT3G61060 0.97 Carbohydrate binding, protein binding and ubiquiti-

nation, response to wounding 

20 - AT1G68410 0.97 Putative protein phosphatase 2C 15 
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Table 3 cont. SRF3 co-expressed genes during abiotic stress in A. thalianaa. 

21 - AT4G30910 0.97 Amino-/metallopeptidase activity, manganese ion binding 

22 ELF7 AT1G79730 0.97 Early flowering 7. Negative regulation of flower devel-

opement 

23 SEC8 AT3G10380 0.97 Subunit of exocyst complex 8. Pollen germination, pollen 

tube growth 

24 SSP4 AT5G46410 0.97 SCP1-like small phosphatase 4 

25 - AT1G51890 0.96 Putative LRR receptor-like protein kinase 

a Genes with a positive co-expression correlation with SRF3 above R ≥ 0,95. Genes with unknown function are 

excluded 
b Number corresponding to gene network in Figure.9 
c Pearson’s correlation coefficient score 
d Description mined through NCBI Genbank and TAIR. Bold type = genes involved in abiotic stress signalling. 
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One of the aims of this project was to identify genetic variability at the Ler/Kas-2 

and Ler/Kond hybrid incompatibility locus, SRF3, and investigate a possible co-

evolutionary scenario with RPP1Ler-like genes. The Gw population analysed in this 

article segregates for incompatible RPP1Ler-like alleles that possibly shows signs of 

co-evolution with allelic forms of SRF3. The 4 SRF3 alleles found among the 6 

SNPs in the subset of the population analysed did not separate according to the basis 

of presence/absence of the incompatible RPP1Ler-like alleles in the gene tree. Based 

on this result alone one could not conclude that the cause of the dynamics at this 

locus is due to co-evolution by negative frequency dependent selection. The SRF3 

locus seemed to be conserved with low levels of natural variability, as shown by the 

low nucleotide diversity and few segregating sites. Less diversity was found than 

previously reported for Kas-2 and Kond (Alcázar et al., 2010) Negative selection 

(and therefore co-evolution) could act on the population and by that mechanism 

limit genetic diversity and incompatibilities. Negative selection was also indicated 

by the negative value of Tajima’s D even though neutral evolution or drift could not 

be excluded by the Z-statistics. This result could be due to the low sample size of 

22 individuals in the analysis. Only part of the SRF3 gene was sequenced as well. 

Low frequency alleles and SNPs outside the sequenced region were likely missed. 

It is probable that the whole population contains more genetic variation at this locus 

and more allelic variants than the ones found in this small-scale experiment. 

 

 It is also possible that even though both compatible and incompatible RPP1Ler-like 

alleles are present in the population, only compatible Ler forms of SRF3 could be 

present. This experiment cannot rule that hypothesis out since no sequences of al-

leles known to be incompatible from Kas-2 or Kond were included, only a general 

reference sequence from Kas-2 which placed as an outgroup in the genetic tree.  

 

During the sequence analysis, two amino acid substitutions were found that could 

potentially have had an impact on the folding of the SRF3 protein. It is possible that 

4 Discussion 
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the hits for non-synonymous substitutions are false positives because the translation 

from the annotated reference coding sequence on TAIR had slightly different in-

tron/exon boundaries compared to the bioinformatically predicted boundaries that 

was used. No substitutions and therefore no conformational changes were found 

while comparing the SRF3 sequences to the amino acid sequence on TAIR. To con-

firm these results, sequencing and aligning mRNA instead of translating genomic 

DNA into protein sequences or perform a de novo peptide sequencing by mass spec-

tronomy on purified proteins of interest would be more informative. 

 

In the future, one could contrast the full gene sequence at both loci and determine if 

certain alleles of SRF3 are at higher frequency in the Gw- subpopulation but ex-

cluded from the Gw+ subpopulation. It is also worth comparing all the Gw+/- SRF3 

alleles to Kas-2 and Kond versions to see whether the incompatible alleles that orig-

inated from relatives in central Asia have any similar alleles in Gw. From that basis 

one could speculate on co-evolution of allelic variants at these two loci. If one in-

cludes similar data for other closely related populations and accessions in Eurasia 

one could begin to trace the evolutionary history with a greater perspective.  

 

The second main hypothesis was whether SRF3 could be involved in osmotic stress 

tolerance as indicated by the Alcázar group (unpublished data) and the in silico in-

vestigation into SRF3 expression during abiotic stress. Hints that SRF3 could be 

upregulated during drought and salt stress were provided using online data from the 

eFP browser to survey SRF3 expression during several types of stress. Analysing 

published data on co-regulated genes through the Genevestigator database placed 

several ABA-dependent genes in close correlation to SRF3 expression as well. 

Among a gene that encode a protein required for tolerance response to osmotic stress 

(TTL4), a putative PP2C protein which is an important regulator of ABA signalling 

during drought stress (Santiago et al., 2009) and an ABA dependent transcriptional 

co-activator during saline, drought and heat stress (MBF1C) (Zandalinas et al., 

2016). A third protein that could have implications in drought stress since it anno-

tates to being involved in trehalose biosynthesis (ATTPS11) which has been re-

ported to be a protective sugar (Fernandez et al., 2010) correlated very closely as 

well.  

 

All these hints lead me to investigate SRF3 function during stress induced by man-

nitol. This is because at early onset of drought and salt stress the osmotic pressure 

potential is decreased and the concentration of osmolytes increases as water availa-

bility drops. To study the potential SRF3 involvement a series of mannitol treat-

ments were used to simulate an osmotic stress challenge. An overexpressing line, 

three knockdown lines and one genetic line containing the Gw native Ler version of 
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SRF3. Results from the main experiment show that inter-treatment comparisons (be-

tween lines experiencing different concentrations of mannitol) had a real and sig-

nificant effect while including both biomass accumulation and leaf area in the anal-

ysis. This validates that the plants were stressed in a mannitol dose dependent man-

ner, but it also demonstrates that overexpressing SRF3 does not give any clear ad-

vantage (health or growth) during osmotic stress. The SRF3-OX (overexpressing 

line) did accumulate slightly more biomass than most other lines, including the Col-

0 control line at 150 mM mannitol 14 days post treatment but the effect was not 

significant. It would be interesting to redo the experiment using completely inde-

pendent observations. Up to 32 plants shared growth space in the petri dishes in this 

experiment, this led to that a third measurement, root length, could not be analysed 

since the roots grew together. This entanglement could have affected the results of 

the experiment since micro-competition for growth space was also a factor. If the 

test was to be repeated it would be interesting to include double and triple mutants 

of SRF since any effect of individual SRF genes could be small and masked by 7 

other possibly redundant genes. It would also be good to measure the mRNA-accu-

mulation of the knockdown and overexpressing lines. It is possible that the lines 

were not strongly down or up-regulated because no analysis was made on protein or 

RNA abundance due to time constraints. This could explain why srf3-3 and srf3-4 

grew better in 150 mM mannitol and mock treatment respectively. They may in fact 

be overexpressing lines due to the positioning of the T-DNA or have been given a 

burst of activity since expression is stochastic, especially when the DNA sequence 

has been manipulated. These types of side effects could have implications in abiotic 

stress or development (Raj & van Oudenaarden, 2008). This reasoning goes for 

SRF3-OX as well. Since gene activity was not tested in advance, this line may not 

be overexpressing SRF3. The host lab used the line as an overexpressor because of 

T-DNA insertion in the 5’ UTR. However, only 3% of all T-DNA insertions in the 

5’ UTR enhances transcription activity, as explained by Wang (2008). 

 

For future work it would be intriguing to repeat this osmotic stress experiment due 

to the a priori reasoning but include double and triple mutants and a confirmed SRF3 

overexpressed line. One could include several more phenotypic characters for os-

motic stress like root length and cellular osmopotential to gain a better understand-

ing of the responses between the genetic lines. A complementary experiment where 

European wild type Arabidopsis plants are subjugated to stress could also be used 

to experimentally measure SRF3 mRNA accumulation (Real Time qRT-PCR) to 

gain an insight into the transcription activities of this protein during stress, 

 

All in all, these results show that much more work is needed to understand the in-

tricate nature of SRF3 signalling and molecular function. Previous results show that 
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it is involved in HI between ecotypes of A. thaliana and disease resistance in Kas-2 

and Kond (Alcázar et al., 2010) and the results in this study indicate that SRF3 could 

be a conserved RLK in the Gw population of Ler relatives and have multifunctional 

roles in drought and salt stress tolerance. Further work is needed to confirm these 

preliminary results. 
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5.1 Plant Materials & Growth Conditions 

5.1.1 Plant materials 

Different accessions and mutants of A. thaliana from various sources was used to 

produce results. For the analysis of natural variation of the SRF3 locus a few of the 

recently discovered accessions of A. thaliana named the Gorzow accessions was 

primarily used. These accessions, located at two different sites in Gorzów Wielko-

polski, Poland, are closely related to 

the Northern European Ler ecotype 

and was found and donated by Al-

cázar et al. (2014). Within this popu-

lation ten of the accessions that con-

tain the RPP1Ler-like cluster R1 to R8 

from Ler was chosen (Gw+) and con-

trasted to twelve of those that do not 

(Gw-) (Table 4) and the more dis-

tantly related ecotype Kas-2. 

 

T-DNA insertion mutants used to in-

vestigate SRF3 involvement in re-

sponse to drought stress were ob-

tained from the Arabidopsis Biologi-

cal Resource Center (ABRC) and/ or 

GABI-DUPLO (Table 5). The trans-

lational reporter mutant SRF3Ler:GFP 

(native SRF3 promoter and gene 

5 Materials & Methods 

Table 4. Gorzów accessions used to elucidate nat-

ural variation at the SRF3 locus in A. thalianaa. 

Gw+b Gw-b 

H1-4 H2-1 

C-Soil-12 C-3-Spot-5-19 

C-Soil-3 C2-47 

C2-62 C1-41 

C1-63 C1-31 

C1-40 C1-27 

C1-32 C1-11 

C1-5 C1-6 

C3-Spot-5-9 Alive-2 

C3-Spot-6-4 Teatralna-1 

- C3-Spot-4-1 

- C3-Spot-4-10 

a Accessions do not yet have seed stock ID. 
b Gw +/- indicate whether the RPP1Ler -like 

cluster is present (+) in the accession or ab-

sent (-).  
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from Ler with a GFP tag) was previously generated and donated by Alcázar et al. 

(unpublished). Wild type seeds from Col-0 and Ler were previously generated or 

obtained from the Alcázar lab stock. The double mutant (srf1-srf3) and the parental 

lines (P1 and P2) were later discarded from the experiment due to a lack of time and 

primers. 

 

Table 5. Mutant knockdown, overexpressing and transgenic strubbelig-receptor family 

lines used in drought stress and transcriptome experiments.  

Genotype Effect on gene expression NASC/Seed stock ID 

SRF3-OX Upregulated N529908/SALK_029908 

srf3-2 Knockdownb N656527/SALK_057621 

srf 3-3 Knockdownb N501389/SALK_001389 

srf 3-4 Knockdownb N589934/SALK_089934 

SRF3Ler:GFP Unchanged - 

srf3-srf1a srf double knockdown mutantc  N2103287/ CS2103287 

P1a srf1 double mutant parentc N662999/SALK_075679 

P2a SRF3 double mutant parentc N438269/-d 

a Only used in the transcriptome experiment 
b Seeds obtained from the Arabidopsis Biological Resource Center 
c Seeds obtained from GABI-DUPLO 
d Only available from NASC 

 

5.1.2 Plant growth conditions (sequencing and abiotic stress experiment) 

 

Plants used for sequencing the SRF3 locus in the 22 Gw+/- accessions and plants 

used in abiotic stress experiments were brought up the same way and in the same 

conditions. Seeds were surface sterilized using a liquid sterilisation protocol (Sup-

plementary Table 3) and plated on Petri dishes with Murashige-Skoog medium con-

taining 0,8% plant agar for sequencing and 1% plant agar for growth prior to stress 

treatment (Supplementary Table 4). The sterile seeds were stratified in a dark cold 

room at 8˚C for seven days prior to being put in light. The seeds were let to grow in 

vitro for 10 days post germination (DPG) in a horizontal position (in 20 ˚C, 16 h/8 

h bright/dark with a light intensity of 80 ± 10 µmol × m-2 × s -1) prior to being sam-

pled for DNA extraction for sequencing or transferred to growth plates containing 

D-mannitol to simulate drought stress.  

 

A small scale pre-experimental abiotic stress test using D-sorbitol was performed 

using only a few , srf3-2, srf3-3, srf3-4 srf3-srf1, Col-0 SALK line control), 

SRF3Ler:GFP and Ler (control for SRF3Ler:GFP) plants in order to evaluate at which 
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sugar concentration the stress became toxic to help select concentrations for the 

simulated drought experiment (data not shown). Seedlings for the small-scale test 

were surface sterilized (Supplementary Table 3) and plated on square growth plates 

with a nylon mesh atop of a 1% agarose gel that contained nutrients described in 

Supplementary Table 4, stratified for 7 days and let grown for ten days prior to  

transplantation. Seedlings in the same growth stage were transferred to a mock treat-

ment and D-sorbitol treatments at 50 mM increments up to 200 mM and were 

stressed for seven days when toxicity became apparent. The srf3-srf1 mutant was 

discarded prior to the main experiment due to poor growth during the allotted time. 

24-32 plants of each remaining wild type and mutant plant lines at similar size (two 

to three rosette leaves with a length greater than 1 mm) were transferred to 120 mm 

× 17 mm square growth plates in sterile conditions. The growth plates contained 50 

ml growth medium with 1% plant agar (Supplementary Table 4) in addition to, 0 

mM, 50 mM, 100 mM, 150 mM or 200 mM D-mannitol. Three biological replicates 

were used for statistical reasons (yielding 32 observations per line and treatment) 

and the growth plate positions were switched in a randomized order every other day 

to remove sources of error in the ensuing statistical analysis due to undetectable 

differences in growth conditions. Symptoms were surveyed at 3, 5, 9 and 14 days 

of stress. Analysis of the stress phenotype was performed 24 days post germination 

(14 days post stress treatment). 

5.1.3 Plant growth conditions for the SRF3 mutant homozygosity test 

Non-sterilized seeds were stratified for 7 days in small Petri dishes with a wet cotton 

filter inside. These were subsequently transferred directly to commercial potting soil 

containing 50% perlite in pots (6 cm × 6 cm (width/depth) and put in a phytotron at 

constant conditions.  Two seeds of each line were grown together along with two 

technical replicates and were let to self-fertilize and complete their life cycle to am-

plify seeds for each line. The phytotron held a temperature of 22 ˚C with a humidity 

of 65 ± 5% and the light duration was set to a long day regime (16 hours bright, 8 

hours dark) with a light intensity of 100 ± 15 µmol × m-2 × s -1. This process was 

repeated due to an unexpected technical error in the phytotron. 28 plants per genetic 

line of the second generation (F2) were propagated using the same strategy as for 

the first. F2 plant growth and sampling was repeated due to a suspected technical 

error at a late stage. This time, six individuals of each subline was pooled per genetic 

line during extraction and subsequent PCR reactions with two technical replicates. 

The smaller sample number and pooling strategy was used due to the extra time 

constraint. It is possible to pool several individuals for each genetic line, because if 

the PCRs show homozygosity, the chance is high that all those 6 sublines in the pool 

was homozygous). These seeds were surface sterilized (Supplementary Table 3) and 
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plated on Petri dishes with 25 ml GM with agar concentration of 0.8%, stratified for 

five days and grown for 10 days. Whole plants were harvested. 

 

5.2 DNA Extraction Methods & Sample Preparations 

5.2.1 Evolutionary analysis of A. thaliana Gw accessions 

About 20 seedlings of each accession were put in safe lock Eppendorf tubes con-

taining 1,7 mm – 2,1 mm silica glass beads, snap freezed in liquid nitrogen and 

homogenized in a Silamat (Ivoclar vivadent) for 8 s. Snap freezing and tissue ho-

mogenization was repeated once. Total genomic DNA was subsequently isolated 

using the DNeasy Plant Mini Kit (Quiagen) as described in the kit manual except 

that the gDNA was eluted 2 × 50 µl in the final step. An agarose gel electrophoresis 

of isolated gDNA was performed to check the yield/quality and quantified using 

Nanodrop 2000 (Thermo Scientific). The agarose gel electrophoresis was run at 100 

V for 35 min in 1 × TAE and the 100 ml gel contained 1% agarose and 5 µl ethidium 

bromide and 2 µl gDNA per sample was loaded with 0,5 µl loading dye. Another 

20 µl ethidium bromide was added to the trays anode to enhance the signal of any 

DNA band. A 1 kb ladder from Invitrogen was used to estimate the size of the well 

bands. An optimized PCR protocol was used with a MJ Research Peltier Thermal 

Cycler to amplify the region of interest in the SRF3 gene (see PCR parameters and 

primers in Supplementary Figure 1 and Supplementary Table 5 and Supplementary 

Table 6). Another agarose gel electrophoresis was performed using all of the 20 µl 

PCR amplified volume to purify the SRF3 DNA from any unspecific nucleic acids 

and unused primers. This time without a ladder and the gel was run for 60 min at 60 

V. the resulting bands were excised from the gel (~300 mg) using an E-Gel Safe 

Imager from Invitrogen and a scalpel. The DNA in the gel was extracted with a 

Nucleospin Gel & PCR Clean-Up kit from Macherey-Nagel to remove any remain-

ing salts or impurities.  No subcloning was performed prior to sequencing the DNA. 

Instead, 5 µl of each sample and 1 µl of a primer (diluted 1:20 from stock to 5 µM) 

was added directly to a PCR strip and dried in a thermal cycler at 80 ˚C for 15 min 

and sent to Unitat de Genomica, Serveis Cientificotecnics, Barcelona for sequencing 

using an automated Sanger technique. Since the region of interest in the SRF3 gene 

is 2,6 kb long and Sanger sequencing gives ~1 kb quality reads another 5 µl of each 

sample was prepared and dried together with a different primer to cover a longer 

region of the gene of interest. 

 



30 
 

5.2.2 T-DNA mutant two-step genotyping 

Two small, fresh leaves were cut from young F2 plants with a scalpel, quickly dried 

with a paper and loaded into 2 ml deep DNAse and RNAse free 96-well polypro-

pylene extraction plates containing two medium sized metal beads. The racks were 

weighed but never flash frozen in liquid nitrogen prior to tissue homogenisation in 

a VWR Star-beater (2 × 1 min at a frequency of 30 Hz). The ensuing DNA extraction 

method was based on a modified version of a protocol from Dellaporta et al. (1983). 

300 µl extraction buffer (Supplementary Table 7) was added to each sample while 

not working on ice to keep SDS from precipitating. Samples were centrifuged at 

4000 rpm for 7 min in an Orto Alresa Digicen 21 (using rotor RT 150) before trans-

ferring 200 µl supernatant to 96-well S-blocks carefully to not disturb the pellet. 20 

µl of 3 M sodium acetate (NaOAc) at pH 4,8 and 400 µl ethanol 96% (EtOH) was 

added and mixed gently by pipetting. Thereafter the samples were stored overnight 

at -20 ˚C to allow precipitation of DNA and centrifuged at 4000 rpm for 7 minutes 

the next morning. The supernatant was discarded, 400 µl EtOH 70% added and gen-

tly mixed by pipetting before repeating a 7 min centrifugation at 4000 rpm. The 

supernatant was discarded by decantation and the tubes let to dry for 10 min in a 

fume hood to ensure that no EtOH was left in the tubes. To elute the DNA 150 µl 

ddH2O was added and the pellet re-suspended by slowly pipetting up and down and 

left in 4 ˚C overnight. As a final step the samples were centrifuged as before the 

morning after and 100 µl of the supernatant transferred to new tubes to get clear 

samples. The recovered DNA was analysed in a Nanodrop 2000. The ensuing PCR 

and gel analysis was performed for all lines in order to verify that all mutant lines 

contained the T-DNA insert and that the lines were homozygous for the insert and 

not segregating. This two-step PCR genotyping verification was done twice for all 

lines, once using genomic primers and once using T-DNA border primers, as de-

scribed by O’Malley et al. (2015). See Supplementary Table 8, Supplementary Ta-

ble 9 and Supplementary Figure 2 for PCR reagents, primers and conditions respec-

tively. The following gel electrophoresis for all amplicons was run for 90 min at 100 

V with a 2% agarose gel with 25 µl EtBr × (0.1 dm3)-1 gel, a 1kb ladder from Invi-

trogen and 0,5 µl loading dye for each well. 

5.3 Leaf Area & Plant Weight Measurements 

Leaf area was measured using imageJ2 (Schindelin et al., 2015) after photographing 

the growth plates in a black box. A global distance scale was set up and leaf area 

detected by setting threshold colour values to precisely cover each plant.  

Fresh plant weight was noted for each plant by quickly removing individual plants 

and measuring them on a scale (Sartorius ENTRIS124-1S lab balance). Plants were 
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exposed to minimal amount of time outside the plate to reduce mass loss due to 

water evaporation. 

5.4 In Silico analysis 

SRF3 Co-regulated (expressed) genes were mined through Genevestigator version 

3 (Hruz et al., 2008) using the dataset from the Affymetrix Arabidopsis ATH1 Ge-

nome Array. The gathered data came from abiotic stress experiments concerning 

anoxia, cold, drought, heat, hypoxia, oxidative, osmotic, light, salt, submergence 

stress and wounding. Gene ontology was mined through The Arabidopsis Resource 

(TAIR). SRF3 expression data in different abiotic stress environments were mined 

through the eFP browser (Kilian et al., 2007). All expression data on the various 

stress conditions was compared and normalized to expression profiles at the Myb 

domain protein (At3g27340) locus for SRF3 expression levels as suggested by eFP 

browser.  

5.5 Statistical Analyses & Data Processing 

5.5.1 Genetic variability analysis of the Gw SRF3 

Sequences retrieved from sequencing two stretches of the Gw accession SRF3 locus 

were processed using Chromas version 2.4.4 and Bioedit version 7.2.5. Assembled 

reads were end trimmed and quality checked. Erroneous reads were resolved, and 

ghost reads deleted manually by comparing base calls to the chromatogram. The 

sequences were then concatenated followed by alignment to wild type Col-0 (Gw+/- 

genetic background) by the ClustalW multiple alignment algorithm and boot-

strapped 1000 times. The evolutionary history was inferred using the Neighbour-

Joining method, Tajima’s D and a Z-test for neutral evolution based on the different 

SNPs using MEGA version 7.0.14. The tree is drawn to scale, with branch lengths 

in the same units as those of the evolutionary distances used to infer the phylogenetic 

tree. The evolutionary distances were computed using the Maximum Composite 

Likelihood method which was bootstrapped 10000 times (Saitou & Nei, 1987). 

SNPs were found by pairwise comparison of SRF3 alleles between Gw accessions 

and Col-0. The SNPs were then manually checked for synonymous/nonsynonymous 

substitutions using predicted coding regions and verified using DNAsp5. The rela-

tive SNP locations were annotated to the full length SRF3 gene by aligning the se-

quenced FASTA-files with the SRF3 consensus sequence from TAIR using NCBI 

blast. 
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5.5.2 Abiotic stress experiment 

All statistical data analyses and plots were done using R Command version 3.3.1. A 

probability density (Q-Q) plot and a Shapiro-Wilk normality test was performed to 

visually and numerically check if the residuals followed an approximate normal dis-

tribution and whether parametric tests could be used. A general linear model was 

used to define how well the data fit my model and to define which model was best 

to use in further analysis. A one-way ANOVA was performed using genetic line as 

predictor and fresh weight and leaf area as response variables. A post-hoc test (Tuk-

eys multiple comparisons of means) was employed using the R package Multcomp 

(Torsten Hothorn et al., 2008) and the degree of differences of means checked by a 

standard Students t-test.  
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 Supplementary Table 1. Single nucleotide polymorphisms among 22 Gw accessions outisde exons. 

SNP/locationa Shared by 

C/T 1161 All except C3-Spot-4-1, C3-Spot-4-10, C3-Spot-5-9 and Teatralna1 

C/A1316 All 

G/A1999 All except C3-Spot-4-1, C3-Spot-4-10, C3-Spot-5-9 and Teatralna1 

aPolymorphism location number of bases downstream from ATG 
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Supplementary Table 2. Significance of Tukey comparisons of plant weight and leaf area means explained by genotype/treatment (confidence level = 0.95)a. 

Genotype/ 

Treatment 

SRF3-

OX (0) 

SRF3-OX 

(50) 

SRF3-

OX 

(100) 

SRF3-

OX 

(150) 

srf3-2 (0) srf3-2 

(50) 

srf3-2 

(100) 

srf3-2 

(150) 

srf3-3 

(0) 

srf3-3 

(50) 

srf3-3 

(100) 

srf3-3 

(150) 

srf3-4 

(0) 

SRF3-OX (0) N/A c             

SRF3-OX (50) - N/A            

SRF3-OX (100) ***  NA           

SRF3-OX (150) ***   NA          

srf3-2 (0)  *** *** *** NA         

srf3-2 (50)     *** NA        

srf3-2 (100) *    ***  NA       

srf3-2 (150) ***    ***   N/A      

srf3-3 (0)  *** *** *** *** *** *** *** N/A     

srf3-3 (50)     ***    *** NA    

srf3-3 (100) ***    ***    ***  N/A   

srf3-3 (150) **    ***    ***   N/A  

srf3-4 (0) *** *** *** *  *** *** *** *** *** *** *** NA 

srf3-4 (50)     ***    ***    *** 

srf3-4 (100)     ***    ***  ***  *** 

srf3-4 (150) *    ***    ***    *** 

Col-0 (0)  *** *** ***  *** *** *** *** *** *** *** *** 

Col-0 (50)     ***    ***    *** 

Col-0 (100) ***    ***    ***    *** 

Col-0 (150) ***    ***    ***    *** 

SRF3Ler:GFP (0)  * *** *** * ** *** ***   *** ** *** 

SRF3Ler:GFP (50)     *** **   ***    *** 

SRF3Ler:GFP (100) **    ***    ***    *** 

SRF3Ler:GFP (150) ***    ***    ***    *** 

Ler (0)   *** * ***  ** * *  **  *** 

Ler (50) ***    ***    ***    *** 

Ler (100) ***    ***    ***    *** 

Ler (150) ***    ***    *** **   *** 

a Asteriscs indicate significance. 

b Numbers within each parenthesis indicate concentration of Mannitol in the growth medium (mM). 

c Significance codes:  < 0.001 = ***, < 0.01 = **, < 0.05 = *, not significant = -, NA = Not applicable 
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Supplementary Table 2 cont. Significance of Tukey comparisons of plant weight and leaf area means explained by genotype/treatment (confidence level = 0.95)a. 

Genotype/ 

Treatment 

srf3-4 

(50) 

srf3-4 

(100) 

srf3-4 

(150) 

Col-0 (0) Col-0 

(50) 

Col-0 

(100) 

Col-0 

(150) 

SRF3Ler:

GFP (0) 

SRF3Ler:

GFP (50) 

SRF3Ler:

GFP 

(100) 

SRF3Ler:

GFP 

(150) 

Ler 

(0) 

Ler 

(50) 

Ler 

(100) 

Ler 

(150) 

SRF3-OX (0)                

SRF3-OX (50)                

SRF3-OX (100)                

SRF3-OX (150)                

srf3-2 (0)                

srf3-2 (50)                

srf3-2 (100)                

srf3-2 (150)                

srf3-3 (0)                

srf3-3 (50)                

srf3-3 (100)                

srf3-3 (150)                

srf3-4 (0)                

srf3-4 (50) NA               

srf3-4 (100)  NA              

srf3-4 (150)   NA             

Col-0 (0) *** *** *** NA            

Col-0 (50)    *** N/A           

Col-0 (100)    ***  N/A          

Col-0 (150)    ***   NA         

SRF3Ler:GFP (0) **  ** *** *** *** *** NA        

SRF3Ler:GFP (50)    ***     NA       

SRF3Ler:GFP (100)        ***  N/A      

SRF3Ler:GFP (150)        ***   N/A     

Ler (0)      * ***    *** NA    

Ler (50)    ***    ***    * NA   

Ler (100)        ***    *  NA  

Ler (150)    ***    ***    ***   NA 

a Asteriscs indicate significance. 
b Numbers within each parenthesis indicate concentration of Mannitol in the growth medium (mM). 
c Significance codes:  < 0.001 = ***, < 0.01 = **, < 0.05 = *, not significant = -, NA = Not applicable 
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Supplementary Table 3. Aarabidopsis thaliana Seed Sterilization Protocol. 

1. Put a small amount of seeds into 2ml Eppendorf tubes, wash seeds shortly with distilled 

water. 

2. Fill the tube with commercial bleach (30% sodium hypochlorite). 

3. Add 0,5% (v/v) Triton X-100.  

4. Incubate in an orbital or rotary shaker for 10 min at 160 rpm. 

5. Wash with ddH2O and decant the fluid. Repeat 4 times. 

6. Plate the seeds in sterile growth plates with nutrient medium or suspend in 0,1% aga-

rose. Stratify for up to 7 days. 

 

 

 

Supplementary Table 4. Plant growth medium (1 dm3). 

Ingredient Ammount 

Murashige-Skoog medium (MS) 4,8 g 

2-(N-morpholino)ethanesulfonic acid 
(MES) 

0,5 g 

Saccharose 3,0 g 

Distilled water (dH2O) 1,0 dm3 

Plant agar Variable 

Mix MS, MES and saccharose in 90% final volume dH2O on a magnetic stirrer. 

Adjust pH to 5,6 - 7,8 with potassium hydroxide (KOH) 

Rinse down potential edge bound nutrients with the rest of the ddH2O and aliquot to 0,5 l 
flasks. 

Add plant agar. 8 g × l-1 for a concentration of 0,8%. 

Autoclave 30 min at 120 ˚C. 
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Supplementary Table 6. Optimized PCR reagent contents used to amplify SRF3. 

Reagent Ammount (µl) 

ddH2O 29,75 

PCR buffer (10×) 5 

MgCl2 (1,5 mM) 5 

dNTP (10 mM) 5 

Forward primer (100 µM) 0,5 

Reverse complementary primer (100 µM) 0,5 

LA Taq 0,25 

Template DNA 4 

Total volume 50 

 

 

Supplementary Table 7. DNA extraction buffer used in the transcriptional target experiment (for two-

step PCR genotyping). 

Ingredient Working concentration 

Tris HCl pH 8,0 200 mM 

NaCl 250 mM 

EDTA 25 mM 

SDSa 0,5% (v/v) 

a Add SDS last in order to avoid foaming 

 

 

Supplementary Table 5. PCR primers used to amplify the Gw accession SRF3 locus and sequence 

the region of interest. 

     Complementarity 
 

Sequence (5'->3') Length (bp) Tm (°C) GC 

(%) 

Self 3' 

Fwdb CAGATTCGTGGACATCGTT 19 55,35 47,37 3 2 

Revb ATATCCGTAAGCGGCTAGC 19 56,38 53,63 6 6 

Seq1c CCCATACCGGACAAATTAC 19 53,12 47,37 4 0 

Seq2 c AACCAGAATTATGAAGAC-

GAGG 

22 55,90 40,19 6 0 

a All primers were blasted with NCBI primer blast 
b PCR primers used to amplify SRF3 
c Seq1and Seq2 represents two primers used for sequencing different areas of the gene of interest 
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Supplementary Table 8. Optimized PCR reagent contents used for SRF3 T-DNA insertion mutant two-

step PCR genotyping. 

Reagent Ammount (µl) 

ddH2O 15,6 

PCR buffer (10×), incl. MgCl2 (1,5 mM) 2 

dNTP (1,25 mM) 2 

Forward primer (100 µM) 0,1 

Reverse complementary primer (100 µM) 0,1 

LA Taq 0,2 

Template DNA 2 

Total volume 20 

 

 

Supplementary Table 9. PCR primers used for SRF3 T-DNA insertion mutant analysis (two-step PCR 

genotyping). 

     Complementarity 

Primer Sequence (5'->3') Length 

(bp) 

Tm (°C) GC 

(%) 

Self 3' 

LPSRF3-OX
 

b 

TCCACCGAAATTTCAAGTCTG 21 56,46 42,86 8 2 

RPSRF3-OX
b ACTAATCCGACTCGAGACCG 20 58,70 55,00 6 6 

LPsrf3-2
 b AGCCTCTCAAGGTCATGTAAG 21 57,10 47,62 4 2 

RPsrf3-2
b CCCATACCGGACAAATTAC 19 53,12 47,37 4 0 

LPsrf3-3
b AGCCTCTCAAGGTCATGTAAG 21 57,10 47,62 4 2 

RPsrf3-3
b AAGGATCGAGCTCTGAGAA 19 55,12 47,37 6 3 

LPsrf3-4
b AAAAATTCGGCTGGAATTGTC   21  60.31   38.10 4 0 

RPsrf3-4
b CAGAAGAGAGCGTCATGGTTC 21 60.00 52.38 4 2 

LB1,3c ATTTTGCCGATTTCGGAAC 19 54,69 42,11 6 4 

a All primers were blasted with NCBI primer blast 
b PCR primers used to amplify SRF3  
c LB1,3 amplifies the left T-DNA border in conjunction with an SRF3 LP primer  
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Supplementary Figure 1. PCR 
programme used to amplify the 
Gw accession SRF3 locus from 
gDNA. 95 ˚C = dsDNA denatur-
ation, 52 ˚C = primer annealing, 
68 ˚C = ssDNA strand elonga-
tion, 22 ̊ C = standard normal en-
vironment. 

Supplementary Figure 2. PCR 

programme used to analyse SRF3 

T-DNA insertion mutants. 95 ˚C 

= dsDNA denaturation, 50 ˚C = 

primer annealing, 72 ˚C = 

ssDNA strand elongation, 22 ˚C 

= standard normal environment. 
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A few points were discussed after my presentation regarding the hypothesis of co-

evolution between two epistatic loci and regarding my work on the functions of the 

SRF3 protein. For the question of co-evolution between RPP1Ler-like alleles and 

SRF3 alleles in the Gorzów population, the opposition suggested to include more 

gene variants from other A. thaliana populations and ecotypes. One could search 

online databases to find more alleles that would give a broader perspective of the 

evolution of the hybrid incompatibility. One could also sequence the whole SRF3 

locus instead of only the region that is the most SNP dense in other accessions. Also, 

if I would have sequenced the RPP1-like locus in the same individuals I could get a 

deeper understanding of how the alleles segregate. A fourth point that would help 

investigate a possible co-evolution would be to sequence more individuals of the 

population.  In my project I only sequenced 22 individuals where approximately 

half had the RPP1Ler-like alleles present. It could be that by limiting the sample 

number, I missed several low frequency alleles that segregate in the population, 

which could be a sign of negative frequency dependent selection. During the se-

quence analysis I also looked for amino acid substitutions. Since I only had DNA to 

work with and predicted intron/exon barriers, the analysis could be improved by 

sequencing mRNA or exome sequencing instead to get rid of most of the introns. 

This would improve the phylogenetic gene tree (Figure 4) as well by eliminating 

possibly unimportant intronic SNPs. 

For the second hypothesis where I investigated a possible role of SRF3 in osmotic 

stress tolerance signalling we discussed ways to improve the experiment. By adding 

more phenotypic traits typical for water stress, like including measurements of root 

length, for example one would gain information from the growth of the whole plant, 

not just biomass accumulation and leaf area. For this, one would need to limit the 

number of plants in each in vitro growth dish to avoid entanglement of roots and 

competition for space. One could also measure the gene activity in stressed wild 

type plants at different time points to confirm that SRF3 indeed upregulates during 

9 Opposition Summary 
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osmotic stress. A third improvement would be to confirm the status of the knock-

down and overexpressing lines. In order to know if the data represented complete 

knockdown lines or lines that for example still had 70% of its activity, I would have 

needed to extract RNA from all individual plants. Transcriptional activity was never 

controlled for during my stay in Alcázars lab due to time and cost constraints. A 

fourth idea was put forth that since SRF3 has 7 closely related genes in the family, 

one could expect some functional redundancy. A double or triple mutant could re-

veal a phenotype that would not visible if the stress tolerance is governed by multi-

ple genes with small additive effects. 
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