Diabetes mellitus hos hund
Djurvälfärd och riskfaktorer kring sjukdomen

Frida Ådén

Uppsala
2018

Veterinäroprogrammet, examensarbete för kandidatexamen
Delnummer i serien: 2018:90
Diabetes mellitus hos hund – djurvålfärd och riskfaktorer kring sjukdomen

Diabetes mellitus in dogs – animal welfare and risk factors of the disease

Frida Ådén

Handledare: Lotta Berg, Institutionen för husdjurens miljö och hälsa

Examinator: Maria Löfgren, Institutionen för biomedicin och veterinär folkhälsovetenskap

Omfattning: 15 hp
Nivå och fördjupning: Grundnivå, G2E
Kurstitel: Självständigt arbete i veterinärmedicin
Kurskod: EX0700
Program/utbildning: Veterinäraprogrammet

Utgivningsort: Uppsala
Utgivningsår: 2018
Serienamn: Veterinäraprogrammet, examensarbete för kandidatexamen
Delnummer i serien: 2018:90
Elektronisk publicering: http://stud.epsilon.slu.se

Nyckelord: djurägare, behandling, insulin, skötsel
Key words: pet owner, treatment, insulin, management, canine
INNEHÅLLSFÖRTECKNING

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Sida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sammanfattning</td>
<td>1</td>
</tr>
<tr>
<td>Summary</td>
<td>2</td>
</tr>
<tr>
<td>Inledning</td>
<td>3</td>
</tr>
<tr>
<td>Material och metoder</td>
<td>3</td>
</tr>
<tr>
<td>Litteraturöversikt</td>
<td>3</td>
</tr>
<tr>
<td>Beskrivning av Diabetes mellitus hos hund</td>
<td>3</td>
</tr>
<tr>
<td>De centrala aktörerna - insulin och glukos</td>
<td>3</td>
</tr>
<tr>
<td>Etiologier och symptom</td>
<td>4</td>
</tr>
<tr>
<td>Klassindelning</td>
<td>5</td>
</tr>
<tr>
<td>Behandling</td>
<td>6</td>
</tr>
<tr>
<td>Framtida alternativa behandlingar</td>
<td>6</td>
</tr>
<tr>
<td>Riskfaktorer</td>
<td>7</td>
</tr>
<tr>
<td>Kön</td>
<td>7</td>
</tr>
<tr>
<td>Ras</td>
<td>7</td>
</tr>
<tr>
<td>Ålder</td>
<td>7</td>
</tr>
<tr>
<td>Vikt</td>
<td>8</td>
</tr>
<tr>
<td>Andra sjukdomar - Hyperadrenokorticism och pankreatit</td>
<td>8</td>
</tr>
<tr>
<td>Hundens fortsatta välfärd</td>
<td>8</td>
</tr>
<tr>
<td>Hypo- och hyperglykemi</td>
<td>8</td>
</tr>
<tr>
<td>Krav på djurägare</td>
<td>9</td>
</tr>
<tr>
<td>Insulininjektioner och glukoskontroller</td>
<td>9</td>
</tr>
<tr>
<td>Motion</td>
<td>9</td>
</tr>
<tr>
<td>Diet</td>
<td>10</td>
</tr>
<tr>
<td>Kostnad</td>
<td>10</td>
</tr>
<tr>
<td>Livskvalitet</td>
<td>10</td>
</tr>
<tr>
<td>Diskussion</td>
<td>11</td>
</tr>
<tr>
<td>Riskfaktorer</td>
<td>11</td>
</tr>
<tr>
<td>Hundens fortsatta välfärd</td>
<td>12</td>
</tr>
<tr>
<td>Egna reflektioner</td>
<td>13</td>
</tr>
<tr>
<td>Slutsats</td>
<td>13</td>
</tr>
<tr>
<td>Litteraturförteckning</td>
<td>14</td>
</tr>
</tbody>
</table>
SAMMANFATTNING

Definitionen av diabetes mellitus hos både hund och människa är antingen insulinbrist eller att kroppens vävnader utvecklat en insulinresistens, och kännetecknas av hyperglykemi. Hos hund är det en vanligt förekommande endokrin sjukdom med flertalet bakomliggande orsaker. De klassiska symptomen är polyuri, polydipsi och viktnedgång trots ökad aptit. Vid misstanke om diabetes är det viktigt att påbörja behandling med insulin genast eftersom obehandlad diabetes kan ge allvarliga följder, då den förhöjda glukoskoncentrationen i blodet kan leda till ketoacidos och i värsta fall döden.

Behandling med diabetes sker traditionellt alltid med insulin av passande sort. Insulinet ges genom injektioner två gånger dagligen i samband med måltid med målet att så gott som möjligt likna den endogena produktionen av insulin. För att behandlingen ska vara optimal bör en noggrann generell undersökning av hunden göras initialt, och eventuella parallella sjukdomar kan därmed upptäckas och behandlas. Det kan göra att mindre exogent insulin krävs samt ge en ökad förutsättning för bästa möjliga utformande av en behandlingsregim som minskar risken för att hypo- eller hyperglykemi uppstår.

Detta studentarbete tar upp ett antal faktorer som enligt ett flertal studier ökar risken för insjuknande, exempelvis hög ålder, vissa raser, övervikt och särskilda sjukdomar som t. ex. hyperadrenocorticism och pankreatit. De två första riskfaktorerna, d.v.s. ålder och ras, är svårpåverkade medan exempelvis övervikt är något som djurägaren kan påverka genom välbalanserad diet och motion. Djurägarens roll är generellt mycket viktig, vilket diskuteras i studentarbetet, då denne måste administrera insulinet till hunden två gånger dagligen samt vara uppmärksam på eventuella tecken på komplikationer, exempelvis hypoglykemi. Utöver det måste motionen som hunden får vara konsekvent och inte variera för mycket från dag till dag. Dieten ska vara väl anpassad efter den individuella hunden och på så sätt öka förutsättningen för bättre glykemisk kontroll, det vill säga förhindra att glukoskoncentrationen i blodet fluktuerar för mycket.

Sammantaget finns det ett stort antal studier om de riskfaktorer som är associerade med diabetes men inte lika många kring hur djurvälfärden och självklart även hur djurägaren indirekt påverkas av sjukdomen. Dessa aspekter är av intresse då de kan bidra till att vidareutveckla behandlingsmetoder för att öka livskvaliteten för hunden och dess ägare.
SUMMARY

The definition of diabetes mellitus in both dogs and humans is either insulin deficiency or that the body's tissues has developed an insulin resistance, and is characterized by hyperglycaemia. In dogs, it is a common endocrine disease with several underlying causes. The classic symptoms are polyuria, polydipsia and weight loss despite increased hunger. If diabetes is suspected it is important to begin treatment with insulin immediately, since diabetes left untreated can cause serious consequences as the elevated blood glucose concentration can lead to ketoacidosis and, in the worst-case scenario, death.

Treatment with diabetes is traditionally always done with insulin that suits the individual. The insulin is administered by injections twice a day in connection with a meal with the goal to as close as possible mimic the endogenous production of insulin. In order for the treatment to be optimal, a thorough general examination of the dog should be done initially, and any parallel diseases can thus be detected and treated. This may lead to a smaller dosage when administrating exogenous insulin and also provide a better possibility for optimal design of a treatment regimen that reduces the risk of hypoglycaemia or hyperglycaemia.

This student project addresses a number of factors that, according to the majority of studies, increase the risk of illness, for example high age, certain breeds, obesity and specific diseases such as hyperadrenocorticism and pancreatitis. The first two factors, i.e. high age and certain breeds, are difficult to influence, while for example obesity is something that the pet owner can influence through a well-balanced diet and exercise. The role of pet owners is very important, as discussed in the report, as they must administer the insulin to the dog twice a day and also pay attention to any signs of complications, such as hypoglycaemia. In addition to this, exercise must be consistent and not vary too much from day to day. The diet should be adapted to the individual dog and provide a fundamental basis for increased glycemic control, that is, to prevent the blood glucose concentration from fluctuating too much.

Overall, there are several studies on the risk factors associated with diabetes but not that many of how the animal’s welfare is and, of course, how animal owners are indirectly affected by the disease. Such aspects are of interest as they can provide a good basis for further developing different treatment methods to increase the quality of life for the dog and its owners.
INLEDNING

Diabetes mellitus är en vanlig endokrin sjukdom som först beskrevs så tidigt som för över 2000 år sedan och har de senaste 100 åren fällt stor uppmärksamhet inom forskningen (Gilor et al., 2016). Hundar har historiskt sett använts mycket inom forskning som modell för att öka kunskapen om sjukdomen hos människor, bland annat för upptäckten och isoleringen av insulin samt dess funktion (Fall, 2009). Sedan dess har studierna med hund i fokus och även kring de riskfaktorer de utsätts för blivit allt fler.

Metoder för att utvärdera livskvaliteten hos de djur som lider av diabetes samt hur det är att äga en sådan hund är få. Att leva med en hund som har diabetes kräver mycket tid och engagemang från djurägaren, och djurägaren spelar en avgörande roll för djurets fortsatta välfärd (Niessen et al., 2012b).

För mig personligen är diabetes mellitus hos hund av stort intresse, då min familjens hund diagonaliserades med sjukdom när hon var sju år. Hon hade börjat dricka mer, kissade inne och var inte samma energiska hund som tidigare. Efter samtal med jourhavande veterinär över telefon sent på kvällen konstaterades att trolig diagnos var diabetes och på grund av hennes dåliga tillstånd bokade vi in henne för operation följande morgon där livmodern skulle tas bort, en åtgärd som hos tikar kan ge fullt återställande. Vi fick förklarat för oss att risken för att hon inte skulle bli av med sin diabetes fanns och att det i så fall skulle innebära förändringar i både hennes och vårt liv, men vi valde att gå vidare med operationen. Lyckligtvis blev hon helt frisk och levde till den respektingivande åldern av 15 år.

Syftet med det här arbetet är att ge läsaren en ökad förståelse kring några av de riskfaktorer som finns kring diabetes mellitus hos hund samt på vilket sätt djurägaren och veterinären kan bidra till att hunden ska kunna leva ett liv med så lite påverkan av sjukdomen som möjligt. Frågeställningarna som behandlas är ”Vilka faktorer ökar risken för diabetes mellitus hos hund?” och ”Hur påverkas hunden av insulinsvängningar och vad krävs för ett fortsatt fullgott liv?”. För enkelhetens skull kommer diabetes mellitus på de flesta ställen förkortas ner till enbart diabetes.

MATERIAL OCH METODER

För att få en överblick av ämnet användes till en början sökorden ”Diabetes mellitus” AND (dog* OR canine) och för att sedan koncentrera sökresultaten lades kombinationer av (risk* and risk factor) AND (consequ*) AND ("quality of life") AND (manag*) AND (treatment OR therapy) till föregående artiklar. De databaser som främst användes var Scopus och Primo. Utöver artiklar och studier användes även kurslitteratur, exempelvis ”Pathologic Basis of Veterinary Science” och ”Physiology of Domestic Animals” för att få en bra grund i ämnet. Även tidigare kandidat- och examensarbeten har gett idéer och inspiration.

LITTERATURÖVERSIKT

Beskrivning av Diabetes mellitus hos hund

De centrala aktörerna - insulin och glukos

En förutsättning för att kroppens celler ska vara funktionella är tillgång till energi, vilket skapas i kroppens vävnader genom cellandning. Ett viktigt substrat för bildning av energi är glukos, en
kolhydrat som kroppen främst får i sig via föda eller genom syntes via glukoneogenesens som framför allt sker levern och njuren. Glukos cirkulerar därefter i blodet och tas upp av vävnader för att sedan användas i glykolysen för omvandling till energi. Efter födointag lagras även glukos som glykogen i bland annat levern och det är initialt från den lagringskällan som glukos tas när blodglukoskoncentrationen sjunker (Sjaastad et al., 2010).

För att de relativt stora glukosmolekylerna ska kunna ta sig över cellmembranet används transportmolekyler, så kallade GLUT (glucose transport molecules). I skelett Muskulaturen och fettvävnaden är GLUT beroende av insulin för upptag av glukos i cellerna. Insulin är ett anabolt hormon som produceras i endokrina delen av pankreas av så kallade β-cellerna, vilka återfinns i Langerhans öar. β-cellerna stimuleras av en ökad glukoskoncentration i blodplasma samt hormoner från tarmen, framför allt gastriska inhibitoriska peptider (GIP), och börjar därefter utsöndra insulin i blodet. Insulin binder sedan till specifika insulinreceptorer på vävnadscellerna och orsakar en migration av GLUT-4 till cellmembranet samt stimulerar syntetisering och upplagring av glykogen i levern och skelett Muskulaturen (Sjaastad et al., 2010).

Etologi och symptom

Diabetes mellitus är en multifaktoriell sjukdom som definieras av antingen bristande produktion och sekretion av insulin från β-cellerna i pankreas eller av insulinresistens i vävnaderna (Miller, 2017). Hos hund är diabetes mellitus en relativt vanligt förekommande endokrin sjukdom, med studier som pekar på en prevalens från 0,34% upp till 1,33% (Fracassi et al., 2004; Mattin et al., 2014). De bakomliggande orsakerna till skador på β-cellerna varierar från att det är en konsekvens av andra sjukdomar, till att det beror på autoimmunitet eller fel i hormonbalansen. I dagsläget är dock de flesta diagnoser av idiopatiskt ursprung. β-cellerna i pankreas har likt nerveceller en dålig regenerativ förmåga och därför blir individer som drabbas av diabetes insulinberoende livet ut (Fall, 2009).

Insulinbrist och insulinresistens kan utan adekvat behandling i båda fallen ge hyperglykemi i blodet på grund av att glukos inte kan tas in i cellen (Miller, 2017; Catchpole et al., 2005) samt ketoacidosis (Behrend et al., 2018). Hyperglykemi kan orsaka allvarliga skador på kroppens vävnader, däribland ögon, njurar, hjärta och blodkärl (ADA, 2014). Ketoacidosis uppstår när kroppen i ett försök att bilda mer energi utmanar fettvävnaden vilket gör att ketonkroppar bildas. Dessa orsakar en förstörning i blodet och kan i värsta fall vara dödligt (Sjaastad et al., 2010).

Det är vanligt att diabetes som beror på insulinresistens utvecklas till insulinbrist (Imamura et al., 1988) och det är ofta den typen av diabetes som hunden har vid diagnos (Catchpole et al., 2005). Det beror på att den ökade koncentrationen av glukos i blodet vid insulinresistens orsakar hypertrofi eller hyperplasi av β-cellerna (Miller, 2017), till följd av cellulär stress (Laybutt et al., 2007) och insulinbrist uppstår.

Symptomen som ses hos hund med diabetes är liknande de hos människa. Klassiskt ses polydipsi, polyurii samt viktnedgång trots ökad aptit och urinprover som tas visar på glukosuri (Fall, 2009). De ökade glukoskoncentrationerna i blodet gör att kroppen eliminerar kolhydraten via urinen, därav ökad urinering och urin med en hög halt glukos. Eftersom cellerna inte tillgodoses med energisubstrat signalerar de till övriga system att hunden måste äta mer och ökar samtidigt de katabola processerna av exempelvis fettvävnad för att på så sätt få en källa till energi.
(Sjaastad et al., 2010). Kliniskt ses en hund som äter mer men rasar i vikt. Diagnos ställs genom en grundlig klinisk undersökning, anamnes och provtagning på blod och urin (Behrend et al., 2018).

Klassindelning

I nuläget finns det ingen internationellt erkänd klassificering av diabetes mellitus hos hund. Hos människa delas det vanligtvis in i diabetes typ 1 och diabetes typ 2 samt övriga typer som t. ex. graviditetsdiabetes, där typ 1 är motsvarande insulinbrist och typ 2 är insulinresistens. Diabetes typ 1 hos människa har ofta en autoimmun bakgrund, där antikroppar förstör β-cellerna i pankreas, medan typ 2 ofta kopplas till fel vid hormonernas signalering till vävnader (Sjaastad et al., 2010). Hos hund har man historiskt delat in det i IDDM (insulin-dependent diabetes mellitus) eller NIDDM (non insulin-dependent diabetes mellitus) men numera anses den indelningen något förlegad då majoriteten av alla hundar med diabetes är insulinberoende (Fall, 2009). Forskning på hund har inte heller visat någon motsvarighet till diabetes typ 2 hos människa (Catchpole et al., 2005; Rand et al., 2004).

Idag finns det därför flera olika versioner på klassificering av diabetes mellitus hos hund. Fall (2009) la fram ett förslag på klassificering i sin avhandling som baserades på etiologin till diabetes men har även poängterat att det förekommer en stor del diabetesfall med idiopathisk bakgrund (figur 1).

Figur 1. Data hämtad från ”Klassindelning av diabetes mellitus hos hund”, enligt Fall (2009)

| 1. Juvenil diabetes mellitus | a. Betacellshypoplasi
b. Kombinerad betacellbrist och bukspottskörtelatrofi |
|-------------------------------|---|
| 2. Progesteronrelaterad | a. Dräktighetsdiabetes (motsvarande graviditetsdiabetes hos människa)
b. Diöstrusdiabetes |
| 3. Sekundärt till pankreassjukdom | |
| 4. Endokrina tumörer | a. Cushings sjukdom
b. Agromegalgi
c. Glukagonom |
| 5. Iatrogen | a. Glukokortikoider
b. Progesteronpreparat
c. Sekundärt till insulinombehandling |
| 6. Immunmedierad diabetes mellitus | |
| 7. Idiapathisk diabetes mellitus | |

Källa: Fall, T (2009)

Behandling

Eftersom betaceller i pankreas har en begränsad förmåga att regenereras kommer hunden att vara insulinberoende livet ut. Målet med behandlingen är att stabilisera symptomen till en så när normal bild som möjligt och förhindra hypo- och hyperglykemi för att på så sätt ge hunden en ökad förutsättning för bra livskvalitet (Niessen, 2015). Idag består rutinbehandlingen av insulinförädling subkutan hemma två gånger dagligen i samband med måltid, med målet att efterlikna kroppens endogena insulinproduktion så gott det går (Gilor and Graves, 2010). Hos tikar bör kastration ske då detta ger en närmare 50-procentig chans till fullständigt tillfrisknande och därmed elimineras behovet av insulinbehandling (Fall et al., 2010).

Utbudet av olika typer av insulin är stort, och idag finns det insulin med ursprung från bland annat människa och gris samt syntetiskt framställt insulin (Gilor and Graves, 2010; Greco et al., 1995). Beroende på insulinlång verka – lång, intermediär eller kort (Greco et al., 1995). Vilken insulinlång verkar påverkas mycket på omständigheterna; normalt får hundar ett insulin med intermediär verkan med instruktioner att dels ge två gånger dagligen (Behrend et al., 2018; Gilor and Graves, 2010).

Det är även av stor vikt att utreda hundens generella hälsotillstånd innan utprovning och dosering av insulin görs. Diabetes mellitus ses ofta parallellt med andra sjukdomstillstånd vilket kan påverka det exogena insulinets verkan, t. ex. hyperadrenokorticism till följd av tumör i binjuren. Behandlas samtidiga sjukdomar kan det leda till att lägre dosering av insulin krävs (Hess, 2010).

Tyvärr finns det trots noggrann behandling risk för komplikationer såsom urinvägsinfektion (UVI) och katarakt (Hess, 2010). Ofta krävs även höga doser insulin vilket ökar risken för hypoglykemi (Jaén et al., 2017). Katarakt, även kallat grå starr, är ett obotligt tillstånd i ögat och innebär att genomskinligheten i ögat lins försämras och linsen blir grumlig (Sjaastad et al., 2010). Cirka 50% av de hundar som diagnoseras med diabetes utvecklar katarakt inom 6 månader efter att diagnos getts, trots att de står på insulinbehandling, och risken för katarakt ökar även med tiden (Beam et al., 1999). Urinvägsinfektioner är inte heller ovanligt förekommande; i en studie med 221 diabeteshundar hade 21% av dem UVI. Trolig orsak är att den utspända urinen gör att bakterierna trivs bra, i kombination med höga glukoskoncentrationer som utmärkt substrat (Hess et al., 2000).

Framtida alternativa behandlingar

Studier har även gjorts kring stemceller och deras förmåga att differentieras till insulinproducerande och β-cellsliktande celler, dels på hund (Mu et al., 2016) och dels på rätta (Yang et al., 2002). Stemceller har möjligheten att differentiera till flera olika celltyper och kan komma att
utgöra ett alternativ för behandling av diabetessjukdom (Will et al., 2012). I studien av Mu och medarbetare (2016) togs benmärk från vuxna beagles varifrån stamceller isolerades och infekterades med ett virus innehållandes gener för insulinproduktion. Efter att det kontrollerats att generna inkorporerats i stamcellen injicerades de åter till hundarna i deras lever. I jämförelse med kontrollgrupper vilka injicerades med (1) stamceller som infekterats med virus utan insulin; (2) enbart obehandlade stamceller; och (3) ingenting (obehandlade), sågs lägre glukoskoncentration och mindre fluktuation i kroppsvikt under en 80-veckorsperiod hos de hundar där β-cellsliknande celler injicerats i levern. Insulinnivån i blodserum var högre än kontrollgrupperna och utöver det sågs inte heller någon påverkan på leverns normalfunktion. Att poängtera är dock att insulinnivån hos de hundar med β-cellsliknande celler inte var lika hög som hos helt friska hundar (Mu et al., 2016).

Riskfaktorer

Kön

Studier har visat på att tikar är mer predisponerade att utveckla diabetes än hanar (Fall et al., 2007; Wejdmark et al., 2011). I en studie av Fall och medarbetare (2007) var 618 tikar, motsvarande 72% av studiepopulationen, diagnosticerade med diabetes. Studien visade att tikar hade en riskratio (RR) på 2,6 för att utveckla sjukdomen i jämförelse med hanhundar. I en annan studie såg man ingen markant ökad risk för tikar i jämförelse med hanar (Mattin et al., 2014). Samma studie visade däremot på att okastrerade hanar hade minskad risk för utveckling av diabetes, där kastrerade hanar hade en 2,5 högre risk att insjukna.

Ras

Det har länge forskats kring att vissa hundraser är mer benägna att drabbas av diabetes och att det därför finns en genetisk predisposition för diabetes hos dem. Bland annat har studier påvisat att vissa högriskraser för diabetes har ökad förekomst av haplotypen DLA-DRB1*009/DQA1*001/DQB1*008 i förhållande till de raserna med lägre risk (Catchpole et al., 2008). De hundraserna med större risk för att insjukna i diabetes är bland annat samojed, tibetansk terrier (Catchpole et al., 2008) och älghund (Fall et al., 2007). Schäfer, golden retriever och boxer är några raser som sällan verkar utveckla diabetes (Davison et al., 2005) och har även visats ha lägre prevalens av DLA-DRB1*009/DQA1*001/DQB1*008 (Catchpole et al., 2008).

Ålder

Den genomsnittliga åldern vid utveckling och debut av diabetes hos hund varierar mellan studier men generellt är det äldre hundar som drabbas (Mattin et al., 2014). Fall och medarbetare (2007) jämförde 180,000 försäkrade hundar i Sverige där medelåldern för diagnostisering av diabetes var 8,6 år, men tryckte på att det varierade mellan raser med ett intervall på 7,8 till 9,3 år. En annan studie var den genomsnittliga åldern 9,9 år och ökade ålder var även en riskfaktor för utvecklande av diabetes. Hundar mellan 10 och 12 år i samma studie hade en RR på 1,38 och hundar >12 år visade en RR på 2,16 när data jämfördes med hundar i åldersspannet 3–10 år (Mattin et al., 2014).
Vikt

Hos människa är övervikt en faktor som ofta kopplas till diabetes typ 2 (Copeland et al., 2005). Huruvida övervikt är en primär etiologi till diabetes mellitus hos hund har däremot inte helt klarlagts. Studier har visat att övervikt hos hund påverkar känsligheten för glukos hos β-cellerna i pankreas negativt, bland annat av German och medarbetare (2009), och att insulinresistensen blev mindre påtaglig när hundarna gick ner i vikt.

Andra sjukdomar – Hyperadrenokorticism och pankreatit

Hundar med hyperadrenokorticism (HAC), det vill säga onormalt höga koncentrationer av kortisol i blodet, har 9.3 gånger högre risk att utveckla diabetes i förhållande till friska hundar (Fall et al., 2007). Vid diagnos av diabetes mellitus är samtidiga fynd av HAC vanligt förekommande (Davison et al., 2005; Mattin et al., 2014) där symptomen för diabetes och HAC är liknande med polyuri, polydipsi och polyfagi (Hess, 2010).

Hundens fortsatta välfärd

Hypo- och hyperglykemi

Vid injektion av insulin måste administratören, här vanligtvis djurägaren, vara medveten om eventuella oönskade insulinsvängningar. Vid tillförsel av exogen insulin finns det nämligen alltid en risk för feldosering och utvecklande av tillfällig hypo- eller hyperglykemi (Greco et al., 1995).

En hund har hyperglykemi om glukosnivån i blodet är markant förhöjd i 10–12 timmar och är en av parametrarna som undersöks vid diagnosticering av diabetes mellitus. För att fastställa att hunden har hyperglykemi är det inte tillräckligt att ta ett enstaka blodprov, utan flera provtagningar bör tas under tidsperioden 10–12 timmar med ett intervall på cirka två timmar. Det beror

I motsats till hyperglykemi är hypoglykemi när glukosnivån i blodet är markant lägre än önskvärt och kan vara en följd av felaktig dosering av exogen insulin (Behrend et al., 2018). Tecken som djurägaren bör vara observant på är onaturlig trötthet, försämrad stabilitet, desorientering och krampfall. Hunden ska i så fall direkt få i sig glukos för att höja blodsockret, men om symptomen kvarstår måste veterinär kontaktas omgående (Mathes, 2002).

Om hunden utvecklar plötslig hypoglykemi efter administration av exogen insulin kan den så kallade somogyi-effekten uppstå. Det är en typ av skyddseffekt där kroppen vid hypoglykemi utsändrar katekolaminer, glukokortikoider, glukagon och tillväxthormon vilket orsakar en kraftig förhöjning av blodsockret, det vill säga hyperglykemi. Tillståndet hos hunden kan misstolkas som att den är insulinresistent eftersom glukosnivåerna i blodet är höga trots administration av insulin. Det här fenomenet förekommer relativt sällan och de flesta hundar som har hypoglykemi utvecklar inte hyperglykemi till följd av somogyi-effekten (Hess, 2010).

Krav på djurägare

Insulininjektioner och glukoskontroller

Insulin ges som tidigare nämnt vanligtvis två gånger dagligen i samband med måltid, där insulin injekteras i päls, utsöndrar katekolaminer, glukokortikoider, glukagon och tillväxthormon vilket orsakar en kraftig förhöjning av blodsockret, det vill säga hyperglykemi. Tillståndet hos hunden kan misstolkas som att den är insulinresistent eftersom glukosnivåerna i blodet är höga trots administration av insulin. Det här fenomenet förekommer relativt sällan och de flesta hundar som har hypoglykemi utvecklar inte hyperglykemi till följd av somogyi-effekten (Hess, 2010).

För att djurägaren inte ska behöva åka in till veterinärkliniken varje vecka är det fördelaktigt att kunna kontrollera hundens blodglukos hemma. Normalt tas blod från örat, läppen eller trampdynor. Det är inte optimalt för alla då själva processen kan vara besvärlig att utföra utan tillräcklig träning och det fungerar inte på alla hundar (Behrend et al., 2018).

Motion

Med en hund som har diabetes måste mängden motion som ges dagligen vara konsekvent och standardiserad. Motion är fördelaktig då det kan ge stabilare blodglukoskoncentration, samtidigt som överdriven motion kan orsaka hypoglykemi. Därför måste fördelningen av motion vara liknande från dag till dag (Mathes, 2002).

Diet

Även fodrets fiberinhåll har diskuterats. I en studie av Kimmel och medarbetare (2000) blev slutsatsen att fiberinhållets spelar roll för den glykemiska kontrollen där ett foder med högt fiberinhåll gav en lägre genomsnittlig och maximal glukoskoncentration till skillnad från en diet med lågt fiberinhåll. En annan studie kom fram till att ett kommersiellt foder med måttlig mängd fiber, lågt kolhydratinhåll och högre fettmängd gav samma exogena insulinbehov och glykemiska kontroll som testdieten med högt fiberinhåll, måttlig mängd kolhydrater och måttlig fettmängd. Skillnad sågs dock i blodfetteterna, där plasmakoncentrationen av triglycerider, kolesterol, fettglycerol och fettsyror var lägre i testdieten (Fleeman et al., 2009). Foder med högt fiberinhåll bör dock inte ges till diabeteshundar med redan låg kroppsvikt, då det i sig kan orsaka viktminskning. Hundar med diabetes kan ha svårare med glukos- och fettsyror frakt från tarmen samt förlora glukos i urinen och har därför ökad risk för att gå ner i vikt (Fleeman et al., 2009).

Kostnad
Skötseln av en hund med diabetes kan bli kostsamt och en djurägare måste vara väl medveten om de kostnader som sjuksmeden medför. Veterinären bör därför informera om att utöver behandling med insulin kan ytterligare kostnader tillkomma, exempelvis foderbyte och veterinärbesök (Mathes, 2002). För att ge djuret de bästa möjligheterna för ett fortsatt bra liv måste djurägaren vara medveten om utgifterna för att på så sätt i förväg resonera kring hur långt de är villiga att gå och vad som egentligen är bäst för djuret.

Livskvalitet
För att utvärdera diabetes påverkan på hundens och djurägarnas livskvalitet tog Niessen och medarbetare (2012b) fram ett verktyg där djurägare till hundar med diabetes fick ett antal frågor
att svara på. Baserat på svarsfrekvensen kunde författarna utreda vilka aspekter som påverkade livskvaliteten negativt och vilka som hade positiv inverkan. De frågor som visade störst negativ påverkan var bland annat ”Do you ever feel worried about your pet suffering from an episode of low blood glucose?”, ”Do you worry about your pet getting vision problems due to cataracts…?” och ”Do you worry about your pet’s diabetes?”. Sammantaget visade resultaten att 84% av 101 djurägare tyckte att diabetes hade en negativ inverkan för både deras egna och hundens livskvalitet.

DISKUSSION

Riskfaktorer

Faktorer som ökar risken för diabetes hos hund är många och det är fortfarande ett område som det forskas mycket inom. Hyperadrenokorticism och pankreatit har visat sig vara återkommande riskfaktorer för utvecklande av diabetes i ett stort antal studier. Även om de i sig inte är de mest vanligt förekommande sjukdomarna visar studier på att diagnosticering med diabetes ofta ger samtidigt diagnosticering med någon av dessa sjukdomar (Mattin et al., 2014; Watson et al., 2010). Ett frågetecken kring i synnerhet pankreatit, men även andra sjukdomar korreleverade med diabetes, är om det är en primär orsak till diabetes eller om den främst är en följd. För att kunna svara på det krävs mer forskning, även om det är troligt att bilden är diffus och att det ena scenariot är lika sannolikt som det andra. Ökad forskning och kunskap är dock önskvärt för att sprida ytterligare ljus över situationen (Davison, 2015).

Tikar har i vissa studier visats ha en predisposition för att utveckla diabetes. I studien av Fall och medarbetare (2007) var 72% av de studerade hundarna med diabetes tikar vilket pekar på att kön i det här fallet är av betydelse. En annan studie visade inga signifikanta bevis på att tikar skulle vara i riskzon för att utveckla diabetes (Mattin et al., 2014). En möjlig förklaring till skillnader i resultat är hur vanligt det är att kastra tikarna vid tidig ålder mellan olika länder. Tikar kan nämligen drabbas av en form av diabetes som kallas diöstrusdiabetes vilket drabbar intakta tikar i lutealfasen (Fall et al., 2007), troligtvis på grund av en ökning av progesteronnivån och tillväxthormon under diöstrus. Kastrering av dessa tikar kan ge fullständigt återhämtande och avslutat behov av insulinbehandling (Fall et al., 2010). Studien av Fall och medarbetare (2007) utfördes i Sverige där kastering av tikar är ovanligare än många andra länder och förekommer främst vid uppkomst av exempelvis pyometra. Därför kan förekomsten av diabetes hos tikar vara vanligare i sådana länder som Sverige. Vidare visade studien av Mattin och medarbetare (2014) att det var vanligare med diabetes hos kastrerade hanar i förhållande till intakta hanar. Här spelar troligtvis flera faktorer in men det är möjligt att de hormoner som bildas av testiklarna, till exempel testosteron, har en skyddande effekt mot diabetes (Mattin et al., 2014).
Ytterligare en riskfaktor är ålder, där det är vanligare att äldre hundar drabbas av diabetes (Mattin et al., 2014). Min egna reflektion är att många av de sjukdomar som kan orsaka diabetes, exempelvis hyperadrenokorticism, främst ses hos äldre hundar (Miceli et al., 2017) men flera andra faktorer spelar säkerligen också in. Slutfilen visar flertalet studier på att vissa raser är mer predisponerade för att utveckla diabetes, vilket troligtvis är relaterat till några specifika gener som de besitter i högre antal i förhållande till de raser som har minskad risk för att utveckla sjukdomen (Catchpole et al., 2008).

Hundens fortsatta välfärd

För att bygga de bästa förutsättningarna för djurets fortsatta välfärd samt minska insulinsvängningar och dess följer är det av stor vikt att alltid beakta hundens individuella situation och inte enbart gå på standardrekommandationerna för bland annat insulindosering. Hundens vikt, metabolism, dagliga aktivitet o. s. v. kan i stort påverka insulinets verkan och det som fungerar på den ena hundindividens funktion inte alltid på en annan. Därför är en grundlig undersökning av hunden och kontroll av eventuella samtidiga sjukdomar viktigt både initialt samt under behandlingstiden (Behrend et al., 2018) då det kan påverka mängden insulin som behöver injiceras (Hess, 2010). Fokus bör även ligga på individuell balansering av hundens diet; en överviktig hund med diabetes ska inte ha samma födersammansättning som en underviktig hund med samma diagnos. Eftersom diabetes i sig kan orsaka viktnedgång ska en nydiagnostiserad underviktig hund inte alltid utfodras med den vanligt förekommande dietrekommendationen för diabeteshundar innehållandes en stor andel fiber, då dessa foder ofta har ett lägre energivärde och därmed kan orsaka vidare viktnedgång (Fleeman et al., 2009). En överviktig hund kan däremot dra nytta av en diet med högre fiberinnehåll (Behrend et al., 2018) där viktnedgång har en positiv inverkan på cellernas insulinkänslighet (German et al., 2009).

Framtida forskning och ökad kunskap om etiologier till diabetes kommer förhoppningsvis ge bättre behandlingsmöjligheter och därmed en ökad välfärd för de djur som drabbas av diabetes. Fördjupad kunskap om de bakomliggande orsakerna och metoder för att upptäcka vad som ligger bakom i just det individuella fallet kan ge klinikern bättre förutsättningar att sätta in en adekvat behandling och öka chanserna för en friskare hund (Behrend et al., 2018), samt också minska risken för att komplikationer som exempelvis katakter uppstår. Användning av livskvalitetsverktyg i olika skeden av diabetesbehandlingen kan även vara av fördel för att utvärdera hur en förändring i behandling uppfattas och om det har den önskade effekten även på livskvaliteten (Niessen et al., 2012b).

djur med diabetes i jämförelse med andra sjukdomstillstånd är inte klargt, då det saknas material kring liknande frågor från andra sjukdomar. Faktum kvarstår dock att 84% av de djurägare som var med i studien tyckte att diabetessjukdomen hade en negativ inverkan på både deras egen och på hundens livskvalitet (Niessen et al., 2012b).

Egna reflektioner

Slutsats

Några av de riskfaktorer som associeras med diabetes mellitus hos hund är bland annat kön, ras, ålder, vikt och andra sjukdomar, exempelvis pankreatit och hyperadrenokorticism. De faktorer som är nämnda i det här arbetet är inte de enda men för att det inte skulle bli för omfattande valde jag att avgränsa antalet till ovan nämnda då de ofta förekommer i studier kring riskfaktorer. Av de faktorer jag studerade är många av de som ökar risken för diabetes hos hund väl studerade, men intresset för fortsatt forskning är fortfarande stort och många frågetecken kvarstår. Det är därför ett område där det behövs fler studier för att diabetes mellitus hos hund och de riskfaktorer som associeras med sjukdomen helt ska kunna kartläggas.

