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ABSTRACT 

 

Bovine viral diarrhoea virus (BVDV) is the causative agent of a complex of 

disease syndromes in cattle with high economical and welfare impacts. BVDV 

occurs as two biotypes; cytopathic (BVDVcp) and noncytopathic (BVDVncp) 

determined by differential effects on cultured cells and can also be divided into 

two genotypes (BVDV1 and BVDV2) on the basis of genomic diversity. The 

interaction between BVDV and the host’s immune system is regarded a key 

aspect in the sequel of BVDV infection. Infection with BVDV normally causes an 

acute transient infection, with mild to subclinical signs, but occasionally results in 

severe and even fatal disease. More importantly, BVDVncp virus can cause 

persistent infections, evading both the adaptive immunity as well as important 

mechanisms of the innate immunity. In the present study, attempts were made to 

compare the effect of a BVDVncp infection on bovine monocyte-derived 

dendritic (mDCs) cells on their ability to produce IFNα/β, IL-10 and IL-12. To 

potentially assess strain-variabilities, two different type 1 BVDVncp strains were 

used, one associated with mild acute disease and the other one with severe acute 

disease. This study confirms previously published data demonstrating that mDCs 

are susceptible to BVDVncp infection which implicates the potential of 

BVDVncp to affect the functions of this important antigen presenting cell. 

Unfortunately no conclusive data was obtained from quantitative polymerase 

chain reaction for mRNA expression levels of IL-10 and IL-12. Production of 

IFNα/β was measured in supernatants from stimulated mDCs and consistent with 

existing data no notable levels of IFNα/β could be detected. To further investigate 

how BVDVncp interact with the IFNα/β response in mDCs, protein levels of the 

transcription factors interferon regulatory factor 3 (IRF3) and interferon 

regulatory factor 7 (IRF7) were investigated by Western blotting. Here, the strain 

causing a more severe disease form seemed to be able to interfere with IRF3 

protein levels differentially compared to the strain inducing a mild disease form. 

Thus, the data indicate that BVDVncp may interact in more than one way with the 

IFNα/β pathway, potentially by inhibiting IRF3 activity, and that these differences 

could be strain-specific and potentially linked to disease severity.  
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SAMMANFATTNING 

 

Bovint virus diarré virus (BVDV) orsakar ett komplext sjukdomssyndrom hos 

boskap världen över med stora ekonomiska förluster och negativ inverkan på 

djurvälfärden som följd. BVDV delas in i två biotyper, cytopatogen typ och icke-

cytopatogen typ (BVDVcp/BVDVncp). Detta är grundat på virusets effekt på 

celler odlade i cellkultur.  Viruset kan även delas in i genotyper, BVDV1 och 

BVDV2, baserat på genomisk diversitet. Interaktionen mellan BVDV och värdens 

immunförsvar är avgörande för infektionens slutresultat. BVDV orsakar vanligen 

en akut, övergående infektion med inga eller milda kliniska symtom men kan i 

vissa fall orsaka allvarlig sjukdom med dödlig utgång. BVDVncp kan även orsaka 

persisterande infektioner där viruset undviker upptäckt och eliminering av värdens 

immunförsvar. I denna studie utfördes försök för att undersöka effekterna av 

BVDVncp infektion på bovina monocytderiverade dendritiska celler (mDC) med 

avseende på produktion av IFNα/β, IL-10 och IL-12. För att utröna potentiella 

skillnader mellan stammar jämfördes två BVDV1ncp stammar, den ena associerad 

med milda sjukdomssytom vid akut infektion och den andra associerad med 

allvarliga akuta sjukdomssymtom. Denna studie konfirmerar tidigare publicerade 

data som visar att mDC är mottagliga för infektion av BVDVncp vilket innebär att 

viruset potentiellt sett skulle kunna påverka funktionen hos denna viktiga antigen 

presenterande cell. Olyckligtvis erhölls inga konklusiva data från kvantitativ PCR 

för IL-10 och IL-12. Produktion av IFNα/β undersöktes i supernatanter från 

stimulerade mDC och i linje med tidigare publicerade resultat kunde inget IFNα/β 

uppmätas. För att ytterligare utforska hur BVDVncp interfererar med 

produktionen av IFNα/β undersöktes proteinnivåer av transkriptionsfaktorerna 

interferon regulatory factor 3(IRF3) och 7 (IRF7) med Western blot. Resultaten 

visar att virusstammarna interagerar olika med IRF3 och att det virusisolat som 

förknippas med allvarliga sjukdomssymtom ger ökade proteinnivåer av IRF3 i 

mDC. Detta indikerar att BVDVncp kan interferera med IFNα/β-signalvägen på 

mer än ett sätt, potentiellt genom att blockera aktiviteten hos IRF3 och att dessa 

skillnader kan vara stamspecifika med en potentiell koppling till 

sjukdomsframkallande förmåga. 
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ABBREVIATIONS 
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INTRODUCTION 

 

1.1 Bovine viral diarrhoea virus (BVDV) 

BVDV is an endemic viral disease affecting both economical and welfare aspects 

of the cattle industry globally. Despite major control efforts this disease continues 

to cause problems, mainly due to the ability of BVDV to cause persistent 

infections (Houe 1999). The way BVDV interacts with the innate immune system 

is critical both for the pathogenesis of the BVDV disease complex and for the 

development of immunity. Knowledge of these processes is absolutely vital when 

it comes to developing efficacious vaccines.  

1.1.1 Classification and characterisation 

BVDV belongs to the genus Pestivirus within the family Flaviviridae (Table 1.1). 

BVDV has a single stranded positive sense ribonucleic acid (ssRNA) genome 

approximately 12.5 Kb in length with a single open reading frame (ORF). The 

genome is translated to a polyprotein which is cleaved into individual viral 

proteins by host cell and viral proteases (Figure 1.1) (Meyers and Thiel 1996). 

The virus replicates in the cytoplasm and obtains the outer envelope from host 

membranes before being released by exocytosis (Ridpath and Goyal 2005).  
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Tabel 1.1 Taxonomy of the Flaviviridae family 

Family Genus Virus of importance 

to veterinary 

medicine* 

Virus of importance 

to human medicine* 

Flaviviridae    

 Pestivirus   

  Bovine viral 

diarrhoea virus 1 

(BVDV1) 

Bovine viral 

diarrhoea virus 2 

(BVDV2) 

 

  Classical swine 

fever virus 

(CSFV) 

 

  Border disease virus  

  (BDV)  

 Flavivirus    

  Louping ill virus Tick borne 

encephalitis virus 

  West Nile virus 

(WNV) 

Dengue virus 

  Japanese 

encephalitis 

Yellow fever virus 

 Hepacivirus   

   Hepatitis C virus 

(HCV) 

    

Taxonomy of the Flaviviridae family (adapted from the database of the International 

Committee on Taxonomy of Viruses http://www.ncbi.nlm.nih.gov/ICTVdb/). * Not a 

complete list for the genus Flavivirus which contains a number of arthropod borne 

viruses causing important diseases, many with zoonotic potential. 
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5’ 
 
 

 

3’ 

Figure 1.1 Organisation of the BVDV genome (adapted from Meyers and Thiel 1996). 

The structural proteins building up the virion are the nuclocapsid protein C and the 

envelope associated glycoproteins E
rns

, E1 and E2 (Meyers and Thiel 1996). E2 is the 

major target for neutralizing antibodies resulting in protective immunity (Bolin and 

Ridpath 1996 and Bruschke et al 1997). The nonstructural proteins governing viral 

functions are N
pro

, P7, NS2-3, NS4A, NS4B, NS5A and NS5B. In the cytopathic biotype of 

BVDV NS2-3 is cleaved and NS3 is expressed alone at the same level as NS2-3. This 

makes NS3 a marker for BVDVcp (Meyers and Thiel 1996).  

 

The cellular receptor for BVDV is thought to be ubiquitously expressed, such as 

CD46 or the low density lipoprotein receptor (LDL-R), with uptake mediated by 

clathrin coated pits (Agnello et al 1999, Maurer et al 2004, Blanchard et al 2006).  

1.1.1.1 Genotypes  

Genomic and antigenic diversity is well documented among BVDV isolates. 

BVDV is divided into two genotypes; BVDV1 and BVDV2 on the basis of 

phylogenetic studies of the 5’ untranslated region (5’ UTR) (Figure 1.2) (Ridpath 

et al 1994). BVDV1 is predominant in the UK but BVDV2 has been isolated 

(Wakeley et al 2004). 
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Flaviviridae 

Pestivirus 

BVDV 

 

BVDV1                                       BVDV2 

 

 

cp and ncp                                 cp and ncp 

Figure 1.2 Schematic illustration of the general categorisation of bovine viral diarrhea 

virus. BVDV can be subdivided into two genotypes; BVDV1 and BVDV2 (in each of these 

genotypes further subdivision can be made, 11 subgenotypes have recently been 

described within BVDV1 (Vilcek et al 2001). Regardless of genotype BVDV also exists in 

two different biotypes; non-cytopathogenic (ncp) or cytopathogenic (cp). 

 

1.1.1.2 Biotypes 

All pestiviruses occur in two different biotypes depending on their ability to either 

induce visible cytopathic cell death or not: the former is the cytopathogenic 

biotype (BVDVcp) whilst the other is the non-cytopathogenic biotype 

(BVDVncp). The molecular basis remains to be elucidated. At the molecular 

level, BVDVcp but not BVDVncp cleaves NS2-3 to produce NS3 which can be 

used as a marker for infection (Meyers and Thiel 1996, Kümmerer et al 2000). 

1.1.2 The Disease spectrum 

BVDV is responsible for a complex of diseases in cattle ranging from mild 

transient acute infections to fatal mucosal disease. The different aspects of the 

disease and the main concepts of the pathogenesis revealing the interesting nature 

of this virus have been reviewed by many (Stöber 1984, Radostits and Littlejohns 

1988, Brownlie 1991, Brownlie et al 2000). Clinical disease can be divided into 

acute disease, in utero infection and mucosal disease (MD) (Figure 1.3).  
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                                                      BVDV all genotypes 

 

 

          Acute disease                       In utero infections           Mucosal disease (MD)  

 
 
 
 
 
 
 
 
 
 
 

Figure 1.3 Overview of the BVDV disease complex (Stöber 1984, Radostits and 

Littlejohns 1988, Brownlie 1991, Brownlie et al 2000) 

 

1.2 Recognition of viral infection by the innate immune system 

One way in which viral infection can be detected by the innate immune system is 

through pattern recognition receptors (PRRs) recognizing pathogen associated 

molecular patterns (PAMPs). Recognition of PAMP by PRRs activates cellular 

signalling resulting in production of pro-inflammatory cytokines and interferon-

α/β (IFNα/β also known as type I interferon) but also maturation of dendritic cells 

(DCs). PRRs can be classified into several families. One such family is the toll-

like receptor (TLR) family which consists of membrane bound receptors primarily 

present in immune cells but also in other cell types like epithelial cells. Virus 

infection can also be sensed by cytosolic receptors such as the RIG-I-like family 

and the IFNα/β inducible protein protein kinase R (PKR) (Haller et al 2007, 

Hornung et al 2008). 

1.2.1 TLRs 

Expression of TLRs varies dependent upon the cell subset and in some cases 

stimulation. Some TLRs are more ubiquitously expressed whereas other TLRs can 

be restricted to one cell type (Janssens and Beyaert 2003). Up to 14 TLRs 

(Werling and Coffey 2007) have been described in different species and those with 

known functions can be divided into two main groups; TLRs recognizing PAMPs 

made up by lipids and TLRs recognizing PAMPs made up by nucleic acid (Brikos 

and O’Neill 2008).  

Viruses exploit the cellular machinery for their replication and dissemination thus 

lacking many PAMPs, therefore detection is dependent upon recognition of viral 

nucleic acids. So far TLR3, 7, 8 and 9 (Table 1.2) have been described to be 

involved and are strategically located on the endosomal membrane utilising a 

common route of viral infection through the endosomal pathway.  

Transient infections are 
often mild but can include 
clinical signs as agalactia and 
diarrhoea. BVDV2 is 
generally associated with 
the more severe outcomes 
of acute BVDV infections. 
This includes haemorrhagic 
syndrome (HS) characterized 
by thrombocytopenia and 
high mortality. 

 

BVDVncp infections of the 
seronegative pregnant dam 
can, dependent on the 
developmental stage of the 
foetus, result in abortions, 
congenital malformations or 
the birth of a persistently 
infected calf (PI). PI animals 
are viremic for life and lack 
virus specific antibodies. 

MD is an inevitably fatal 
disease associated with 
mucosal erosions in the GI 
tract, especially severe in 
association with lymphoid 
tissue like Peyer’s Patches. 
MD arises when a PI animal 
(usually between 6-18 
months of age) gets 
superinfected with a cp virus 
homologous with the 
persistent ncp virus.  
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Table 1.2 Toll-like receptors sensing viral nucleic acid 

Toll like receptor Ligand General expression 

 

TLR3 Viral dsRNA and the 

synthetic dsRNA mimic 

Poly(I:C) 

The cell membrane or 

endosomal membrane 

depending on cell type and 

species 

TLR7 and TLR8 ssRNA and synthetic 

imidazoquinoline-like 

molecules imiquimod 

(R-837) and resiquimod (R-

848) 

The endosomal membrane 

in immune cells 

TLR9 Unmethylated CpG 

sequences in DNA and 

synthetic CpG-ODN 

The endosomal membrane 

in plasmacytoid dendritic 

cells, species dependent  

Overview of toll like receptors (TLR) involved in viral recognition, their ligand specificity 

and general expression pattern in the human and murine system (Alexopoulou et al 2001, 

Gorden et al 2005, Kawai and Akira 2006, Barton 2007, Müller et al 2008) Poly (I:C): 

Polyinosinic:polycytidylic acid, CpG-ODN: Cytosine-phosphodiester bond- Guanosine 

Oligodeoxynucleotides 

 

TLR3 not only recognises viruses with a double stranded RNA (dsRNA) genome 

but also ssRNA viruses since dsRNA intermediates are produced during 

replication. TLR9 recognises unmethylated CpG sequences in DNA which occur 

in a much higher frequency in bacterial and viral DNA in comparison to 

vertebrate DNA. TLR7 and TLR8 are stimulated by ssRNA viruses but what 

motifs they recognise is unknown (Alexopoulou et al 2001, Kawai and Akira 

2006, Barton 2007, Müller et al 2008). 

1.2.1.1 TLR signalling  

Cellular signalling is generally very complex with different pathways being 

integrated or connected, therefore TLR signalling still contains aspects yet to be 

discovered, however this has been reviewed recently (Kawai and Akira 2006, 

Brikos and O’Neill 2008, Randall and Goodbourn 2008). 

Ligand binding to its specific TLR induces receptor dimerisation bringing 

together a TLR/IL-1 (TIR) signalling domain capable of binding adaptor proteins 

MyD88 or TRIF relaying the signal intracellularly towards the nucleus, ultimately 

activating various transcription factors including NFkB, and ATF2/c-Jun complex 

(Figure 1.4)(Brikos and O’Neill 2008). These transcription factors are central in 

regulating expression of pro-inflammatory cytokines such as IL-6, IL-1β, TNFα 

and IL-12. Signalling through TLRs also activate interferon regulatory factors 

(IRFs), mainly IRF3 and IRF7, which along with NFkB and ATF2/c-Jun regulate 

transcription of IFNα/β allowing an anti-viral state to be created (Kawai and Akira 

2006). The TLRs’ involvement in induction of IFNα/β expression and induction 

of DC maturation is of utmost importance in the antiviral immunity (Parker et al 

2007, Barton 2007).  

 
  

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Gorden%20KB%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
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Figure 1.4 Schematic representation showing an outline of TLR-signalling pathways 

(adjusted from Kawai and Akira 2006, Randall and Goodbourn 2008,  Brikos and 

O’Neill 2008) MyD88 is used as an adaptor by the IL-1 receptor and most TLRs except 

TLR-3. Binding of MyD88 to the receptor leads to employment of interleukin-1 receptor-

associated kinases (IRAKs) which bind tumour necrosis factor receptor-associated factor 

6 (TRAF6) to the receptor signalling complex. IRAKs and TRAF-6 will activate interferon 

regulatory factor 7 (IRF7) which translocates to the nucleus to stimulate IFNα/β 

production. TRAF6 interacts with an additional complex consisting of TAK1-binding 

proteins (TAB2/3) and transforming growth factor-β-activated kinase 1 (TAK1). TAK-1 is 

the key kinase passing on the phosphorylation cascade to the inhibitor of NFκB kinase 

(IKK) complex. This complex phosphorylates inhibitor of NFκB (IκB) leading to 

degradation of this protein and dissociation from nuclear factor-kappaB (NFκB). 

Subsequently NFκB translocates to the nucleus and stimulates transcription of 

proinflammatory cytokines. In addition to activatining IKK TAK-1 also activates the 

mitogen activated protein kinase (MAPK) cascade which results in activation of AFT-2/c-

Jun, transcription factors stimulating expression of IFNα/β and pro-inflammatory 

cytokines.  
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In TLR3 signalling the adaptor protein TIR domain-containing adapter inducing IFN 

(TRIF) is employed instead of MyD88. To transmit the stimulatory signal TRIF binds a 

kinase called TRAF-family-member-associated NFκB activator binding kinase 1 (TBK1). 

TBK1 activates interferon regulatory factor 3 (IRF3) and a homologue to IKK named 

IKKε. NFκB activation via TLR3 requires assembly of TRAF6 and receptor interacting 

protein 1 (RIP1) to recruit the IKK complex. 

 

1.2.2 Cytosolic receptors sensing dsRNA 

TLR expression is limited dependent upon cell type, however all cells have the 

ability to sense and respond to dsRNA via cytosolic receptors (Figure 1.5). RIG-1 

and MDA5 are ubiquitously expressed receptors which activate NFkB and IRF3 

and IRF7 upon binding dsRNA resulting in the transcription of IFNα/β and pro-

inflammatory cytokines (Meylan et al 2006, Randall and Goodbourn 2008). 

Interferon inducible protein kinase R (PKR) is activated by dsRNA resulting in 

further amplifying IFNα/β production and the shut down of protein synthesis 

through the inactivation of protein translation initiation factor eIF2 (Kumar et al 

1994, Zamanian-Daryoush et al 2000).  
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Figure 1.5 Different intracellular receptors sensing dsRNA (adapted from Haller 2007). 

Retinoic-acid-inducible gene I (RIG-I)-I and melanoma-differentiation-associated gene 5 

(MDA5) elicit activation of NFκB and IRF3 and IRF7 when stimulated by dsRNA. 

Signalling is similar to the pathway previously described for TLR3. Activated MAD5 and 

RIG-I activate TBK1 and IKKε via the adaptor protein interferon-β promoter stimulator-

1 (ISP-1) (Kawai et al 2005, Meylan et al 2006). Protein kinase R (PKR) has been shown 

to activate NFκβ via activation of inhibitor of NFκB (IKK) which inactivates inhibitor of 

NFκB (IκB) (Kumar et al 1994, Zamanian-Daryoush et al 2000, Hovanessian 2007). 

 

1.2.3 The IFNα/β response 

IFNα/β is a group of cytokines integral to the anti-viral immune response capable 

of inducing an anti-viral state in an autocrine and paracrine manner signalling 

through IFNα/β receptor (Figure 1.6). As described above, all cell types can 

mount an IFNα/β response; however the exact mechanism of induction is diverse 

and dependent upon cell type and viral recognition receptors. IFNα/β anti-viral 

actions include activation of NK-cells and DCs, promotion of cross-presentation 

and production of IFNγ from DCs and T-cells, favouring a Th1-cell mediated 

immune response (Haeryfar 2005). 
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Figure1.6 Schematic picture of IFN signalling (adapted from Haller et al 2007). 

Signalling via the IFNα/β receptor (IFNR) employs the JAK/STAT pathway. This pathway 

includes Janus kinase (JAK1), tyrosine kinase 2 (TYK2) and signal transducer and 

activator of transcription (STAT1 and STAT2). Activation of the receptor leads to 

dimerisation of STAT1 and STAT2 and subsequent translocation to the nucleus where the 

heterodimer interacts with interferon regulatory factor 9 (IRF9). The complex formed is 

called interferon stimulated gene factor 3 (ISGF3) and binds to interferon stimulated 

response element (ISRE) in promoters of IFN stimulated genes (ISG). The result is 

upregulation of hundreds of genes responsible for creating an antiviral sate in the cell. 

The functions of a few of these genes have been investigated in detail. Important 

mediators of the cellular antiviral response are protein kinase R (PKR), 2’5’-

oligoadenylate synthetase (OAS) and the Mx protein. The result of IFNα/β stimulation 

includes shutting down cellular protein synthesis, arresting the cell cycle and establishing 

a pro-apoptotic state in the cell (Randall and Goodbourn 2008). In contrast to the 

IFN-α/β IFN-α/β 
IFNR 

PRRs 

Virus 

IRF7 IRF3 

N
FκB

 

A
FT-2

/ 
c-Ju

n
 

IFN-α/β 

ISG ISRE 

OAS 

PKR Mx 

JAK-1/TYK-2 

STAT-2 
STAT-1 

IRF-9 

ISGF-3 

N
FκB

 



23 

 

ubiquitously expressed IRF3, expression of IRF7 is normally very sparse (except in 

plasmacytoid dendritic cells also called natural interferon cells). IFNα/β upregulate IRF7 

expression which amplifies the interferon response in a positive feedback loop (Paun and 

Pitha 2007). 

 

1.3 Dendritic cells (DCs) 

DCs were first described in 1973 by Steinman and Cohnin. It is now clear that 

DCs compromise a very heterogeneous population of cells with different 

functions and specific expression patterns of cell surface markers. The bovine 

system does not seem to be an exception when it comes to heterogeneity in DC 

populations. At least two subsets of DCs that show functional differences in vitro 

have been differentiated in bovine afferent lymph (Howard et al 1997, Howard et 

al 1999, Stephens et al 2003). All DCs are however derived from a common 

multipotent haematopoietic stem cell and can be generated from either myeloid or 

lymphoid precursors (Shortman and Liu 2002, Fitzgerald-Bocarsly and Feng 

2007). A broad, commonly encountered division of DC populations is 

conventional DCs (cDCs) versus plasmacytoid DCs (pDCs). The latter of these 

two is at present under characterisation in the bovine system (unpublished data, A. 

Stalker personal communication). The major task of pDCs during viral infections 

is production of vast amounts IFNα/β and less so antigen presentation (Carbone et 

al 2003, Haeryfar 2005). The following general description of DC function 

applies to the cDC.  

1.3.1 Functions of immature DCs- antigen uptake 

In their immature state DCs act as sentinels of the immune system. Strategically 

scattered in close proximity with epithelium outlining body surfaces they 

constantly sample the environment for antigen. DCs are extremely efficient in 

antigen uptake by a number of different mechanisms such as constitutive 

macropinocytosis (Sallusto et al 1995) (this has not been demonstrated in bovine 

monocyte derived DCs (mDCs) (Werling et al 1999)), receptor mediated 

endocytosis (Sallusto and Lanzavecchia et al 1994, Arnold-Schild et al 1999), 

phagocytosis (Reis e Sousa et al 1993) and caveaolae formation (Werling et al 

1999). In addition to antigen uptake, innate properties of DCs include cytokine 

production and production of anti-microbial proteins and peptides such as 

defensins and members of the complement system. Production of interleukin-12 

(IL-12) and IFNα/β provides innate resistance, activating natural killer cells (NK-

cells) and IFNα/β, stimulating antiviral defenses. The mobilised NK-cells and the 

produced cytokines (e.g. IL-12 and IFNα/β) act back on the DCs to drive their 

maturation but also to influence the subsequent adaptive immune response 

(Andoniou et al 2005, Steinmann and Hemmi 2006). 

1.3.2 Functions of mature DCs- antigen presentation 

Recognition of PAMPs via PRRs along with stimulation by pro-inflammatory 

cytokines (such as TNFα and IL-1β) leads to activation and maturation of DCs. 

During maturation DCs change from being a specialised phagocyte in the 

periphery to becoming a professional antigen presenting cell (APC) able to 

activate antigen specific T-cell clones in secondary lymphoid tissues. En route, 

DCs acquire the characteristic dendritic shape, increase expression of surface co-

stimulatory molecules (such as CD40, CD80 and CD86), process and present 
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antigen on major histocompatibility complexes (MHC I and II) allowing efficient 

contact with, and activation of, naïve T-cells upon reaching the T-cell paracortex. 

Depending on the stimuli initiating DC maturation the DC will initiate different T-

cell responses, in that way shaping the adaptive response to suit the specific 

pathogen (Pulendran et al 2001). The nature of the adaptive response is 

determined firstly by the peptide-MHC complex presented (endogenous antigen 

on MHC I and exogenous antigen on MHC II presented to CD8
+
T-cells and 

CD4
+
T-cells respectively) and secondly by the cytokines present in the 

microenvironment, for instance production of IL-12 and IFNγ will result in a Th1-

biased cell mediated immune response (Mellman and Steinman 2001, Steinmann 

and Hemmi 2006). Furthermore, DCs seem to be the cell type with the most 

evolved cross-presenting abilities (Hotta et al 2005). Cross-presentation of 

antigen to CD8+T-cells is important when APCs are resistant to the infecting 

virus enabling extracellular antigen to be presented on MHC class I. This allows 

uninfected APCs to present antigen from engulfed virus infected cells on MHC 

class I stimulating CD8
+
T-cells (Brode and Macary 2004). 

1.3.3 Bovine mDCs 

The most common procedure for generating DCs is culturing the easiest 

accessible DC precursor; the blood monocyte with granulocyte-macrophage 

colony-stimulating factor (GM-CSF) and IL-4 (IL-4) (Romani et al 1994). This 

procedure has also been described for production of bovine mDCs (Werling et al 

1999). Bovine DCs derived from blood monocytes express moderate to high 

levels of costimulatory molecules and MHC class II molecules and have a down 

regulated expression of the myeloid cell differentiation molecule CD14, 

commonly used as a marker for monocytes (Beekhuizen et al 1991, Bajer et al 

2003,). Bovine mDCs provide a good tool for studying DC function in vitro.  

 

1.4 BVDV and immunity 

The interaction between BVDV and the host’s immune system is a key feature in 

the BVDV disease complex. Establishment of persistent infections in the foetus is 

the most evident outcome of the ability of BVDV to subvert the immune system. 

Another effect of BVDV on the immune system is transient immunosuppression 

associated with acute infections. The mechanism behind this effect is under 

investigation, for a good review see Chase et al 2004. BVDV has been shown to 

infect many immune cells including T-cells, B-cells, monocytes, macrophages and 

DCs (Sopp et al 1994, Glew et al 2003). Infecting APCs (macrophages, DCs and 

B-cells) has the potential to strongly affect the immune response since they have a 

key role in inducing and shaping the adaptive immune response.  

So far most research has focused on how BVDV affects bovine monocyte and 

macrophage function. BVDV has been shown to alter function of TLRs, 

expression of cytokines and costimulatory molecules in bovine monocytes and 

macrophages (Franchini et al 2006, Lee et al 2007) resulting in an adverse affect 

on their ability to stimulate Th-cells (Glew et al 2003). No impairment of APC-

function has however been demonstrated for BVDV infected DCs.  
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1.4.1 In Utero Infections and Generation of PIs 

Both BVDV biotypes interact differently with the immune system, with the most 

documented distinction being the capacity to stimulate IFNα/β production (Table 

1.3).  

 

Table 1.3 IFNα/β production in response to BVDV infection 

BVDV biotype Effect on type I interferon production 

 

Cytopathogenic IFNα/β↑in vitro and in vivo including the 

early foetus 

 

Non-cytopathogenic IFNα/β↓in vitro in most cell types and in 

vivo in the early foetus 

IFNα/β↑in vivo apart from in the early 

foetus 

 

Differential effects of BVDVcp and BVDVncp on IFNα/β production (adapted from Chase 

et al 2004). In vitro studies have shown that BVDVcp but not BVDVncp induces IFNα/β 

production (Adler et al 1997, Peterhans et al 2003, Glew et al 2003). It has also been 

demonstrated that BVDVcp induces IFNα/β production in the early foetus whereas 

BVDVncp does not (Charlston et al 2001) thus, the incapability of cp virus to establish 

persistent infections. Infection of immunocompetent calves with BVDVncp on the other 

hand results in production of IFNα/β (Charleston et al 2002, Müller-Doblies et al 2004). 

This difference in interferon response to BVDVncp infection in the foetus and the 

immunocompetent calf may be dependent on the developmental stage of the innate 

immune system. The cellular source of IFNα/β in BVDV infections could be the bovine 

equivalent to plasmacytoid dendritic cells which have not yet been fully characterized in 

cattle. Identification of this interferon producing cell explains why BVDVncp does not 

induce any detectable interferon response in other cell types in vitro in contrast to the 

interferon levels detected in vivo following infection with BVDVncp (Brackenbury et al 

2005).  

 

Unlike BVDVcp, BVDVncp evades the IFNα/β response in the early foetus 

enabling the establishment of persistent infection (PI). Both biotypes can cross the 

placenta to initiate foetal infection; however the outcome is dependent upon both 

the developmental stage of the foetus and the biotype (Table 1.4). 
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Table 1.4 Outcomes of in utero infections with BVDVncp 

Time of infection Consequence  

 

First trimester (0 to 110 days) 

 

Abortions, foetal mummification, 

congenital damage in organs with active 

cell division at the time of infection (lungs, 

skin, eyes, thymus and CNS are the organs 

most commonly affected) 

Establishment of persistent infections 

 

Second trimester (110 to 180/200 days) 

 

 

Foetal loss and congenital damage 

Third trimester (200 and onwards) 

 

The immune system is mature enough to 

mount a protective response  

 

Outcomes of in utero infections with BVDVncp (adapted from Brownlie et al 2000) 

 

Whereas BVDVcp infection seems to be cleared by the foetus, BVDVncp 

infection of a seronegative dam results in a high frequency of abortions, 

congenital damage and if infection occurs in the first trimester might result in the 

birth of a PI animal (Brownlie 1989, Brownlie 1991). At this stage, the immune 

system of the foetus is not yet developed and cannot clear the virus, resulting in 

tolerance to the infecting virus. PI animals are the main source of virus within a 

herd, constantly excreting large amounts of virus, creating an important 

transmission route during movement (Brownlie et al 1986, Houe 1999). A further 

complication with PI animals is the development of inevitably fatal Mucosal 

Disease (MD) associated with severe lesions within the mucosa of the 

gastrointestinal tract. Experimentally, MD can be induced in PIs from 

seronegative dams infected with BVDVncp in the first trimester and subsequently 

superinfected with antigenically homologous BVDVcp or through spontaneous 

conversion of BVDVncp to BVDVcp (Brownlie et al 1984, Bolin. et al 1985, 

Brownlie 1991, Brownlie and Clarke 1993). The exact pathogenesis behind 

lesions observed in MD and the mechanisms for conversion of BVDVncp to 

BVDVcp is largely unknown.  

1.4.2 Acute BVDV Infections  

Acute infections can be caused by both biotypes of BVDV where the outcome is 

highly variable mostly due to virulence of the individual strain (Table 1.5). 
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Table 1.5 Outcomes of acute transient BVDV infections 

 

Virulence Clinical signs and findings Viral spread 

 

Low virulence 

 

No evident clinical signs 

Mild pyrexia, mild 

leucopenia and decreased 

milk production 

 

Virus mainly confined to 

lymphoid organs but also 

detected in the intestinal 

mucosa 

High virulence 

 

 

Severe pyrexia, anorexia, 

depression, diarrhoea, 

occulo-nasal discharge, 

respiratory distress, 

haemorrhage, severe 

lymphopenia and 

thrombocytopenia, high 

mortality in all age groups 

Lesions include cell 

depletion in lymphoid 

organs, epithelial necrosis 

in the GI tract and 

pneumonia 

Predominantly in lymphoid 

tissues, mucosa of the GI 

tract, respiratory tract, 

endocrine organs, bone 

marrow but eventually 

general spread to most 

organs 

 

Overview of the most frequently seen outcomes of acute BVDV infections caused by 

strains of high and low virulence. (Development of clinical signs and distribution of the 

virus have been documented in field cases and experimental infections Pritchard et al 

1989, Sol et al 1989, Wilhelmsen et al 1990, Hibberd et al 1993, David et al 1994, Marshall 

et al 1996, Spagnuolo-Weaver et al 1997, Bruschke et al 1998, Carman et al 1998, Odeón 

et al 1999, Hamers et al 2000, Stoffregen et al 2000, Muskens et al 2004, Dabak et al 

2007) Hypervirulent strains predominantly belong to the BVDV2 genotype and are 

largely confined to North America (Pellerin et al 1994). However all BVDV2 strains are 

not hypervirulent (Ridpath et al 2000) and outbreaks of severe acute BVDV infections 

have also been caused by strains identified as BVDV1 (Hibbered et al 1993, Muskens et 

al 2004 and Hamers et al 2000) Both low and high virulent strains initially replicates in 

the nasal mucosa (Bruschke et al 1998) followed by spread of the virus to various tissues. 

Strains of high virulence show a more widespread distribution than low virulent strains. 

Severe clinical signs are correlated with a higher level of viremia (Walz 2001) but 

specific virulence factors for BVDV have not yet been characterized. The pathogenesis 

behind the lymphocyte depletion, thrombocytopenia and mucosal lesions is unknown.  

 

Most acute infections are mild or subclinical; however the incidence of severe 

acute BVDV infections is increasing (Pritchard et al 1989, Sol et al 1989, 

Hibberd et al 1993, David et al 1994, Carman et al 1998, Muskens et al 2004). 

Mild infections should not be neglected, BVDV infections are suspected to cause 

immunosuppressive effects (Brownlie 1991) and if concurrent with insemination, 

result in reduced conception and pregnancy rates in heifers (McGowan et al 

1993). Acute infections are cleared however, with protective antibodies generally 

being detected 2-3 weeks post infection for which CD4+T-cells are required 

(Howard et al 1992). Adaptive immune responses to BVDV also differs between 

biotypes, with BVDVncp inducing a stronger, faster humoral Th2-biased response 
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than BVDVcp which mostly results in a Th1-biased, cell mediated immune 

response (Lambot et al 1997, Rhodes et al 1999, Collen et al 2000). 

 

1.5 Aims and hypothesis of the project 

Until recently most research has focused on the differences between BVDVncp 

and BVDVcp, however the increase in incidence of severe type 1 BVDVncp 

infections asks for more knowledge about BVDVncp strain virulence. Knowledge 

about how ncp strains of different virulence interact with the immune system may 

explain how BVDVncp infections can result in such an array of diverse 

syndromes as persistent infection, subclinical transient infections and fatal 

disease.  

The aim of this project is to compare cytokine production from bovine mDCs 

stimulated with the BVDVncp type 1 strains, Ho916ncp and Ky1203ncp. 

Ho916ncp was originally isolated from a severe fatal outbreak of BVDV in a 

dairy herd 1993 (Hibberd et al 1993). Experimental infection of gnotobiotic 

calves with Ho916ncp resulted in prolonged viremia (more than 2 weeks, to be 

compared with 7-10 days for mild transient infections) and marked 

thrombocytopenia which is rare for type 1 isolates (unpublished data, J. Brownlie, 

personal communication). In contrast to Ho916ncp which can be described as 

causing acute severe disease, Ky1203ncp (originally isolated from a field case of 

MD) is associated with mild acute disease (J. Brownlie personal communication).  

The hypothesis is that these two ncpBVDV type 1 strains associated with different 

clinical outcomes also will differ in the cytokine response they induce from 

mDCs.  
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MATERIAL AND METHODS 

 

2.1 Experimental outline  

Peripheral blood mononuclear cells (PBMCs) were isolated from 3 animals. 

CD14+ cells were enriched by magnetic cell sorting (MACS) and cultured in the 

presence of recombinant bovine (rbo) IL-4 and rboGM-CSF for 6 days to 

differentiate into mDCs (Figure 2.1). mDCs were infected with virus strains 

Ho916ncp and Ky1203ncp, respective mock and control ligands. After 48 hrs 

cells were harvested, isolating supernatants and cell lysates. To analyse 

supernatants for IFNα/β production a chloramphenicol acetyltransferase (CAT) 

enzyme reporter gene assay was employed. Protein and RNA were extracted from 

cell lysates and cDNA synthesised to asses expression levels of IL-10 and IL-12 

by quantitative polymerase chain reaction (qPCR). Protein extracts were analysed 

by Western blotting for IRF3 and 7. In addition, the ability of the BVDV strains to 

infect mDCs was examined by immunoperoxidase (IPX) staining. Unstimulated 

mDCs and transfected Mardin-Darby bovine kidney cells (MDBKt2) cells were 

screened for BVDV and TLR-expression by reverse transcriptase PCR. 

Expression of CD14 was assessed by flow cytometry on isolated CD14+ cells and 

compared with the same cells after 6 days culturing with rboIL-4 and rboGM-

CSF. All cell culturing and virus work was carried out in class II safety hoods.  

Figure 2.1 Experimental outline and timeline showing the hypothetical minimal time 

required for processing and analyzing one set of samples. Due to a number of practical 

issues like limited access to lab facilities and restricted time points for bleeding animals 

this hypothetical timeline could not be followed. After day 8, harvesting of the stimulated 

mDCs cell lysates and supernatants were stored at -20° until following processing of 

samples could be performed. mDCs were isolated from 3 animals and stimulated with 

virus but due to the time limit only the interferon assay was carried out for all 3. Western 

blot and qPCR analysis were only completed for 2 animals.  
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2.2 Animals and blood collection 

Blood was collected from 3 Holstein-Friesian bullocks between 6 and 8 months of 

age housed at Bolton Farm at the Royal Veterinary College, UK. All animals were 

tested for BVDV antibodies and presence of viral nucleic acid by the Veterinary 

Laboratories Agency, UK. Blood was collected from the jugular vein into sterile 

glass bottles using 10% acid citrate dextrose (ACD) buffer as anticoagulant 

(Appendix 1).  

 

2.3 mDCs 

2.3.1 Isolation of monocytes and generation of mDCs 

PBMCs were isolated from whole blood as previously described (Werling et al 

1999) with minor modifications. Blood was added to 50ml Falcon tubes and buffy 

coat isolated by centrifugation (1500 g, 20 min). The buffy coat was washed with 

phosphate buffered saline (PBS) (Sigma Aldrich, UK) (300 g for 10 min at 4
°
C). 

Red blood cells were lysed by incubation in ammonium-chloride lysis buffer for 

10 min (Appendix 1) and white blood cells washed three times with PBS (600 g 

for 10 min at 4
°
C). The cell pellet was resuspended in 30 ml PBS and under-laid 

with 15 ml Histopaque (density=1.083 g ml
-1

, Sigma Aldrich, UK). After 45 min 

centrifugation at 1200 g at room temperature (RT) PBMCs were isolated from the 

interface layer. After two more washes in PBS the PBMCs were counted and their 

viability assessed by Tryphan Blue exclusion (0.1% Sigma Aldrich).  

To isolate monocytes, PBMCs were incubated with mouse anti human CD14 

coated paramagnetic microbeads and separated using a MidiMacs column 

(Miltenyi Biotech, Germany) according to manufacturer’s instructions. To 

generate DCs, CD14
+
 enriched cells were cultured at 2 x 10

6
 cells per well in 6 

well low-binding plates (Corning, Sigma Aldrich, UK) using mDC media 

(Appendix 1) containing rboIL-4 and rboGM-CSF (Glew et al 2003, Werling et al 

2006). Cells were cultured for 6 days, and every second day 2 ml media was 

replaced. On day 6, media was removed and mDCs harvested using 1 ml Accutase 

(PAA, Austria) per well to dislodge cells from the plastic.  

2.3.2 Flow cytometric analysis of CD14 expression on monocytes and 
mDCs 

Monocytes and mDCs were adjusted to a concentration of 8 x 10
6
cells ml

-1
 in PBS 

1%BSA 0.01%NaN3 (Appendix 1). 25 μl of the cell suspension was added to 

labeled wells on a 96 well U-bottom plate (Greiner, Germany). After 2 min 

centrifugation 170 g for 2 min at 4
°
C, discarding supernatant the cells were 

resuspended in 25 μl sterile filtered goat serum (Sigma-Aldrich, UK) and 

incubated 10 min at RT. Cells were stained with 25 μl FITC-conjugated mouse 

antihuman CD14 TÜK4 clone antibody (Ab) (Serotec, UK) diluted 1:10 in PBS 

1%BSA 0.01%NaN3. 25 μl PBS 1%BSA 0.01%NaN3 was added to negative 

control wells. After 15 min incubation in darkness cells were centrifuged as above 

before resuspended in 400 μl PBS and analysed by a BD FACSAria Flow 

Cytometer (Immunocytometry Systems, BD Biosciences, UK). Generated data 

was further analyzed in FlowJo (Version 7.2.1 TreeStar, USA).  
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2.4 Susceptibility of mDCs to BVDV infection 

2.4.1 Infection of mDCs with BVDV 

mDCs cultured in 24 well plates (Greiner, Germany) at 1 x 10
5
 cells per well in 

mDC media were infected with the BVDV strains Ho916ncp and Ky1203ncp at a 

multiplicity of infection (MOI) of 0.1. The virus stocks were kindly supplied by J. 

Brownlie, RVC, UK, grown and titred as described (Brownlie et al 1984) with a 

determined titre of 3.65 x 10
5
 TCID50 ml

-1
 and 1.12 x 10

6 
TCID50 ml

-1
 

respectively. BVDV strain NADL was used as a positive control to generate 

distinctive IPX staining results. The NADL BVDV strain as well as MDBK-cells 

were included as positive controls for staining procedures and infectivity assays, 

respectively (Deregt D. and Prins S. 1998). MDBK-cells were cultured to 80% 

confluency in MDBK growth media (Appendix 1) at 37˚C, 5% CO2 and in MDBK 

assay media (Appendix 1) at 1 x 10
5
 per well for the infection assay. Infected cells 

(summarized in Table 2.1) were incubated 24 hrs at 37˚C, 5% CO2. 

 

Table 2.1 Conditions used to study susceptibility of mDCs to Ho916ncp and Ky1203ncp 

 
Cell type Virus 

mDC - 

mDC NADL 

mDC Ho916ncp 

MDBK Ho916ncp 

mDC Ky1203ncp 

MDBK Ky1203ncp 

Each condition was set up in duplicate. The virus strains were separated on different 

plates to minimize the contamination risk. This experiment was set up in 3 individual 

repeats with mDCs isolated from different animals.  

 

2.4.2 IPX staining 

IPX staining was used to identify BVDV infected cells by light microscopy (Ward 

and Kaeberle 1984). Cells were fixed in 80% ice cold acetone (BDH, VWR, UK) 

for 30 min at -20˚C. IPX staining was performed incubating cells with 

hyperimmune BVDV serum (V182, J. Brownlie), diluted 1:100 in PBS-Tween 

(PBS-T) 5% normal rabbit serum (NRS) (Appendix 1) for 20 min at 37˚C, 

followed by four times washing in PBS-T. Thereafter, cells were incubated with 

anti-bovine horseradish peroxidase conjungate Ab (Sigma Aldrich, UK; diluted 

1:2000 in PBS-T 5% NRS) as described above. Cells were washed as described, 

and Ab binding was visualised by incubation with di-amino benzidine (DAB) 

substrate (Sigma Aldrich, UK) in darkness for 20-30 min. Cells were examined 

using an inverted microscope. Brown, cytoplasmic staining indicated presence of 

BVDV.  
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2.5 Stimulation of IFNα/β production in mDCs 

mDCs were plated at 5 x 10
5 

cells per well in flat bottom 96well plate (Greiner, 

Germany) in mDC media (Appendix 1). Plates were incubated at 37˚C, 5% CO2 

to let cells adhere before stimulated with ligands, 4 wells per ligand (Table 2.2, 

Figure 2.2). 

Table 2.2 Stimulation ligands 

Ligands used to stimulate mDCs. * Denotes phosphorothioate bond. Poly(I:C) from 

Alexis Biochemical, UK and CpG  from Coley Pharmacueticals, USA. CpG 2243 is a 

scrambled control sequence.  

 
 

 

 

 

 

 

 

 

 

Figure 2.2 Plate layout for stimulation of mDCs. Plates were harvested after 48 hrs 

incubation at 37˚C, 5% CO2. Supernatants were collected from the first two wells of each 

condition (green) and RNA extracted from the cells. From the second two wells (red) the 

supernatant was discarded and protein extracted.  

 

The total volume in each well was adjusted to 200 μl with mDC media and plates 

incubated 48 hrs at 37˚C, 5% CO2. Supernatant from 2 wells of each condition 

was collected for IFNα/β analysis. Cells were washed once with PBS and 

thereafter prepared for RNA extraction or protein extraction using RLT buffer 

Ligand Sequence/Details  Concentration  

Poly(I:C) polyinosinic: polycytidylic acid  10 μg ml-1 

CpG 2336 G*G*GGACGACGTCGTGG*G*G*G*G*G 50  μg ml-1 

CpG 2243 G*G*G*GGAGCATGCTGG*G*G*G*G*G 50  μg ml-1 

BVDV 

Ho916ncp 

Ho916ncp infected MDBK cell lysate supernatants MOI of 0.1 

Mock Ho916ncp  Mock infected MDBK cell lysate supernatants MOI of 0.1  

BVDV 

Ky1203ncp 

Ky1203ncp infected MDBK cell lysate supernatants MOI of 0.1 

Mock 

Ky1203ncp  

Mock infected MDBK cell lysate supernatants MOI of 0.1 

 

 

 

 

 

 

 

 

Ky1203ncpMOC

K 

Ho916ncp, MOI 

0.1 

Ky1203ncp, MOI 

0.1 

Ho916ncpMOCK 

mDC media 

Poly(I:C) 

CpG 2336 

CpG 2243 
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(QIAGEN, UK) or Mammalian Protein Extraction Reagent (MPER) mixed with 

Halt protease inhibitor (Thermo Scientific, UK) according to manufacturers’ 

protocol. Samples were stored at -20˚C.  

 

2.6 Detection of IFNα/β 

2.6.1 Sub-culturing MDBKt2-cells 

MDBKt2-cells were cultured until 80% confluent at 37˚C, 5% CO2 in MDBKt2 

media (Appendix 1). MDBKt2-cells were used for IFNα/β detection in 

supernatants from stimulated mDCs using a CAT enzyme reporter gene assay as 

previously described (Fray et al 2001). The MDBKt2-cells are transfected with a 

plasmid containing the human Mx gene promoter coupled with a gene encoding 

CAT-enzyme. IFNα/β stimulate the Mx promoter inducing transcription of CAT 

enzyme. The amount of CAT-enzyme can be quantified by a commercially 

available enzyme linked immunosorbant assay-kit (CAT-ELISA; Roche 

Diagnostics, Germany). 

For the CAT reporter gene assay MDBKt2-cells were plated in 24 well plates 

(Greiner, Germany) at 2.5 x 10
5
cells per well in 2% MDBKt2 assay media 

(Appendix 1). After 24 hrs in culture, media was removed and cells washed with 

PBS before adding 400 μl MDBKt2 2% assay per well. 100 μl of either mDC-

supernatant, recombinant human (rhu)IFNα (NIBSC, UK), or rboIFNα (Molecular 

Immunology, RVC) was used to create a standard curve as well as internal 

reference. To do so, 250 international units (IU) of rhuIFN were serial diluted 1:2, 

whereas rboIFN was serial diluted 1:4. Plates were incubated 24 hrs at 37˚C, 5% 

CO2 and thereafter stored at -20˚.  

2.6.2 Stimulation of MDBKt2-cells 

To assess the ability of MDBKt2-cells to directly respond to IFNα/β-inducing 

ligands or BVDV virus, MDBKt2-cells were stimulated as described in 2.5 and 

cell lysates analysed by the CAT-ELISA kit.  

2.6.3 CAT-ELISA 

The CAT-ELISA was performed as according manufacturer’s protocol, and the 

principle of this sandwich ELISA is shown in Figure 2.3. and Figure 2.4.  
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Figure 2.3 Principle for sandwich ELISA detecting CAT-enzyme. The ELISA plate is 

coated with anti-CAT antibodies. The secondary anti-CAT antibody is labelled with 

digoxigenin. A F(ab)-fragment against digoxigenin conjugated with peroxidase will 

visualize antibody binding when peroxidase substrate is added. The reaction between 

substrate and peroxidase yields a coloured product.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substrate 
Anti-DIG-POD F(ab)-
fragment 

Anti-CAT-DIG 

CAT 

Anti-CAT-coated microplate 



35 

 

 

Figure 2.4 Schematic Flow Chart of CAT-ELISA protocol. 200 μl per well of samples and 

standards diluted 1:2 was added to the ELISA plate. After 1 hr incubation at 37˚C and x5 

washing with washing buffer 200 μl digoxigenin labelled anti-CAT antibody (anti-CAT-

DIG) was added per well. Incubation and washing was repeated before adding 200 μl 

peroxidase labelled anti-digoxigenin antibody (anti-DIG-POD) per well. After a final 

incubation and x5 wash 200 μl peroxidase substrate was added. The optical density (OD) 

of individual wells was read at 405 nm with 490 nm reference (SpectraMax M2 

microplate reader, Moleculer Devices, USA).  

 

2.7 RNA extraction 

Total RNA from mDC stimulated as described in section 2.5 was extracted using 

the RNeasy mini kit (QIAGEN, UK) according to manufacturer’s protocol. 

Extracted RNA was treated with RNase-free DNase I (Ambion (Europe) Ltd., 

UK) at 37°C for 20 min to remove contaminating genomic DNA. RNA yields and 

quality were determined using a NanoDrop
®

 ND-1000 Spectrophotometer 

(NanoDrop Technologies, USA) (260/280 ratio >1.9 regarded satisfactory).  

 

2.8 cDNA synthesis 

For each sample, 10 ng of RNA was transcribed to cDNA using the Supercript II 

reverse transcription system (Invitrogen, UK). Briefly, reverse transcription was 

performed using 200 units SuperScript II reverse transcriptase (Invitrogen, UK), 

500 ng oligo dT, 10 mM deoxyribonucleoside triphosphate (dNTPs) mix, 10 mM 

dithiothreitol (DTT), 5× first-strand buffer and 40 units RNAsin (Promega, UK). 

The reverse transcription reaction was allowed to proceed at 42°C for 50 min, 

followed by 70°C for 15 min. Synthesised cDNA was incubated at 37°C for 20 

min with 2 units RNase H (Promega) to remove original RNA templates. cDNA 

yields and quality were determined using a NanoDrop
®
 ND-1000 

Spectrophotometer. The integrity of the cDNA was assessed by PCR for the 

200 μl of standards 
and samples/well 

samples/well 

200 μl anti-CAT-DIG 

 
200 μl anti-DIG-POD 

 

POD substrate 

Analyse OD at 405 nm 
with 490nm reference 
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constitutively expressed gene β-actin (see 2.9 and Table 2.3). cDNA was stored at 

-20°C until required.  

To detect BVDV nucleic acid in potentially infected cells reverse transcription 

was performed as above but using 500 ng random hexamer primers (GE 

Healthcare, UK) instead of oligo dT primers. 

 

2.9 PCR 

PCR amplification of cDNA adjusted to 50ng µl
-1

 was carried out using primers 

listed in Table 2.3. A 50 µl reaction was used containing 50 ng cDNA template, 

10 pmol µl
-1

 sense and antisense primers, 10 mM dNTPs 10 mM, (Bioline, UK), 

1x GoTaq green reaction buffer (Promega, UK) and 1.25 units GoTaq DNA 

Polymerase (Promega, UK). Molecular Biology Water (Sigma Aldrich, UK) was 

used as negative control and plasmid preps (0.5 µl per reaction) as positive 

controls (Appendix 2). The reaction was heated to 94°C for 2 min, followed by 30 

cycles of 94°C for 40 sec, 55°C for 1 min, 72 °C for 1 min, and a final extension 

step of 72°C for 7 min. PCR was performed on a G-STORM thermocycler (GRI 

systems, UK). 
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Table 2.3 PCR primers  

 

PCR products were analysed by electrophoresis (100 V, 30 min) on a 1% agarose 

gel containing 1 µl Safe View (NBS Biologicals, UK) loading 5 µl of each PCR 

product and 5 µl 100 bp DNA Ladder (Fermentas, Germany). DNA bands were 

visualised by ultraviolet transillumination. 

 

2.10 TaqMan® qPCR  

mRNA expression of IL-10 and IL-12 from mDCs stimulated as described in 

(Section 2.5) was quantified using TaqMan® qPCR techonolgy. Primers and 

TaqMan® probes were previously designed at Institute of Animal Health (IAH), 

Compton, UK using primer Express software (Applied Biosystems, Foster City, 

CA, USA) (Table 2.4). Primers and probes were used at a concentration of 3x10
-7

 

M and 1x10
-7 

M respectively. Probes were labelled at the 5’ end with the reporter 

dye FAM (6-carboxyfluorescein) and at the 3’ end with the quencher dye 

TAMARA (6-carboxytetramethyl-rhodamine). qPCR was carried out using Taq 

Man® Universal PCR Mastermix (Applied Biosystems), with 100 ng cDNA as a 

template, on ABI 7500 Fast sequence detection system (Applied Biosystems). The 

amplification cycle consisted of an initial denaturation step of 95°C for 10 min, 

followed by 40 cycles of 95˚C for 15 sec and 60˚C for 1 min. Results were 

quantified by comparison with standard curves of known copy numbers of 

Gene (Accession 

Number) 

Forward Primer Reverse Primer Expected 

size 

Bovine β-actin 

(AY141970) 

CCA GAC AGC ACT 

GTG TTG GC 

GAG GAA GCT GTG 

CTA CGT CGC 

300 bp 

Bovine TLR1 

(AY634638) 

TTC CAG AGC TGC 

CAG AAG AT 

GAG ATT GTG GTG 

GGC AAA GT 

627 bp 

Bovine TLR2 

(AY634629) 

CAG CAA CTG AAG 

ACG TTG GA 

CAC CAC TCG CTC 

TTC ACA AA 

571 bp 

Bovine TLR3 

(AY812026) 

CCC CAG TCT CAC 

AGA GAA GC 

CCT GTG AGT TCT 

TGC CCA AT 

645 bp 

Bovine TLR4 

(AY634630) 

TGC TGG CTG CAA 

AAA GTA TG 

TCT GCA GGA CGA 

TGA AGA TG 

335 bp 

Bovine TLR5 

(AY634631) 

TGC ATC CAG ATG 

CTT TTC AG 

CCT TCA GCT CCT 

GGA GTG TC 

618 bp 

Bovine TLR6 

(AY487803) 

AGG CCA AGT ATC 

CAG TGA CG 

GAG ATT GTG GTG 

GGC AAA GT 

538 bp 

Bovine TLR7 

(AY487802) 

GGA AAT TGC CCT 

CGT TGT TA 

TGC AGT GTT TCA 

AGG ACC TG 

620 bp 

Bovine TLR8 

(AY642125) 

TTG ATG ACG ATG 

CTG CTT TC 

GGG TTA CCC CCT 

AGT TCC AA 

665 bp 

Bovine TLR9 

(AY859726) 

CAA GTG CTC GAC 

CTG AGT GA 

CCA TGG TAC AGG 

TCC AGC TT 

690 bp 

Bovine TLR10 

(AY634632) 

CAC CTG ACA TCT 

TTG CGA GA 

TTC CCT CAT GAA 

GGC AAA TC 

602 bp 

BVDV 5’ UTR 

(M31182) 

ATG CCC ATA GTA 

GGA CTA GCA 

TCA ACT CCA TGT 

GCC ATG TAC 

287 bp 
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plasmid DNA containing targeted gene sequences. To ensure that each sample 

contained cDNA of the same amount and quality (testing efficacy of RNA 

extraction and cDNA synthesis), expression of the housekeeping genes 

glyceraldehyde-3-phosphate dehydrogenase (GADPH) and the ribosomal protein 

RPLPO was measured in each sample. Samples, standards and no template 

controls were set up in triplicate. Data analysis was carried out using Microsoft® 

Excel 2007 (Microsoft Co, USA).  

 

Table 2.4 Primers and probes for Taq Man® qPCR 

Target Forward primer Reverse primer Probe 

GADPH CAT GTT CCA GTA 

TGA TTC CAC CC 

GAG CTT CCC GTT 

CTC TGC C 

CGG CAA GTT CAA 

CGG CAC AGT CA 

RPLPO GCA CAA TTG AAA 

TCC TGA GTG 

GGG TTG TAG ATG 

CTG CCA TT 

AGC GAA GCC ACG 

CTG CTG AA 

IL-10 GGT GAT GCC ACA 

GGC TGA G 

AGC TTC TCC CCC 

AGT GAG TTC 

CAC GGG CCT GAC 

ATC AAG GAG CA 

IL-

12p40 

CCA AAG TCA CAT 

GCC ACA AGG 

CTG TAG TAG CGG 

TCC CGG G 

TGC CAA CGT CCG 

CGT GCA A 

 

2.11 Western blotting (WB) 

Protein concentrations were determined using a NanoDrop
®
 ND-1000 

Spectrophotometer. Samples were prepared for reducing sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) by adding 5x Laemmli buffer 

(Appendix 1) and 8 min boiling. After brief re-heating, 10 µl sample per well (5 

µg protein) was loaded to a 10% Tris-HCl gel (Bio-Rad, UK), ran at 30 mA per 

gel for 90 min. The proteins separated by size were transferred to 0.2 µm 

nitrocellulose membranes (Amersham Biosciences, Germany). PBS-T/5% non-fat 

milk powder (Appendix 1) was used for blocking membranes (1 hr at RT with 

gentle agitation), diluting Ab and washing off unbound Ab. Membranes were 

incubated with Abs listed in Table 2.5. ß-actin was used as a protein loading 

control on membranes treated with stripping buffer (Thermo Sceintific, UK) 

according to manufacturer’s prtocol. Ab binding was visualised using the ECL 

system (Amersham Biosciences, Germany) according to manufacturer’s protocol 

and a Curix 60 processor (Agfa-Gevaert N.V., Mortsel-Belgium).  

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
http://en.wikipedia.org/wiki/Polyacrylamide_gel
http://en.wikipedia.org/wiki/Electrophoresis
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Table 2.5 WB Antibodies and Conditions 

Antibody 
Concentration 

and incubation 
Specificity Molecular Weight 

IRF3  1:200, over night 
Polyclonal rabbit anti-Human IRF3 (FL-

425)* 
~50 kDa 

IRF7 1:200, over night 
Polyclonal rabbit anti-Human IRF7 (H-

246)* 
~50 kDa 

β-actin 1:5000, 1 hr Monoclonal mouse anti-Actin Clone C4** ~42 kDa 

* Santa Cruz Biotechnologies Inc, USA)  ** Millipore (Chemicon), UK. See Appendix 4 

for further details.  
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RESULTS 

 

3.1 Generation of mDCs 

3.1.1 Morphology 

mDCs were generated by culturing CD14
+
 cells for 6 days with rboIL-4 and 

rboGM-CSF. By day 6 cells were adhering to the plastic and an irregularly large 

cytoplasm with projections could be observed by light microscopy (Figure 3.1). 

 

 

 

 

Day 0 

Day 1 
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Day 3 

Day 2 

Day 4 



42 

 

 

 

 

Figure 3.1 Differentiation of monocytes to mDCs. Representative pictures showing 

culturing of CD14
+
 cells for 6 days in culture media supplemented with IL-4 and GM-

CSF. Magnification 100x (Olympus CK2 inverted microscope). Arrows indicate 

cytoplasmic protrusions, a characteristic feature of DC morphology. 

 

Forward/Side Scatter analysis by flow cytometry of enriched CD14
+
 cells before 

and after 6 days culturing with rboIL-4 and rboGM-CSF also illustrates a change 

in morphology (Figure 3.2). Disregarding cellular debris and big granular dying 

cells sticking together, the Forward/Side scatter analysis of cultured cells show a 

fairly dense, homogenous cell population with a slight increase in size. 

 

Day 6 

Day 5 
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A  

 

B  

Figure 3.2 Dot plot showing CD14
+
 cells before and after 6 days culturing with rboIL-4 

and rboGM-CSF analysed for size (Forward Scatter FSC-A) and granularity (Side 

Scatter- SSC-A) by flow cytometry. 5000 cells were recorded using a FACSAria and data 

analysed in FlowJo (TreeStar, California, USA). A) CD14
+
 cells enriched by MACS, B) 

The same cells after 6 days in culture with IL-4 and GM-CSF. 

 

 

 

Freshly enriched 

CD14
+
 cells 

CD14
+
 after 6 

days in culture 
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3.1.2 CD14 expression 

After 6 days culturing of CD14
+
 enriched cells with rboIL-4 and rboGM-CSF 

FACS analysis showed a down regulation of CD14 expression (Figure 3.3). The 

staining picture varied between individual animals (3 individual repeats) but all 

showed the same trend of CD14 down regulation. 

 

 

Figure 3.3 FITC labeled CD14 antibody staining of monocytes (Mo) enriched by CD14
+
 

MACS before and after 6 days culturing with rboIL-4 and rboGM-CSF. Representative 

data from flow cytometric analysis of 5000 cells (A and B) and 30 000 cells (C and D) 

are presented as histograms. Data presented are based on uniformly gated cell 

populations as shown in Figure 3.2. A) monocytes, unstained B) monocytes, FITC CD14 

staining, C) mDCs, unstained D) FITC CD14 staining, mDCs 

 

Taken together, the changes in morphology and decreased CD14 expression 

demonstrate that isolated monocytes resemble mDCs after 6 days in culture.   

 

3.2 Reverse transcriptase PCR for TLR expression and presence of 
BVDV 

3.2.1 BVDV 

To ensure that cells were free from BVDV infection prior to stimulation with 

Ho961ncp and Ky1203ncp, cells were screened by reverse transcriptase PCR. 

mDCs isolated from the 3 animals used for the stimulation assay and MDBKt2-

cells used for the CAT-enzyme reporter gene assay all screened negative (Figure 

3.4).  

 

Mo, neg 

 

 Mo, stained 

stained 

mDCs, neg 

neg 

mDCs, stained 

A 

 

B 

 

C 

 

D 
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Figure 3.4 Screening for presence of BVDV nucleic acid in mDCs and MDBKt2 cells by 

reverse transcriptase PCR using primers described in Table 2.3. PCR products were 

analysed by gel electrophoresis on a 1% agarose gel containing 1 μl Safe View (NBS 

Biologicals, UK) and visualized by ultraviolet transillumination. A plasmid control 

cointaining 5’UTR sequence from the BVDV strain NADL (Appendix 2) was loaded next 

to a 100 bp ladder (Fermentas, Germany).  

 

3.2.2 mRNA expression of TLR3, 7, 8, 9 in mDCs and MDBKt2-cells 

To investigate the ability of mDCs to sense viral infection through TLR 

recognition, mRNA expression of TLR3, 7, 8 and 9 in unstimulated mDCs from 3 

animals was determined by reverse transcriptase PCR. This was also performed 

for MDBKt2-cells to explore their capability of TLR-dependent IFNα/β 

production. 

 

 

Figure 3.5 Representative result of reverse transcriptase PCR for mRNA expression of 

viral TLRs in mDCs and MDBKt2 -cells using primers described in Table 2.3. Each TLR 

set include a positive plasmid control containing bovine TLR constructs (Appendix 2) 

loaded next to a negative control

 

MDBKt2-cells were shown to express TLR3 and TLR9 (Figure 3.5 lane 4 and 

17). TLR expression in mDCs was largely consistent between the 3 animals 

(Table 3.1). PCR products of the right sizes (Table 2.3) were generated using 

1    2    3    4    5    6    7 

 1    2    3    4   5   6    7   8    9         10 11 12 13 14 15 16 17 18 

500 bp 

500 bp 

500 

bp 

1) ladder 

2) plasmid containing 5’UTR sequence from BVDV type 1 strain NADL 

3) negative control 

4) cDNA from MDBKt2 cells 

5) cDNA from mDCs animal 1 

6) cDNA from mDCs animal 2 

7) cDNA from mDCs animal 3 

 

1) Ladder 

2) plasmid containing bovine TLR3 

3) negative control TLR3  

4) cDNA from MDBKt2 cells, TLR3  

5) cDNA from mDCs animal 2, TLR3 

6) plasmid containing bovine TLR7 

7) negative control TLR7 

8) cDNA from MDBKt2 cells, TLR7  

9) cDNA from mDCs animal 2, TLR7 

 

 

10) Ladder 

11) Plasmid containing TLR8 

12) Negative control TLR8 

13) cDNA from MDBKt2 cells, TLR8  

14) cDNA from mDCs animal 2, TLR8 

15) plasmid containing bovine TLR9  

16) negative control TLR9  

17) cDNA from MDBKt2 cells, TLR9  

18) cDNA from mDCs animal 2, TLR9 
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primers for TLR3, 7 and 8 (Figure 3.5 lane 5, 9 and 14). TLR9 primers gave rise 

to a faint band only in mDCs from animal 2 (Figure 3.5 lane 18).  

3.2.3 mRNA expression of TLR1, 2, 4, 5, 6, 10 in mDCs  

mRNA expression of TLR1, 2, 4, 5, 6, and 10 in mDCs from 3 animals was 

investigated as a part of general characterisation.  

 

A  

 

 

 

 

 

 

 

B 

 

 

Figure 3.6 Representative result of reverse transcriptase PCR for mRNA expression of 

TLR1, 2, 4, 5 (A) and TLR6 and 10 (B) in mDCs cells using primers described in Table 

2.3. Each TLR set include a positive plasmid control containing bovine TLR constructs 

(Appendix 2) loaded next to a negative control.  

   1   2   3   4    5   6   7   8   9        10 11 12  13 14  15  16 17 18 

 1    2    3    4    5    6    7    8    9                        

500 bp 

bp 

10) ladder 

11) plasmid containing bovine TLR1  

12) negative control TLR1  

13) cDNA from mDCs animal 2, TLR1 

14) cDNA from mDCs animal 3, TLR1 

15) plasmid containing bovine TLR2  

16) negative control TLR2  

17) cDNA from mDCs animal 2, TLR2  

18) cDNA from mDCs animal 3, TLR2 

 

1) ladder 

2) plasmid containing bovine TLR1  

3) negative control TLR1  

4) cDNA from mDCs animal 2, TLR1 

5) cDNA from mDCs animal 3, TLR1 

6) plasmid containing bovine TLR2  

7) negative control TLR2  

8) cDNA from mDCs animal 2, TLR2  

9) cDNA from mDCs animal 3, TLR2 

 

1) ladder 

2) plasmid containingl bovineTLR6  

3) negative control TLR6  

4) cDNA from mDCs animal 2, TLR6 

5) cDNA from mDCs animal 3, TLR6 

6) plasmid containing bovine TLR10  

7) negative control TLR10 

8) cDNA from mDCs animal 2, TLR10  

9) cDNA from mDCs animal 3, TLR10 



Expression of TLR1, 2, 4, 5, 6 and 10 was largely consistent between the 3 

animals (Figure 3.6 A and B) only diverging in expression of TLR 10 for which 1 

out of 3 was positive. For an overview of TLR expression see Table 3.1.  

 

Table 3.1 Overview of reverse transcriptase PCR results for TLR expression in mDCs 

from 3 animals.  

TLR Presence in mDC 

TLR1 + 

TLR2 + 

TLR3 + 

TLR4 + 

TLR5 - 

TLR6 + 

TLR7 + 

TLR8 + 

TLR9 -/+ 

TLR10 -/+ 

  

3.3 Susceptibility of mDCs to BVDV infection 

3.3.1 IPX staining  

To investigate if isolated mDCs were susceptible to infection with either 

Ho916ncp or Ky1203ncp, mDCs were infected at a MOI of 0.1 and stained by 

IPX (48 hrs p.i. using BVDV hyperimmune serum). Brown cytoplasmic staining 

indicates presence of BVDV (Figure 3.7). Positive staining for BVDV infection 

was achieved for mDCs from 2 out of 3 animals. A result from the third repeat 

could not be determined due to staining difficulties. As a positive control, results 

of MDBK-cells infected with either strain are shown for comparative reasons.  

 

A 

 

 

MDBK-cells, 

Ho916ncp 

 



48 
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 C 
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MDBK-cells, 

Ky1203ncp 

 

mDCs, 

uninfected 

 

mDCs, 

NADLcp 
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 E 

 

 

 

 

F 

 

Figure 3.7 Representative results from IPX staining determined by light microscopy, 

magnification 100x (Motic AE20 binocular inverted microscope) A) and B) MDBK-cells 

infected with Ho916ncp and Ky1203 respectively. Infection of MDBK-cells was included 

to generate expected positive staining results as these cells are known to be susceptible to 

BVDV. C) Stained uninfected mDCs as a negative control D) mDCs, infected with NADL, 

a BVDVcp strain frequently used in the lab as a positive staining control. E) mDCs 

infected with Ho916ncp MOI 0.1, F) mDCs infected with Ky1203ncp, MOI 0.1. 

 

3.4 Detection of IFNα/β production from stimulated MDBKt2-cells 

MDBKt2-cells were employed to detect IFNα/β in culture supernatants by a CAT-

enzyme reporter gene assay described in section 2.6. Due to the possible 

remaining presence of IFNα/β stimulating ligands after 48 hrs with mDCs an 

mDCs, 

Ho916ncp 

 

mDCs, 

Ky1203ncp 
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experiment was designed to assess the ability of MBDKt2-cells to induce IFNα/β 

directly. MBDKt2-cells were therefore directly stimulated with IFNα/β-inducing 

ligands (Table 2.2) and virus at a MOI of 0.1 and 0.01. An IFNα/β response was 

observed from poly(I:C) stimulated cells only (Figure 3.8).  

 

Figure 3.8 Histogram showing production of IFNα/β in from MDBKt2-cells in response 

to stimulation with ligands and virus as described in section 2.5. TCM: tissue culture 

media (Appendix 1 MDBKt2 growth media), 2336: CpG2336, 2243: CpG2243 scrambled 

control sequence, PIC: poly(I:C), Ho916: Ho916ncp, Ky1203: Ky1203ncp. Details for 

stimulation ligands are described in table 2.2.  

 

Since MDBKt2-cells express TLR3, the response to the synthetic TLR3-ligand 

poly(I:C) is not surprising and has to be taken into consideration when analyzing 

IFNα/β data from stimulated mDCs. However, no production of IFNα/β in 

response to stimulation with Ho916ncp, Ky1203ncp or any other IFNα/β-inducing 

ligand could be detected by this test.   

 

3.5 Detection of IFNα/β production from stimulated mDCs 

mDCs from 3 animals were stimulated with Ho916ncp and Ky1203ncp at a MOI 

of 0.1 and control ligands as described in section 2.6. Supernatants from 
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stimulated cells were analysed for presence of IFNα/β. The results were largely 

consistent, high IFNα/β levels were only generated from stimulation with the 

positive control ligand poly(I:C) as can be seen in Figure 3.9 A showing pooled 

data from the three animals. A low level of IFNα/β compared with the response to 

poly(I:C) was however detected from 1 animal when stimulated with Ho916ncp 

(Figure 3.9 B). The response to Ho916ncp seen in animal 3 is due to a response 

from only one of the duplicates in the experimental set up. Furthermore, mDCs 

generated from animal 2 seemed to respond to the mock controls, but not to any 

ligand or either virus (Figure 3.9 B). 
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Figure 3.9 Histogram showing production of IFNα/β in from mDCs cells in response to 

stimulation with ligands and virus as described in section 2.6. TCM: tissue culture media 

(Appendix 1, mDC media), 2336: CpG2336, 2243: CpG2243, PIC: poly(I:C), Ho916: 

Ho916ncp, Ky1203: Ky1203ncp. Details for stimulation ligands are described in Table 

2.2. A) Mean values for IFNα/β production from 3 individual experiments. B) Individual 

data for animal 1, 2 and 3 only showing IFNα/β production in response to stimulation 

with Ho916ncp, Ky1203ncp and respective mock. 
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3.6 Western blot for IRF3 and IRF7 

The results shown in Figure 3.9 indicate the possibility that mDCs may respond to 

at least Ho916ncp with the production of IFNα/β. To further investigate the 

IFNα/β response in mDCs stimulated with Ho916ncp and Ky1203ncp, protein 

expression of IRF3 and IRF7 was analysed by WB for animal 2 and 3.  

Bands of the expected size for IRF3 (about 50 kDa, Appendix 4) were detected in 

both animals and can be seen as a doublet (as described by others (La Rocca et al 

2005)) (Figure 3.10 A, lane 1, 3, 4, 5, 6 and 8). The relative staining intensity of 

these bands were notably strong in protein extracts from mDCs stimulated with 

Ho916ncp (Figure 3.10 A lane 5) and faint from mDCs stimulated with poly(I:C) 

and Ky1203ncp (Figure 3.10 A lane 2 and 7). A band of the expected size for 

IRF7 (about 54 kDa (Swiss-Prot Acc. No. Q92985)) was only detected for animal 

2 in mDCs stimulated with Ho916ncp (Figure 3.11 A lane 5).  

Despite the fact that all samples were adjusted to the same protein-concentration, 

bands for the loading control β-actin (about 40 kDa, Appendix 4) were 

remarkably fainter for mDC protein extract treated with either poly(I:C), Ho916 

or Ky1203ncp (Figure 3.10 B and 3.11 B lane 2, 5, 7). 

 

   A 

 B 

 

Figure 3.10 Results from Western blot analysis of IRF3 and β-actin representative for 

animal 2 and 3. A) Protein extracts from stimulated mDCs probed for IRF3, B) The 

membrane was stripped and re-probed for β-actin to ensure that the same amount of 

protein was loaded in each well. 

 

  A 

 B 

 

Figure 3.11 Results from Western blot analysis of IRF7 and β-actin for animal 2. A) 

Protein extracts from stimulated mDCs probed for IRF7, B) The membrane was stripped 

and re-probed for β-actin to ensure that the same amount of protein was loaded in each 

well. 
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3.7 qPCR for IL-10 and IL-12 

A preliminary study of how infection with Ho916ncp and Ky1203ncp affect 

expression of the cytokines IL-10 and IL-12 in mDCs was performed using 

TaqMan®qPCR techonolgy for relative quantification of mRNA expression 

levels.  

A relative standard curve method was used to quantify expression of targeted 

genes IL-10 and IL-12 and the endogenous control genes GADPH and RPLPO. 

No data was obtained from IL-12 due to contamination of no template controls.  

 

Figure 3.12 Results from qPCR for the housekeeping gene RPLPO displayed as a dot plot 

diagram showing mean cDNA copy numbers from triplicates of each condition. 

MockHo916: mock Ho916ncp, MockKy1203: mock Ky1203ncp. Error bars represent 

standard deviations(SD).  

 

 

 

 

 

 

0

100000

200000

300000

400000

500000

600000

700000

MockHo916 Horton916ncp MockKy1203 Kyle1203ncp

C
o

p
y
 n

u
m

b
e
rs

 R
P

L
P

O

CONDITIONS

RPLPO

Animal 2

Animal 1

MockHo916     Ho916ncp          MockKy1203     Ky1203ncp 



55 

 

 

 

Figure 3.13 Results from qPCR for the housekeeping gene GADPH displayed as a dot 

plot diagram showing mean cDNA copy numbers from triplicates of each condition. 

MockHo916: mock Ho916ncp, MockKy1203: mock Ky1203ncp. Error bars represent 

standard deviations (SD).  

 

Figure 3.14 Results from qPCR for IL-10 displayed as a dot plot diagram showing mean 

cDNA copy numbers from triplicates of each condition. MockHo916: mock Ho916ncp, 

MockKy1203: mock Ky1203ncp.  Error bars represent standard deviations (SD). cDNA 

copy numbers could only be determined in one of the triplicates for Animal 1 mock 

Ho916ncp and mock Ky1203ncp, hence absence of error bars.  
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Figure 3.15 Dot plot showing mean quantities of IL-10 cDNA normalised to mean 

quantities of GADPH to correct results skewed by differing amounts of input cDNA. 

MockHo916: mock Ho916ncp, MockKy1203: mock Ky1203ncp. Error bars represent 

standard deviations. cDNA copy numbers could only be determined in one of the 

triplicates for Animal 1 mock Ho916ncp and mock Ky1203ncp, hence absence of error 

bars.  

 

Any relative difference in mRNA expression levels of IL-10 between mDCs 

stimulated with Ho916ncp compared with Ky1203ncp could not be accurately 

assessed due to the high level of variability in the assay. 
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DISCUSSION 

 

Little is known about why clinical signs following transient acute infection with 

BVDVncp type 1 vary between strains. The interaction between a virus and the 

host’s immune system is clearly of great importance for the outcome of infection. 

Thus, it is interesting to investigate how BVDV strains associated with different 

clinical signs influence early immune responses. BVDV has a predilection for 

infecting cells of the immune system including APCs (Sopp et al 1994 and Glew 

et al 2003). DCs are considered the most important APC in vivo due their efficacy 

in stimulating naïve T-cells (Steinmann and Hemmi 2006). The key role of this 

cell type in shaping the subsequent adaptive immune response makes studying 

viral interactions with DCs most important.  

 

4.1 Generation of mDCs 

Due to the small number of circulating DCs, (Averill et al 2007) methods to 

derive DCs from more accessible precursors have been developed. One such 

method is isolating monocytes from peripheral blood and culturing them in the 

presence of IL-4 and GM-CSF to differentiate them into mDCs (Sallusto and 

Lanzavecchia 1994). mDCs generated from monocytes in peripheral blood offers 

a well established in vitro model for DC function (Glew et al 2003, Barnes et al 

2008) and was therefore used in the present study.  

Enrichment of monocytes by sorting CD14
+
 cells from PBMCs did not generate a 

cell population of similar purity as previously achieved in the lab using the same 

technique. The reduction in purity could depend on the microbeads used for the 

sorting process since they had reached the end of their shelf-life. However, even 

though the FSC/SSC analysis presented as a dot plot shows a rather non-

homogenous cell population, a proportion of cells were indeed CD14 positive as 

demonstrated by FITC-CD14 staining. To generate mDCs CD14
+
 cells were 

cultured for 6 days in the presence of rboIL-4 and rboGM-CSF. However, despite 

the fact that low binding plates were used, cells adhering to the plastic could be 

seen by day 1. These cells are most likely monocytes since lymphocytes do not 

adhere when grown in culture. Indeed, another method to enrich monocytes from 

PBMCs is to isolate adherent cells by removing cells in suspension by washing 

(Werling et al 1999). Some contaminating non-adherent cells (different subsets of 

lymphocytes) can therefore be presumed to be lost during the culturing procedure 

which includes exchange of culture media. 

Light microscopy was used to study changes in cell morphology during culturing 

with cytokine enriched medium. The morphology of the majority of cells by day 

6, characterised by a typical large cytoplasm with cytoplasmic protrusions, was 

consistent with previous descriptions of bovine mDC features (Yamakawa 2007).  

High levels of CD14 expression is commonly used as a marker for monocytes. In 

contrast, CD14 expression is considerably lower on mDCs (Beekhuizen et al 

1991, Werling et al 1999, Bajer et al 2003, Yamakawa et al 2008). Consistent 
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with this, FACS analysis regarding CD14 expressions on cells after 6 days in 

culture with rboIL-4 and rboGM-CSF showed reduced CD14 expression 

compared to freshly enriched monocytes. It would have been desirable to have 

analysed a higher and more uniform number of cells but due to the limited amount 

of mDCs recovered this was not possible.  

Taken together, the phenotype of cultured cells analysed by studying morphology 

and CD14 expression is comparable with the phenotype previously described for 

bovine mDCs.  

 

4.2 TLR expression 

Expression of TLRs on mRNA and protein level varies dependent upon the cell 

subset and stimulation. Some TLRs are more ubiquitously expressed whereas 

other TLRs can be restricted to one cell type (Janssens and Beyaert 2003).  

The result from screening mRNA expression of TLRs in mDCs was largely 

consistent between the 3 animals tested but differs somewhat from pre-existing 

data. In contrast to the results in the present study, bovine mDCs have previously 

been reported to express TLR5 but not TLR3 and TLR7 (Werling et al 2006). 

However, little is still known about the regulation of TLR expression. Thus, 

differences described for bovine mDCs may be due to differential exposure to 

factors influencing TLR expression levels, including animal housing, age, breed 

and also differences in how the cells were treated during culturing. It should also 

be kept in mind that the absence of mRNA expression at a certain time point may 

not necessarily indicate that the corresponding protein is not expressed. 

Discrepancy in results for expression of a specific TLR could therefore also be 

explained by a difference in transcription levels for the targeted TLR at the time 

point analysed (D. Werling, personal communication).   

Examining the expression of TLRs at the mRNA level in mDCs aids the 

understanding of how these cells can sense and respond to different pathogens. 

Presence of TLR3, TLR7 and TLR8 in mDCs indicates that viral infection has the 

potential to activate antiviral responses via TLR-dependent signalling pathways.  

 

4.3 Susceptibility to infection  

mDCs were infected with Ho916ncp and Ky1203ncp at a MOI of 0.1 and 

infection detected by IPX staining for BVDV. Positive cytoplasmic staining 

examined by light microscopy was observed in mDCs infected with both 

Ho916ncp and Ky1203ncp. Not all cells were infected as seen in Figure 3.7 and 

no obvious difference between the relative numbers of cells infected was observed 

by visual inspection.  

Due to staining difficulties a result (positive versus negative) could only be read 

from 2 out of 3 repeats. The third repeat had a high level of background staining. 

Cells stained rather intensively could be seen in the periphery of the wells. 
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However, this staining had a less distinct cytoplasmic confinement. This staining 

pattern could be due to inadequate washing of the wells leaving residual 

secondary antibody along the edges. It would have been desirable to repeat the 

study for this animal but due to the time limit this was not an option.  

Anti-BVDV hyperimmune serum is routinely used in the lab for examining 

presence of virus in buffy coat samples by an immunofluorescence assay (IFA) 

analysed by fluorescent microscopy. This method is not more specific since it still 

utilises polyclonal antibodies but the fluorescent staining with a secondary anti-

bovine Cy3 labelled antibody might be easier to read than the brown staining 

generated from IPX. IFA may therefore be a better option than IPX. To reduce 

unspecific staining a method using monoclonal antibodies against a specific viral 

protein could also be employed.  

The results of experimental infection of mDCs with Ho916ncp and Ky1203ncp 

are consistent with previously published data (Glew et al 2003) indicating that 

mDCs are susceptible to BVDVncp infection. It would be interesting to quantify 

and compare the magnitude of infection and viral replication between Ho916ncp 

and Ky1203ncp. A study comparing the level of infection of mDCs between 

BVDV strains belonging to genotype 1 and 2 revealed a higher magnitude of 

infection for the type 2 strain (a field isolated called KE13) (Glew 2000). It is 

possible that this differential ability of BVDV strains of different genotypes to 

infect mDCs also applies to strains within the BVDV 1 group. Theoretically, the 

ability of a strain to infect mDCs at a higher degree could coincide with a greater 

impact on mDC function. To identify a potential difference between BVDVncp 

strains in their capability to infect mDCs, BVDV infected cells could be stained 

with a fluorochrome conjungated antibody followed by flow cytometric analysis 

to compare the relative numbers of cells infected by Ho916ncp and Ky1203cp. To 

investigate any difference in viral replication an assay could be set up where 

mDCs infected with Ho916ncp and Ky1203ncp are lysed, or the supernatant 

collected at set time points p.i. (for example 24, 48, 72 and 96 hrs) with the 

purpose of comparing the virus titre in cell lysates/supernatants from each time 

point.  

Susceptibility of mDCs to BVDV implicates that BVDV has the potential to 

modify the functions of this important immune cell. Infection and dysregulation of 

DC functions has been shown for many viruses able to establish chronic infections 

or with known immunosuppressive effects, for example measles virus (Fugier-

Vivier et al 2005), HCV (Kanto et al 1999, Averill et la 2007) and human 

immunodeficiency virus (Macatonia et al 1990). mDCs infected with BVDVncp 

have however recently been shown not to be compromised in their ability to 

present antigen and induce BVDV specific CD4
+
 and CD8

+
 T-cell proliferation 

(Glew et al 2001). To date, other than IFNα/β, cytokine data from mDCs infected 

with BVDVncp is lacking.  
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4.4 IFNα/β production 

IFNα/β is a key component in the first line of defense against viral infections, 

inducing an anti viral state in cells subject to infection and affecting the 

development of adaptive immunity. Mammalian cells have evolved a number of 

mechanisms whereby viral infection can be sensed and activate cellular signalling 

to stimulate production of IFNα/β, but at the same time many viruses have 

evolved counter mechanisms to subvert these defences (Garcia-Sastre and Brion 

2006).  

Neither Ho916ncp nor Ky1203ncp induced strong production of interferon from 

mDCs. Small amounts of IFNα/β, less than a tenfold of the amount of IFNα/β 

detected for the positive control poly(I:C), were detected from animal 3 in 

response to Ho916ncp and in mock treated cells for animal 2 but only in one of 

the duplicates for each condition (Figure 3.9 B). One possible explanation would 

be a cross-contamination from a sample with poly(I:C) stimulated cells. Care was 

however taken to minimize this risk by setting up the plates with a row of empty 

wells separating each condition. To find out if Ho916ncp does indeed stimulate 

IFNα/β production from mDCs the number of technical as well as biological 

repeats would need to be increased.  

The amount of IFNα/β in cell lysates from mDCs 48 hrs p.i. was analysed by a 

CAT assay (Fray et al 2001). Due to the possible remaining presence of IFNα/β 

stimulating ligands in mDC supernatants, an experiment was designed to assess 

the ability of MBDKt2-cells to induce IFNα/β in response to the ligands. 

MDBKt2-cells did respond to direct stimulation with poly(I:C) but not to any 

other ligand.  

Since some data report rapid degradation of poly(I:C) in serum (De Clercq 1979), 

poly(I:C) was pre-incubated for 48 hrs at 37°C, 5% CO2 in MDBKt2 culture 

media (containing foetal calf serum) before addition to the MDBKt2-cells to 

mimic the conditions for the mDC stimulation assay. The response to poly(I:C) 

was however not affected by this (data not shown).  

The amount of IFNα/β produced from MDBKt2-cells in response to poly(I:C) 

correlates with the amounts registered for mDCs stimulated with poly(I:C). It is 

therefore not possible to determine if any of the IFNα/β detected by the assay 

originated from the mDCs or was in fact due to poly(I:C) in the supernatant from 

mDC cultures. A well designed positive control is of particular importance when 

results are negative as in this case. However, since WB data confirm mDC 

responsiveness to viral infection and the CAT-ELISA did pick up presence of 

interferon from poly(I:C) stimulation, the negative results for IFNα/β production 

from mDCs stimulated with Ho916ncp and Ky1203ncp can be regarded as real. It 

is therefore crucial for subsequent experiments to identify a positive control which 

induces IFNα/β in mDCs but not in MDBKt2-cells. Such a control could be based 

on the differences in PRR expression between mDC and MDBKt2-cells, which 

seem to lack TLR7 and TLR8 expression. Another approach would be to choose a 

different cell line for transfection with the plasmid expressing the human Mx 

promoter linked to the CAT reporter gene (e.g. human embryonic kidney cells 
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which have a very limited TLR expression). Even so, in both cases it is not known 

whether other intracellular PRRs may compensate for a lack of TLR expression. 

However, the most promising alternative would be the development of an IFNα/β 

ELISA to directly analyse IFNα/β production in the supernatants.  

The lack of IFNα/β production from BVDVncp stimulated mDCs is consistent 

with previously published results (Glew et al 2003). Since mDCs have been 

shown to be susceptible to infection and to express TLRs capable of recognising 

viral nucleic acids (TLR3, 7 and 8), the lack of IFNα/β can be presumed to depend 

on the virus actively evading TLR-dependent as well as TLR-independent 

induction of, or an active suppression of IFNα/β production. Several viruses 

belonging to the Flavivridae family (CSFV, WNV and HCV) are known to 

interfere with the IFNα/β response by affecting the functions of IRF3, a 

transcription factor pivotal for inducing IFNα/β production (Baigent et al 2002, 

Fredricksen et al 2004, La Rocca et al 2005, Li et al 2005, Hilton et al 2006). 

Exactly how this effect is mediated for BVDVncp is not known, but inhibition of 

IFNα/β has been shown to depend on proteins coded by the viral E
rns

 and N
pro

 

genes (Meyers et al 2007). The product of E
rns

 is a secreted glycoprotein with the 

ability to bind and degrade dsRNA thereby preventing it from activating dsRNA-

induced signalling (Iqbal et al 2004) and the protease encoded by N
pro

 has been 

shown to block the function of IRF3 (Hilton et al 2006, Gil et al 2006).  

 

4.5 Regulation of IFNα/β production through IRF3 and IRF7 

IRF3 is a pivotal transcription factor for IFNα/β expression and is constitutively 

expressed in an inactive form. In contrast to IRF3, IRF7 is only expressed at very 

low levels in most cell types (IRF7 expression in pDCs is however constitutively 

high) but is induced by IFNα/β or TNFα. IRF3 and IRF7 are activated by 

phosphorylation, an event induced by signalling through TLRs recognising viral 

nucleic acid or the cytosolic dsRNA sensors RIG-I and MDA5 (Figure 1.4 and 

1.5). Upon activation IRF3 and IRF7 forms homo- or heterodimers and 

translocate to the nucleus where they bind DNA. IRF3 is only able to stimulate 

expression of a limited number of type I IFN genes whereas IRF7 induces 

expression of a broader spectrum of type I IFN isotypes (Lin et al 1998, Paun A. 

and Pitha P. M. 2007). To further investigate how Ho916ncp and Ky1203ncp 

interact with the IFNα/β response in mDCs protein levels of IRF3 and IRF7 were 

investigated by WB.  

The results in Figure 3.10 A and 3.11 A show a difference in IRF3 and IRF7 

protein concentration after incubation of mDC with either Ho916ncp or 

Ky1203ncp. WB results from mDCs treated with Ho916ncp show intense bands 

of the correct sizes for IRF3 and IRF7 compared to Ky1203ncp and controls.  

The high protein levels of IRF3 in mDCs stimulated with Ho916ncp indicating 

cytoplasmic or nuclear accumulation could be due to a specific effect of 

Ho916ncp or be dependent on a difference in kinetics between the strains, with 

Ky1203ncp causing the same accumulation at another time point. Based on this a 
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time course study of IRF3 protein levels in mDCs infected with Ho916ncp and 

Ky1203ncp should be undertaken. 

In contrast to the results obtained from mDCs stimulated with Ho916ncp, others 

have demonstrated a gradual decrease in IRF3 protein levels (inline with results 

for Ky1203ncp in the present study) in calf testis cells from 6 hrs to 72 hrs p.i. 

(Hilton et al 2006) with the BVDVncp strain pe515. The protein level of IRF3 

was not shown to be upregulated at any time point in this study. 

However, the turnover of IRF3 could be different in mDCs in response to 

BVDVncp infection than in cells previously studied. A study comparing the effect 

of Newcastle virus infection on IRF3 and IRF7 protein stability in immortalized 

embryo fibroblasts and lymphoid tissue (thymus and spleen) from mice show a 

decrease in IRF3 and IRF7 stability in the fibroblasts whereas IRF7 protein 

stability was increased (shown to be partly IFNα/β-independent) in lymphoid 

tissue and IRF3 stability was unaffected (Parkash and Levy 2006). This suggests a 

potential difference in the affect of viral infection on IRF3 and IRF7 turnover 

between different cell types.   

It would therefore be interesting to perform a parallel time course study for IRF 3 

in non-immune cells infected with Ho916ncp and Ky1203ncp to see if the effect 

on IRF3 levels is a feature of mDCs. 

The decrease in IRF3 has been suggested to be a part of the mechanism whereby 

BVDVncp blocks IRF3 function. N
pro

 has been shown to enhance proteosomal 

degradation of IRF3 and to inhibit IRF3 from binding DNA. Published data is 

however inconsistent regarding the latter of these two effects (Baigent et al 2002, 

Hilton et al 2006, Chen et al 2007). In view of the fact that no considerable 

amounts of IFNα/β could be detected in mDC supernatants 48 hrs p.i. with 

Ho916ncp despite high IRF3 protein levels, degradation of IRF3 is unlikely to be 

the only means whereby IFNα/β production is inhibited by this BVDV strain. 

In conclusion, the data of the present study indicate that BVDVncp may interact 

in more than one way with the IRF3 signalling pathway, leading even to its 

stabilisation and that this interaction may depend on cell type and/or strain of 

BVDVncp studied. 

IRF7 expression is normally very low in most cell types (Paun A. and Pitha P. M. 

2007) and accordingly no IRF7 was detected in stimulated mDCs with one 

exception; mDCs stimulated with Ho916ncp from animal 2. Since IRF7 

expression is induced by IFNα/β a possible explanation for this could be that 

Ho916ncp does stimulate production of IFNα/β but at levels too low to allow 

detection by the CAT-ELISA used. However, if this was the case one would 

expect IRF7 expression in animal 3 for which a small amount IFNα/β indeed was 

detected (Figure 3.9B) but no IRF7 expression was detected in these mDCs. Due 

to differences in results between animal 2 and 3 the effect of Ho916ncp on IRF7 

is uncertain and the experiment should be repeated, ideally coupled with a more 

sensitive IFNα/β assay. 
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β-actin was used as a loading control to visualise that the same amount of protein 

was loaded in each well, but the WB results showed variable band-intensities, as 

can be seen in Figure 3.10 B and 3.11 B. Interestingly, lower levels of β-actin 

were present in samples generated from mDCs treated with either poly(I:C), 

Ho916ncp and Ky1203ncp. These discrepancies can potentially be explained 

through either loading errors or an effect of these three agents on β-actin protein 

levels. Whereas the first effect potentially can be excluded, as all samples were 

analysed and adjusted to the same concentration, the second possibility can only 

be excluded through use of another loading control with stable protein levels in all 

conditions. It is striking however that poly(I:C), Ho916ncp and Ky1203ncp all 

share the potential to activate cellular responses to dsRNA. Recently, poly(I:C) 

has been shown to induce IFNα/β-induced apoptosis in bovine turbinate cells 

(Schweizer and Peterhans 2001), which potentially could explain the reduced β-

actin levels seen. In contrast, BVDVncp strains have been shown to protect cells 

from IFNα/β-mediated apoptosis induced by dsRNA dependent signalling 

(Schweizer and Peterhans 2001). Moreover, no notable amount of IFNα/β was 

detected from mDCs stimulated with Ho916ncp and Ky1203ncp. Thus, the 

reduced β-actin content in samples prepared from mDC incubated with either 

BVDVncp strain in present study can not be explained with cellular apoptosis 

induced by IFNα/β.  

Another possibility would be an IFNα/β-mediated down regulation of protein 

expression caused by autocrine actions of IFNα/β produced by stimulated mDCs. 

A IFNα/β response was however only detected for poly(I:C). However, it cannot 

be excluded that mDCs stimulated with Ho916ncp and Ky1203ncp did induce 

IFNα/β at levels at levels too low to allow detection by the IFNα/β detection assay 

used. The only possibility to explore this further would be by using an assay with 

a higher sensitivity compared to the CAT-ELISA used in the present study.  

Even if β-actin levels are considered as a true indicator of the amount protein 

loaded, the increase of IRF3 and IRF7 in mDCs stimulated with Ho916ncp is still 

convincing since the amount of protein seems lower compared to mock infected 

mDCs. The apparent decrease in IRF3 in Ky is however more uncertain since total 

protein levels also appear lower. Another loading control for which the protein 

expression level is stable in all conditions has to be employed to asses these 

results.  

 

4.6 IL-10 and IL-12 

IL-10 and IL-12 are two cytokines secreted by mDCs which have important 

effects on the developing adaptive immune response. IL-10 supports the 

development of a Th2-response, leading potentially to an increased humoral 

response. Furthermore, IL-10 impedes the development of a Th1-type of response 

by blocking IL-12 supported IFNγ production, as well as down regulates 

production of proinflammatory cytokines such as TNF-α, IL-1 and IL-6. IL-10 

also inhibits APC maturation (Dumoutier and Renauld 2002). IL-12 is a 

heterodimeric cytokine composed of the subunits p35 and p40 with a key role in 
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the development of Th1-responses by increasing production of cytokines such as 

IFNγ (Airoldi et al 2002). To date, no data are available regarding the effect of 

BVDVncp on expression of IL-10 and IL-12.  

Unfortunately no reliable data were obtained in the present study to assess the 

effect of BVDVncp on relative mRNA expression levels for IL-10 and IL-12 by 

qPCR. Neither of the BVDVncp strains seems to induce IL-10 mRNA expression 

levels but due to the great assay variability, these results are highly questionable.  

The no template control for IL-12 was contaminated and gave a signal higher than 

the signal detected for several samples. The experiment is therefore invalid and 

has to be repeated taking greater care to avoid contamination. The variation 

between triplicates in all parametes analysed (IL-10, IL-12, GADPH, RPLPO) 

was also greater than acceptable. Here, identical triplicates should have a CT SD 

<0.3 according to manufacturer’s guide (Applied Biosystems, USA). 

Undetermined and variable values suggest lack of/variable amounts of cDNA 

template or failure of the PCR reaction to proceed due to presence of inhibitory 

factors. Though possible to reduce, inhibitory factors are inherently difficult to 

eliminate completely (Nolan et al 2006 a). Pipetting accuracy can however be 

increased by frequent calibration of pipettes, practise and by increasing the 

volumes pipetted.  

To acquire accurate relative quantification of the cDNA target between conditions 

the quantity of the targeted cDNA must be normalised to correct for potential 

differences in total cDNA amount. One way of doing this is by normalising target 

cDNA levels to the levels of a stable endogenous control gene (commonly 

referred to as housekeeping genes). The quantity of these should be relative to the 

input of cDNA and hence not be affected by differences in treatment between 

conditions. Appropriate endogenous controls must therefore be selected and tested 

for each study (Nolan et al 2006 b). Stability of GADPH and RPLPO had not 

been tested in advance for this specific study and expression were found to be 

highly variable between animals and conditions. However, since levels of 

GADPH and RPLPO expression are strongly variable between the two animals 

for the same condition (Figure 3.12, 3.13), the main determinant for variability in 

expression levels might not be the treatment, but may be due to different amounts 

of cDNA. In an attempt to investigate this, the cDNA concentration was re-

evaluated using the NanoDrop
®
 ND-1000 Spectrophotometer as well as the 

Eppendorf Biophotometer. Results (Appendix 3) were quite variable between 

samples compared to the expected and originally adjusted concentration of 100 ng 

μl
-1

. 

In conclusion the experiment regarding the impact of a BVDVncp infection on 

cytokine expression of mDC must be repeated with appropriate stable reference 

genes, more uniform amounts of cDNA  and avoiding contamination of samples. 

Since qPCR is an extremely sensitive technique relying on many steps which can 

create variability a good normalisation strategy must be followed and results 

should ideally be backed up by another assay, such as ELISAs for IL-10 and IL-

12 quantifying protein levels of each cytokine in the supernatant.  
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4.7 Finial conclusions and future work 

The aim of this project was to compare cytokine production from bovine mDCs 

stimulated with the BVDVncp type 1 strains Ho916ncp and Ky1203ncp with the 

hypothesis that these two strains associated with different clinical outcomes would 

also differ in the cytokine response they induce from mDCs. 

mDCs did not produce any notably levels IFNα/β at 48hrs p.i. in response to 

Ho916ncp and Ky1203ncp and hence no convincing difference between the 

viruses could be demonstrated. This could be due to a viral block of the IFNα/β 

response in mDCs but since only one time point was investigated this can not be 

deduced from this study. The lack of IFNα/β at 48hrs p.i. is consistent with 

existing data (Glew et al 2003) but a time course study is yet to be undertaken.  

A difference between the strains was however detected in their interaction with 

IRF3. mDCs infected with Ho916ncp showed an accumulation of IRF3 in contrast 

to Ky1203ncp which seemed to decrease IRF3 protein levels. This indicates that 

BVDVncp may interact in more than one way with the IRF3 signalling pathway, 

leading even to stabilisation of IRF3 and that this interaction may depend on cell 

type and/or strain of BVDVncp studied. 

The ability of BVDVncp to subvert IFNα/β production is regarded central for 

establishment of persistent infection in the early foetus. In contrast to in vitro 

studies and BVDVncp infection of the early foetus, BVDVncp infection of calves, 

pregnant cows and foetuses in late gestation results in production of IFNα/β 

(Charlston B. et al 2002, Smirnova et al 2008). This contradicting data in vivo and 

in vitro can be explained by the presence of a cell subset in vivo in which 

BVDVncp does not block IFNα/β production. Some studies describe cDCs as an 

important source of IFNα/β in response to viral infection (Diebold et al 2003). 

However, the data presented in this study do not suggest that cDCs are the cell 

type responsible for IFNα/β production in response to BVDV in vivo. The cell 

type responsible for IFNα/β production demonstrated in vivo is more likely the not 

yet fully characterised bovine equivalent of pDCs, as postulated by Brackenbury 

et al 2005. In parallel to experiments performed with mDCs in this study, 

monocytes and lineage negative cells (LIN
-
cells, the potential bovine equivalent 

of pDCs) generated from the same animals have been treated as described for 

mDCs. Indeed, stimulation of LIN
-
cells with BVDVncp did result in production 

of IFNα/β detected at 48 hrs (A. Stalker, personal communication), with 

Ho916ncp inducing more IFNα/β compared to Ky1203ncp.  

BVDVncp strains of high virulence show a more widespread distribution than low 

virulent strains and severe clinical signs have been shown to correlate with a 

higher level of viremia (Walz 2001). It can be hypothesized that the outcome of 

BVDVncp acute infections is determined by a battle between viral spread and the 

host’s immune reaction. An initial difference in how BVDVncp strains interact 

with innate immune functions might therefore be central in determining the 

outcome of infection. The difference in the IFNα/β response between Ho916ncp 

and Ky1203ncp which has been demonstrated for pDCs now asks for further 

characterisation before one can speculate about potential consequence on 
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subsequent immune events and ultimately systemic effects explaining differences 

in clinical signs. 

To begin with, it must be investigated if the difference in amount of IFNα/β from 

pDCs lies in a different capability of the two strains to induce IFNα/β or in 

different kinetics of IFNα/β induction. Is Ky1203ncp able to produce the same 

amount of IFNα/β at another time point and if so, which strain is able to delay 

IFNα/β production in comparison to the other? A time course study needs to be 

undertaken to address these questions and ideally, such a study should be set up 

for a greater number of animals. It would also be interesting to distinguish how 

pDCs differ in their interaction with BVDVncp compared with other cell types, 

enabling them to produce IFNα/β in response to stimulation.  

Finally, with respect to the key role of IFNα/β in the innate antiviral immunity it 

is important to further distinguish the interactions of Ho916ncp and Ky1203ncp 

with the IFNα/β response. Nonetheless, development of an appropriate adaptive 

immune response leading to efficient viral clearance is complex and influenced by 

several factors including interaction of additional cytokines produced by APCs. 

To create a somewhat more complete picture of how BVDVncp strains affect 

early immune events their affect on additional cytokine responses need to be 

investigated. As a first step towards this, IL-10 and IL-12 production from mDCs 

could be reassessed. 
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APPENDIX 1 

 

Buffers and Reagents  

Acid Citrate Dextrose (ACD) 

Citric Acid Monohydrate (Sigma Aldrich UK)      4.0 g 

Sodium Citrate (Sigma Aldrich, UK)      11.3 g 

D(+)-Glucose (Sigma Aldrich, UK)      11.0 g 

Dissolved in 500 ml of ddH20 and sterile filtered (0.22 μm)  

 

D (+) Glucose 0.3 mM stock 

D (+) Glucose (Sigma Aldrich, UK)       29.73 g 

Dissolved in 500ml ddH20 and stored at 4˚C for 1 month. 

 

Ammonium-Chloride Lysis Buffer 

Ammonium Chloride (BDH, UK)      8.29 g 

Potassium Hydrogen Carbonate (Sigma Aldrich, UK)   1.0 g 

EDTA disodium salt (Sigma Aldrich, UK)     0.037 g 

Dissolved in 1 L of ddH20, adjusted to pH 7.2 and sterile filtered (0.22 μm) 

 

PBS/1% BSA 

1X PBS w/o MgCl2 and CaCl2
 
pH 7.2

 
(Sigma Aldrich, UK)   500 ml 

Bovine Serum Albumin Fraction V (PAA, Austria)    5.0 g 

Dissolved together with gentle heating (30˚C) and mixing, sterile filtered (0.22 

μm) 

 

FACSFlow/1%BSA 

BD FACSFlow
TM

 Sheath Fluid (BD Biosciences, UK)    500 ml 

Bovine Serum Albumin Fraction V (PAA, Austria)    5.0 g 

Dissolved together with gentle heating (30˚C) and mixing, sterile filtered (0.22 

μm) 



79 

 

 

 

mDC differentiation media 

RPMI 1640 + Glutamax I + 25 mM HEPES (Invitrogen, UK)  90 ml 

FBS (PAA, Austria)        10 ml 

Gentamycin (10 mg ml
-1

) (Sigma Aldrich)     0.5 ml 

Sodium Pyruvate (1 M) (Sigma Aldrich)     0.1 ml 

β-mercaptoethanol (0.005 M) (Sigma Aldrich)    0.1 ml 

Recombinant bovine IL-4        1.0 ml 

Recombinant bovine GM-CSF       1.0 ml 

Bovine recombinant GM-CSF and IL-4 were cloned in house and subsequently 

expressed in Chinese hamster overy (CHO) cells produced at the Moredun 

Research Institute, Penicuik, UK and the Institute for Animal Health, Compton, 

UK respectively.    

Prepared in laminar flow in sterile 100ml glass bottles 

 

MDBKt2 Growth Media 

DMEM + Glutamax I + Pyruvate (Invitrogen, UK)     90 ml 

FBS (PAA., Austria)        10 ml  

Pen/Strep (Sigma Aldrich, UK) (5000IU ml
-1

/ 5mg ml
-1

)   2.0 ml   

Blasticidin S HCl (Invitrogen, UK) (10mg ml
-1

)    0.1 ml 

Prepared in laminar flow in sterile 100 ml glass bottles 

 

MDBKt2 Assay Media 

DMEM + Glutamax I + Pyruvate (Invitrogen, UK)     98 ml 

FBS (PAA, Austria)        2.0 ml  

Pen/Strep (Sigma Aldrich, UK) (5000 IU ml
-1

/ 5mg ml
-1

)   2.0 ml   

Blasticidin S HCl (Invitrogen, UK) (10 mg ml
-1

)    0.1 ml 

Prepared in laminar flow in sterile 100 ml glass bottles 

 

10% Growth Medium MDBK 
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MEM (Invitrogen, UK)       500 ml 

FBS (PAA, Austria)        50 ml 

L- Glutmamine (200 mM) (PAA, Austria)     5 ml 

Pen/Strep (5000 IU ml
-1

/5 mg ml
-1

)(Invitrogen, UK)    5 ml 

 

2% Maintenance Medium MDBK  

MEM (Invitrogen, UK)       500 ml 

FBS (PAA, Austria)        5 ml 

L- Glutmamine (200 mM) (PAA, Austria)     5 ml 

Pen/Strep (5000 IU ml
-1

/5 mg ml
-1

)(Invitrogen, UK)    5 ml 

 

PBS-T (0.05%) stock 

10X PBS in ddH20 (Invitrogen, UK)      1000ml 

Tween20         0.5 ml  

 

PBS-T 5%NRS 

500 ml PBS-T stock as above with addition:     

Normal Rabbit Serum (NRS) (Invitrogen, UK)    25 ml 

Aliquoted to 50 ml and stored at -20˚C 

 

PBS/1% BSA/0.1% NaN3 

1X PBS w/o MgCl2 and CaCl2
 
(Sigma Aldrich, UK)    500 ml 

Bovine Serum Albumin Fraction V (PAA, Austria)    5.0 ml 

Sodium Azide (10%) in ddH20 (Sigma Aldrich)    5.0 ml 

BSA dissolved in PBS with gentle heating (30˚C) prior to addition of Sodium 

Azide 

 

5X Laemmli Sample Buffer 

Tris/Glycine Running Buffer 1X (Bio-Rad, UK)    6.25 ml 
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30% Glycerol (Sigma Aldrich, UK)      16.5 ml 

10% SDS (Fluka, Sigma Aldrich, UK)     20 ml 

Β-mercaptoethanol (Sigma Aldrich, UK)     5 ml 

1% Bromophenol Blue (Sigma Aldrich, UK)     1 ml 

 

30% Glycerol 

Glycerol (100%) (Sigma Aldrich)      3 ml 

Molecular Biology Grade H20 (Sigma Aldrich)    7 ml 

 

PBS-T/5% non-fat milk 

10X PBS w/o MgCl2 and CaCl2
 
(Invitrogen, UK)

    
50 ml 

 
ddH20           450 ml 

Non-fat dried milk powder (Marvel, UK)     5 g 

Tween20 (Sigma Aldrich, UK) 
    

      0.25 ml 
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APPENDIX 2 

 

Plasmid details 

TLR1 

Bovine TLR1 full length construct (Accession Number: AY634638) in pCR2.1 

TOPO (Invitrogen, UK) from Tracey Coffey, Institute of Animal Health, 

Compton as part of the Genesis Faraday TLR Consortium. 

TLR2 

Full length bovine TLR2 construct (Accession Number: AY634629) in pCR2.1 

TOPO (Invitrogen, UK) by D. Werling, Royal Veterinary College, UK.   

TLR3 

Full length bovine TLR3 construct (Accession Number: AY821206) in pCR2.1 

TOPO (Invitrogen, UK) from Tracey Coffey, Institute of Animal Health, 

Compton as part of the Genesis Faraday TLR Consortium. 

TLR4 

Full length bovine TLR4 construct (Accession Number: AY634630) in 

pcDNA3.1/V5-his (Invitrogen, UK) by D. Werling, Royal Veterinary College, 

UK.  

TLR5 

Bovine TLR5 full length construct (Accession Number: AY634631) in pCR2.1 

TOPO (Invitrogen, UK) from Tracey Coffey, Institute of Animal Health, 

Compton as part of the Genesis Faraday TLR Consortium. 

TLR6 

Full length bovine TLR6 (Accession Number: AY487803) in pCR2.1 TOPO 

(Invitrogen, UK) from Tracey Coffey, Institute of Animal Health, Compton as 

part of the Genesis Faraday TLR Consortium. 

TLR7 

Bovine TLR7 full construct (Accession Number: AY487802) in pCR2.1 TOPO 

(Invitrogen, UK) from Tracey Coffey, Institute of Animal Health, Compton as 

part of the Genesis Faraday TLR Consortium. 

TLR8 

Bovine TLR8 full length construct (Accession Number: AY642125) in pCR2.1 

TOPO (Invitrogen, UK) from Tracey Coffey, Institute of Animal Health, 

Compton as part of the Genesis Faraday TLR Consortium. 

TLR9 

Full length bovine TLR9 (Accession Number: AY859726) in modified pASK-

IBA1 (893plasmid) from Hans-Martin Seyfert.  
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TLR10 

Full length bovine TLR10 (Accession Number: AY634632) in pCR2.1 TOPO 

(Invitrogen, UK) from Tracey Coffey, Institute of Animal Health, Compton as 

part of the Genesis Faraday TLR Consortium. 

β-actin  

Bovine β-actin full length construct (Accession Number: AY141970) in pCIneo 

(Promega, UK) by D. Werling, Royal Veterinary College, UK.  

5’UTR BVDV 

5’UTR sequence from BVDV type 1 strain NADL (Accession Number: M31182) 

in pGEM-T (Promega, UK) from Carole Thomas, Royal Veterinary College, UK.  
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Plasmid Maps 

pCR2.1 TOPO 
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pcDNA3.1V5-His 
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pGEM-T plasmid 
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pCIneo plasmid 
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APPENDIX 3 

 

Spectrophotometric analysis of cDNA concentrations 

 

 

cDNA concentration (ng μl
-1

) measured by NanoDrop
®
 ND-1000 

Spectrophotometer (Nandrop) and Eppendorf Biophotometer (Spectrophotometer) 

synthesised from mDCs stimulated with Ho916ncp and Ky1203ncp and 

respective mock (MockHo916ncp and MockKy1203).  
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APPENDIX 4 

 

Datasheets for antibodies used in Western blot for detection of β-actin, IRF3 and 

IRF7.  

 

 

 

 


