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Abstract 

The population structure of sprat (Sprattus sprattus) in the Swedish Kattegat – Skagerrak has been at 

present not well investigated, and the boundaries between the management unit in this region and the 

larger stock occurring in the North Sea are also highly uncertain, posing issues to the successful 

management of the stock in this area.  

In this study, variations in otolith shape among several samples from the Swedish west coast, southern 

North Sea and Norwegian fjords north of Bergen were studied to investigate the effectiveness of shape 

analysis for characterise the population structure in the study area, and evaluate whether differences 

could be used to assign individual fish to their origin.  

Otolith sample were partitioned by age, and the shape variations and the relations between shape and 

size were mapped by means of Wavelet and quantitative shape analysis using digitally acquired otolith 

profiles. The areas of the otolith showing the highest proportion of variation were identified, and 

classification techniques were used to investigate the spatial clustering of these variations along the 

study area. 

No differences in otolith shape were observed between left and right otoliths or between male and 

female individuals of sprat, suggesting that collections of mixed samples collated opportunistically from 

available collections can be analysed confidently for instance regardless sex in this species. The shape 

differences among the different geographic locations were observed to occur mainly between the 

morphological structures of rostrum and excisura major, and allowed to identify three major clusters. 

The samples from the Norwegian fjords were the most different in shape among all the groups compared 

in this study, while the Skagerrak – Kattegat and North Sea samples showed a high degree of similarity. 

A high differentiation was found for the samples within the Uddevalla fjord system in Sweden, 

suggesting an isolated unit in this fjord.  

A latitudinal gradient of differentiation was also observed in the central – southern Kattegat, but the 

sample size for this region was limited.  

Classification success of the Norwegian samples was rather high, as well as assignment of the southern 

Kattegat fish in the ages 1 to 3, while values between 31 and 78% were computed for the Uddevalla 

fjords. The classification success between North Sea and Skagerrak individuals based on otolith shape 

was particularly low as expected given the low level of differentiation. 

Our results are consistent with recent genetic findings and the two methodologies corroborated each 

other at a recent benchmark of sprat stock assessment. In conclusion, this study shows that otolith shape 

analysis is a promising tool to identify sprat population structure for management purposes.  
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1. Introduction 

 

 

1.1 The European sprat 

The European sprat (Sprattus sprattus, Linnaeus, 1758) is a small-bodied, pelagic schooling clupeid 

inhabiting the Baltic, the Northeast Atlantic from Northern Norway down to Morocco and the northern 

Mediterranean/Black Sea basins; three sub-species have been defined for each of these areas, named 

respectively S. sprattus balticus, S. sprattus sprattus and S. sprattus phalericus (ICES-FishMap). 

Although morphologically similar to juvenile herring Clupea harengus, the sprat (fig. 1a) is easily 

distinguished by the sharply toothed keel on the belly (fig. 1b), the relative positions of dorsal and pelvic 

fins (fig. 1b, red lines) and the grey coloration on the dorsal side (ICES-FishMap).  

 a                b 

 

 

 

 

 

 

 

 

 

 

Sprat is commonly diffused in different environmental contexts, including shallow waters as fjords and 

areas of low salinity such as the Baltic Sea; being ecologically important both as planktivore and as 

prey, it is one of the main food sources in the diet of numerous species, including demersal fish, 

elasmobranchs, seabirds and marine mammals (ICES, 2013); annual estimates of sprat consumption by 

natural predators made for the North Sea stock identify mackerel, horse mackerel, whiting and seabirds 

as main predators (ICES, 2013). In the Skagerrak and Kattegat, however, the predation mortality is 

poorly known, as the food webs have not been described as well as for the Baltic and the North Sea, 

and multispecies models for this area are currently lacking. 

The maximum length and age of the species are about 16 cm (Whitehead, 1985)  and 5 years (Bailey, 

1980); the gonadal maturation normally starts when the fish is  95 – 100 mm long, a size that is usually 

reached during the first or second year depending on growth conditions (Peck et al., 2012). 

Figure 1  a. Picture of the studied species, the European sprat (Sprattus sprattus). b. Illustration of the main 
morphological differences between herring and sprat (modified). 

 

Figure 2  a. Picture of the studied species, the European sprat (Sprattus sprattus). b. Illustration of the main 
morphological differences between herring and sprat (modified). 
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Sprat are multiple batch spawners, which means that the females spawn repeatedly throughout the 

spawning season and produce 100 - 400 eggs per gram body weight (Alheit, 1987). The main spawning 

area in Skagerrak and Kattegat is located between the northern point of Jutland (fig. 7) and the Swedish 

coast (Lindquist 1978; Nielsen, 1994; Voss et al., 2009). 

Being also a commercially high valuable species, sprat is widely used for canning, fishmeal and oil 

(ICES 2013). Despite of this, the biological knowledge of this species in Skagerrak-Kattegat is poor, 

and it is therefore managed as a “Data Limited Stock” (ICES, 2015) within the International Council 

for the Exploitation of the Sea (ICES). 

 

 

1.2 Study area and local sprat fishery 

The Skagerrak-Kattegat region – 

labelled by ICES as “Division 3a” 

– is one of four key areas in the 

Greater North Sea Ecoregion, 

(fig. 2) along with the Northern 

North Sea, the Southern North 

Sea and the English Channel.  

The division 3a sustains a high 

rate of human activities 

(especially fishing, shipping and 

wind farms), and with its lower 

salinity and tide changes it forms 

the physical and ecological link 

between the North Sea and the 

Baltic Sea (ICES, 2017).  

Among all the Swedish coastal regions, the west coast marine areas are the most species rich and 

productive, and provide habitat for a great variety of commercially important fish species: pelagic 

species like herring, sprat and mackerel are fished on a large scale, as well as demersal fish like cod, 

haddock and various flatfish, and benthic species as Norway lobster and shrimp (Popescu, 2010). 

 

The local stocks of clupeid fish have a long history of exploitation along all the Scandinavian coasts, 

and they are an important part of the naturalistic and historical heritage of Sweden (Lindquist, 1978). 

Among them, herring and sprat play key ecological roles in the food web of the Skagerrak and Kattegat, 

and they also are the dominating species in the Swedish pelagic fisheries (ICES, 2013). 

Figure 2   ICES divisions and subdivisions in the Greater North Sea 
ecoregion (ICES). 

 

Figure 3   ICES divisions in the Greater North Sea ecoregion (ICES). 
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Sprat in 3a are mostly fished by Denmark, Sweden and Norway, with Denmark leading the majority of 

the landings (ICES, 2017). The most exploited area in this region is around the northwesternmost point 

of the Jutland peninsula (fig. 3).  

The Norwegian sprat fishery is seasonal: sprat is protected from 1 January to 31 July, and a traditional, 

inshore purse seine fishery for human consumption takes place only through the 3rd and 4th quarters of 

the year. The Danish and Swedish sprat fisheries take place all year round using purse seine, mid-water 

and bottom trawls. The landings are mainly used for industrial purposes as fishmeal and oil production; 

sprat for human consumption are caught in Skagerrak during Autumn and Winter by purse seiners. 

When the Swedish sprat exploitation started in the late XIX century, it was carried on exclusively in 

inshore waters with beach seines (Lindquist, 1978); just in the early 1930s this activity was extended to 

the open sea: in 1929, in fact, the purse seine was used for the first time for taking sprat off the west 

coasts, and the beginning of trawling in 1933 then increased definitively the importance of open sea 

fishing (ICES, 2013). 

The total landings for sprat between 2015 and 2017 (19770, 11046  and 1413 t respectively) are below 

the average landings in the last 10 year, and the catches in 2017 were extraordinarily low because of 

the closure of the Danish sprat fishery due to high herring bycatches (ICES, 2018a). 

  

Figure 3   Mean of square-based commercial cathes by quarters from 1974-2017. 
First row, from left to right: Q1 and Q2; second row, from left to right: Q3 and Q4 
(ICES). 

 

Figure 3   Mean of square-based commercial cathes by quarters from 1974-2017. 

First row, from left to right: Q1 and Q2; second row, from left to right: Q3 and Q4. 
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1.3 Population structure and challenges for management  

Despite its high exploitation, the sprat in 3a has not received particular attention in research. The number 

of publications during the past decades is limited if compared to other species in the area such as herring. 

At present the species in 3a is treated as a single management stock, although some questions have been 

recently raised about its geographical distribution and its interaction with the neighbouring stocks and 

populations (ICES, 2018b).  

As a small pelagic species sprat have a potential for high dispersal and gene flow, as found for instance 

in the Baltic Sea where the stock is composed by a single large population (Shvetsov et al., 1995). 

However, despite the sea usually offers fewer physical barriers than the terrestrial environments, many 

marine organisms have been proven to display population structures which reflect barriers to gene flow 

over relatively small geographic areas (Limborg et al., 2012). This could be due to environmental 

factors or oceanographic barriers, and the complexity of the Scandinavian fjord system is also a 

potential source of physical barriers between spatially close populations (Libungan et al., 2015). 

Some studies (Limborg et al., 2009) have demonstrated a genetic differentiation which reflects the 

gradient in mean surface salinity between samples from the Kattegat and the Baltic sea, and also pointed 

out as the North Sea and 3a stocks may be more similar than what had been considered to date. However, 

it has not been investigated whether population structures exist within and between the Skagerrak and 

Kattegat, nor the level of differentiation between the stocks of 3a (Skagerrak-Kattegat) and North Sea. 

Among all this uncertainty, a recent study on sprat reproductive biology within the Division 3a (Vitale 

et al., 2016) pointed out that the sprat within the Uddevalla fjords could also be a distinct, well isolated 

population. 

While we have a wide knowledge about other clupeid populations in 3a such as the herring (e.g. 

Rosenberg & Palmén, 1981; Dahle & Eriksen, 1990), local aggregations of sprat showing 

morphological or ecological adaptation are poorly reported by few old studies on phenotypic traits from 

the 1940s-1960s (Molander, 1940; Lindquist, 1968). In fact, even though stock identification is 

recognised as a starting point for fishery management, no comprehensive mapping of sprat population 

diversity exists for the area. Moreover, the level of mixing and hybridization of those potential local 

populations with the larger stocks seasonally occurring off-shore is also unknown, and no quantification 

on their contribution to the local catches is available. The extent to which sprat in 3a derive from North 

Sea migrants is also a major source of uncertainty, and its assessment has been defined by ICES (2013) 

as a priority, and it is currently under evaluation (ICES, 2018b). 

The current assessment and management neglect the local populations of sprat along the Swedish west 

coast, shading uncertainty on their future. In fact, these coastal local units are usually smaller and more 

vulnerable than their offshore counterparts, and it is of paramount importance, for a successful 

management, to identify them and take their existence into account.  
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Clearly, without a comprehensive characterisation of these biological units of local diversity it will be 

impossible to explore if opportunities for their challenging management may exist. Besides, any 

strategies based on an erroneous perception of stock structure may lead to overfishing less productive 

populations and underfishing the more productive ones, impacting the sustainability of the resource 

(Kerr et al., 2016). 

 

 

1.4 Morphometrics analysis and fish otoliths  

D’Arcy Thompson (1917) in his pioneering studies at the beginning of the 20th century, was the first 

one to explore the degree to which the differences in the forms of related animals could be described 

by means of relatively simple mathematical transformations. The term “form” is here intended not just 

as a function of “shape”, but as a quantitatively measurable object which also includes size and their 

variations. However, the first studies aiming to the quantification of morphometric variations in fish 

were bivariate allometric analysis, and were often insufficient to discriminate between populations 

depending on their relative differences. It was only with Teissier (1938) that  the multivariate analysis 

was extended to morphometric researches (Cadrin & Friedland, 1999), when he realised that most of 

the variability explained by principal component analysis of morphometric data could be interpreted as 

a multivariate index of size and secondary components (shape indices) not size-related. 

Since then, multivariate morphometric analysis have been successfully used to discriminate hundreds 

of fish stocks (e.g. Burke et al. 2008; Sadighzadeh et al. 2014), and recent methods of capturing and 

analysing digital images have extraordinarily increased the power of morphometric research. 

Quantitative description and comparison of complex shapes is now faster, more accurate and cost-

effective than ever. 

 

Figure 4  Diagram of inner face of left sagitta showing important characters 

(modified from Messieh, 1972 & Morrow, 1979); source (McBride et al., 2010) 

 

Figure 4  Diagram of inner face of left sagitta showing important characters 
(modified from Messieh, 1972 & Morrow, 1979); source (McBride et al., 2010) 
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Fish otoliths (fig. 4) are widely used for morphometric analyses. They are metabolic inert structures 

located in the inner ear of teleost fish, whose main biological functions are related with balancing and 

hearing. Otoliths are mostly composed by calcium carbonate (CaCO3) in its aragonitic form (>90%), 

plus minor elements which reflect the environment surrounding the fish and its metabolism (Campana 

& Thorrold, 2001).  

 

 

 

 

 

There are three types of fish otoliths: asteriscus, lapillus and sagitta (the bigger in size, used in this 

study).  

The external structure of sprat sagitta otoliths (fig. 5, right picture) is similar among all the three 

subspecies (Northeast Atlantic, Baltic and Mediterranean Sea; Aps et al., 1991): the ventral edge – 

between rostrum (1) and postrostrum (2) – is saw-toothed, while dorsal edge – between antirostrum (3) 

and pararostrum (4) - is usually smooth. Narrow growth rings are formed every winter, in the period 

before spawning, and at the end of spring the intensive feeding season forms a relatively wide summer 

growth zone.  

The age determination of sprat otolith is performed by recognition and counting of these annual 

increments, usually by mean of microscope and transmitted light. 

These interesting structures have been studied by fishery scientists for long time, revealing themselves 

useful for several purposes. Otolith’s most known and used feature is related to their peculiar pattern of 

growth consisting in a number of concentric “rings”, which reflect the seasonal changes in the 

environment and can therefore be used to age individuals: this pattern appears in fact like a sequence of 

opaque and hyaline zones departing from a central nucleus, and reflecting respectively the period of 

fastest and slowest growth of the organism through the year (Aps et al., 1991). 

 

Figure 5  Examples of the diversity of otolith shape and size (white bars = 1mm) among two clupeid 
species: Left: 6-years-old herring; right: 5-years-old sprat. Labels: 1) Rostrum; 2) Postrostrum; 3) 
Antirostrum; 4) Pararostrum. 

 

 

Figure 5  Examples of the diversity of otolith shape and size (white bars = 1mm) among two clupeid 
species: Left: 6-years-old herring; right: 5-years-old sprat. Labels: 1) Rostrum; 2) Postrostrum; 3) 
Antirostrum; 4) Pararostrum. 
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Otoliths are also characterised by two peculiar features which are not shared with any other known 

calcified structure. They show, in fact, continuous growth throughout the fish life, and lack of 

resorption: once the material which forms the otolith has been deposited it will not be used again – not 

even in case of starvation (Rodríguez Mendoza, 2006).  

The otolith shape is species-specific (Tuset et al., 2006), and along with otolith size and growth patterns 

it varies widely between the different species (fig. 5).  

Since genetic variations, fish growth and environmental inputs cause their morphology to vary 

geographically also within a single species, otolith shape analysis has long been recognized as an 

efficient tool not only to identify different species (e.g. in studies of predators’ diet composition), but 

even for the discrimination of stocks and populations (Capoccioni et al., 2011).  

Environmental variables as water salinity (Berg et al., 2018) and temperature (Gagliano & McCormick, 

2004) have been often proved to effect the otolith shape within species, along with biological factors 

such as size, age, habitat depth (Lombarte & Lleonart, 1993),  and diet (Mille et al., 2016). 

As the fish grow, the layers added to the otolith are shaped by the initial shape formed at the early life 

stages, which is strictly depending on genetic factors and the amount of food available to the juveniles: 

fishes may therefore retain for life the characteristics of the otolith inherited from their spawning places 

or, if the environmental effects are particularly intense, show a high rate of shape differentiations from 

the first year of age (Libungan et al., 2015).  

Discrimination of fish stocks using shape analysis of otolith contours was developed as a branch of the 

morphometric techniques, but with recent advances in digital image analysis software it has become a 

powerful and increasingly popular tool, frequently used to discriminate between fish stocks (Cardinale 

et al., 2004). Of all the non-genetics methods used for the differentiation of stocks, in fact, otolith shape 

is the less subject to short-term variability caused by changes in feeding or spawning conditions (Cadrin 

and Friedland, 1999), and the morphometric analysis of otoliths is therefore considered a well-

established method to delineate fish stocks, characterise population movements and detect the natal 

origin of fishes from mixed samples (Libungan et al., 2015).  

Moreover, the method is relatively quick and cost effective if compared to other analyses. Otoliths and 

associated biological data are routinely collected for many commercially relevant fish species as they 

enable the investigation of age structures, and capturing their digital images is relatively simple with 

appropriate microscope and camera which are part of the standard equipment in a fishery lab. 
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1.5 Aims of the project 

Given the limited biological knowledge about sprat in Skagerrak-Kattegat, an analytical stock 

assessment aiming to build a quantitative base for management advice is – at the present moment – hard 

to be performed (ICES, 2018a): currently, sprat in this area is managed as a single stock unit (ICES, 

2013), separated from the North Sea stock; however, even though the boundaries between these two 

stock management units are highly uncertain (ICES 2018b), and also within 3a there could be several 

sub-populations so far not identified. The most recent available genetic data (ICES, 2018b) indicated a 

very uncertain boundary between the two stocks, so an analysis of the differentiation in otolith shape 

between these two areas could be an effective information to further investigate the matter. 

One of the key issues in order to successfully manage fish stocks exploited by different fisheries is to 

identify the different populations and evaluate their relative contributions to the catches. This study 

aims to: (a) understand if otolith shape analysis can be used to investigate population structure of sprat 

and (b) apply otolith shape analysis to infer about population structure of sprat along the Swedish west 

coast. In order to do so, the otolith shapes of 3a sprat were also compared with the neighbouring 

populations occurring in the North Sea and from Norwegian fjords in the Bergen area. 
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2. Materials and methods 
 

 

2.1 Sampling 

The main sample set used in this study is 

composed by samples collected around the 

spawning seasons of 2003 and 2004 along the 

Swedish coast (fig. 6) by both commercial fishing 

vessels  and research surveys as IBTS and Swedish 

Coastal Monitoring. The range of months (from 

late January to early July) was selected 

considering that even though the spawning peak 

for the sprat in this area is between April and May, 

and the highest proportion of spawning individuals 

is between March and July (Vitale et al., 2016), 

spawning individuals may already be found in  

February. 

 

The sampled locations have been opportunistically 

chosen among the samples available at the 

Institute of Marine Research of Lysekil (SLU), 

giving priority to the Skagerrak as it shows a more 

diverse coastline compared to the Kattegat.  

The southern part of the Division 3a has in fact a less articulated coastline, and a shallow and uniform 

seafloor with an average depth of 30 m, while the Skagerrak is characterised by a large number of fjords 

(some of them very isolated, as the Uddevalla fjords system) and a bathymetry varying between 700 m 

in the centre of the basin and 20-50 m in the inner fjords. Therefore, in order to evaluate the potential 

variations in otolith shape between both coastal and fjord environments, 16 out of the 21 sampling 

stations from 3a used in this study are from the Skagerrak basin.  

The total number of otoliths examined from this area is 257 for the Kattegat and 866 for the Skagerrak 

(table 1). 

 

 

 

 Figure 6  Sampling sites in Division 3a, labelled as in  
table 2 (according to the groups used in this study). 

 

 Figure 6  Sampling sites in Division 3a. 
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Table 1  3a: Number of individuals by year, month  
and region. 

 

In addition, two datasets from different populations added as “outer groups” contained 281 individuals 

collected in 2016 by the Norwegian IMR from a system of inner fjords around the city of Bergen, and 

73 collected by DTU-Aqua Denmark in 2015-2016 in the North Sea (table 2; fig. 7). 

The otoliths were labelled to test several hypotheses of geographical association. This included, for 

example, merging relatively far points located offshore or along a smooth coastline, when they were 

known to have similar conditions and no known barriers to the movement of the individuals, or 

separating two areas within the same – but narrow and articulated – fjord system.  

After measuring total length at the nearest millimetre (except for the Norwegian samples, measured in 

0.5 cm intervals) and gutted weight, the fishes were sexed and the sagittal otoliths extracted. The otoliths 

were used independently by two scientists for individual age determination (winter rings counting), and 

finally stored dry in plastic bags.  

Only the otoliths which didn’t show any sign of damage were used in this study. 

 

Region Position ID n. (1477)

Skagerrak Coastal Skagerrak CS 583

Skagerrak Uddevalla (Uddevalla fjord) U 208

Skagerrak Råssö (Northern Skagerrak) SR 17

Skagerrak Bredungen (Gullmarsfjord) BR 58

Kattegat Southern Kattegat OK 51

Kattegat Central Kattegat (~ Anholt Island) AN 67

Kattegat Coastal Kattegat  (~ Gothenburg) CK 139

North Sea North Sea NS 73

Norway Norway NW 281  

Year Month SKA KAT 

    

2003 February 120  

 April 108  

 May 104 35 

 July 58  

2004 January 66 51 

 March 92 57 

 April 158  

 May 160 10 

 July  104 

    

 Tot. (1123) 866 257 

    

Table 2  Sampling locations, related ID labels and total number of 
individuals per group. 

 

Table 2  Sampling locations, related ID labels and total number of 

individuals per group. 
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2.2 Image capture and contourline elaboration 

Each otolith was photographed with a LEICA DC 500 digital camera mounted on a LEICA MZ16 FA 

stereomicroscope (reflected light), using the software LEICA Application Suite 4.1.0 (build 1264). 

The otoliths were placed sulcus down on a dark microscope plate, with their ventral edge facing upwards 

and the dorsal edge downwards (terminology as in fig. 4). The digital images were taken in .jpeg format 

and full colour, ensuring a good focus, a proper contrast between the otoliths and the dark background, 

and with a fixed resolution of 1044x772 pixels.  

Because of the complex three-dimensional structure of the otolith it is not always possible to get an 

equally good focus on both the anterior and posterior sides. It was found that getting images focused on 

the post-rostrum provided best overall results with minimum need for post-capture image manipulation. 

A photograph of a calibration slide (fig. 8) was taken at the beginning of each microscope session, in 

order to calibrate the images and derive comparable measurements among the otoliths. Using the 

software GIMP 2.8.22, 1 millimetre in the calibration photograph was converted into its equivalent in 

pixels, and used to calibrate pictures taken at the same magnification.  

Figure 7  Map showing the regions and the sampling stations examined in this 
study (yellow dots). Names of the regions are shown in blue, names of the seas 
in black. 

 

Figure 8  Map showing the regions and the sampling stations examined in this 
study (yellow dots). The names of the regions are shown in blue, the names of 
the sea in black. 
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In order to be aged, sprat otoliths are usually mounted on a microscope glass slide 

and covered by resin. This procedure makes their optical properties more suitable 

for the observation by transmitted light and the ageing purposes but, unfortunately, 

it also makes their edges almost impossible to be detected by a digital camera 

without extensive, prone to error and time-consuming manipulations. Only the right 

or the left otolith of each individual was therefore available for the shape analysis.  

Almost all the samples used in this study were right-side otoliths but, in a few cases, 

it was possible to retrieve only the left ones. These photographs of left otoliths were 

flipped horizontally to have the rostrum facing left as the right. 

 

The otolith outlines were extracted with of functions written in the R package 

“shapeR” (Libungan & Palsson, 2015): these functions convert the images into 

grey-scale and then binarize them using a threshold value defined by the user, in 

order to detect the edges of the otolith by their contrast against the neighbouring 

pixels of the dark background. 

 

All the outlines were automatically saved as .png images (fig. 9) and each file was visually evaluated 

to ensure that the detected outline perfectly traced the edge of the otolith. When the outline was not 

accurate, the original picture was re-elaborated with a different threshold value, or manually modified 

with GIMP. The new outlines detected on the fixed file, however, are by default impressed over the 

original picture, allowing the operator to check that the manual modification didn´t alter the real shape 

of the otolith. 

The main shape measurements (otolith length, width, perimeter and area) based on the scaling 

information provided with each photograph were also collected. 

  

Figure 9 An example of outlined otolith (red line); 3-years-old sprat 
caught in Skagerrak. 

 

Figure 10  An example of outlined otolith (red line); 3-years-old sprat 

caught in Skagerrak. 

Figure 8  
Microscope 
photograph of the 
scale used in this 
study. 

 

Figure 9  
Microscope 
photograph of the 
scale used in this 
study. 
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2.3 Shape reconstruction 

Conceptually, Wavelet and Fourier analysis can be defined as two different ways of breaking up a signal 

into the single frequencies which make it up (in our specific case, we aim to describe a complex shape 

in terms of mathematical waves). This is very useful in many scientific applications, as it allows to 

decompose different types of signal (e.g. sound, or images) into simple and precisely measurable terms.  

In otolith shape analysis, radii are drawn at equal angular intervals from a centroid within the 

contourline to a number of coordinates along it so that, “unrolling” the shape, the radii can be visualized 

as a series of line segments with different lengths (Campana and Casselman, 1993): this is our signal. 

Additive levels of waves can then be fitted to the data, in order to replicate as much as possible the 

pattern described by the top of the radii. Increasing the number of waves increases the amount of 

coefficients extracted, and therefore the accuracy of the description – better explaining all the variations 

observed in the shape (fig. 10). However, even though there is virtually no limit to the number of 

Wavelet levels or Fourier harmonics that can be used, it is usually best to describe the shape with as 

few levels as possible, thus facilitating the statistical analysis (Campana and Casselman, 1993). 

Wavelet and Fourier analysis differ mainly for the type of waves they use: in fact, while Fourier 

transforms consist of sinusoid waves, which are localised in frequency but lack of a specific time 

domain, a wavelet has a precise limited duration (is localised in both frequency and time). Wavelet 

transformations are therefore considered to be better suited to describing the frequencies of highly non-

stationary signals with abrupt peaks of discontinuities (Renán et al., 2011), as they not only allow to 

quantify these changes, but also to determine their exact position. In practice, abrupt transitions in 

signals result in coefficients with large absolute values and with Wavelet transforms, unlike Fourier, it 

is possible to examine the variability among the coefficients at a given angle. Each one of the analysed 

shapes and its parts can then be accurately described and compared against others by the sum of its 

coefficients. 

 

Figure 10  Reconstructed outlines of the otolith shown in fig.9: Fourier (left) and Wavelet (right). 

 

Figure 11  Reconstructed outlines of the otolith shown in fig.9: Fourier (left) and Wavelet (right). 
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Although the functions implemented in shapeR calculate both Wavelet and Fourier coefficients from 

the otolith contourlines, only the first method was chosen for the purposes of this study. 

By means of the shapeR functions described in Libungan & Palsson, 2015, all the otoliths were set with 

area = 1 and oriented horizontally along their longest axis prior to the Wavelet transformation; 

subsequently, starting from a first radial axis drawn from the otolith centroid to the right (defined as the 

0° angle of the outline), all the radii were collected clockwise at equidistant angles all along the 360° 

and the coefficients extracted for further analysis.  

 

 

2.4 Statistical analysis 

Age, as well as size, is known to have confounding effects on otolith shape (Castonguay et al., 1991), 

and the age coverage of the sample was also not always congruent among the different areas; the dataset 

was therefore split into age subsets combining groups or single age classes in smaller and more 

homogeneous sets, thus saving as much information as possible and reducing the age effects which 

could affect the accuracy of the statistics. 

All the analyses were performed within R, using the packages shapeR, vegan, MASS and ade4.  

 

 

2.4.1  Preliminary tests for differences 

 

The first step of the work was to exclude the effect of any other source of shape variation which was 

not dependent on genetic or geographical variability. 

To check that no significant error was introduced into the analysis during the image capturing process, 

a dataset of 340 new photos was specifically created by sampling 34 otoliths among all the age classes 

from random samples, collecting them on a tray and taking photographs with 10 different sets of 

magnification and lights. After each session the microscope was reset, the settings were changed and 

the otoliths repositioned. The Wavelet coefficients were then extracted and analysed with Canonical 

Analysis of Principal Co-ordinates (CAP); the CAP scores among each set of replicates were checked 

for normality and then compared by means of repeated-measures ANOVA. The canonical scores are 

very well suited when it comes to evaluate these relative differences, as they shrink most part of the 

variability into few variables, and the differences among the otoliths can therefore be described by their 

coordinates in the multivariate space. 

 

As stated in paragraph 2.2, a small amount of individuals (162) were left otoliths. Even though some 

studies about Baltic sprat (Aps et al., 1991) observed no differences between left and right otoliths, 161 

new pairs of unaged otoliths (left-right from the same fish) were used to verify it for 3a sprat; this new 
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dataset consisted of 73 fishes from Skagerrak and 88 from Kattegat, and was built and used only for the 

purposes of this check. The shape features were visually evaluated by plotting one against the other the 

two “average shapes” reconstructed by the mean values of the Wavelet coefficients for the “L” and “R” 

groups; after checking the coefficients for equal variance (F test) and normality (Kolmogorov-Smirnov 

test), a  paired t-test was performed between the coefficients of each pair of otoliths.  

The p-values resulting from the t-tests were plotted with a histogram. The percentage of significant 

values (p < 0.05) was calculated and used to assess whether the otoliths were different or not.  

Furthermore, following a method implemented in Libungan et al., 2015, the Wavelet coefficients of left 

and right otoliths were also analysed using CAP: after testing the first canonical score for normality by 

means of the Kolmogorov-Smirnov test, a paired t-test was performed to see whether there were 

differences between the canonical scores of the left and right otoliths.  

 

The variation in otolith shape between males and females was tested for the age subsets 1-2, 3-4 and 5-

6 on the CAP scores of each otolith, by means of a nested ANOVA with respect to sex and population. 

Due to insufficient sample size it was not possible to check for temporal stability in the otolith shape 

among the groups with samples from both 2003 and 2004 (CK, CS, U).  

 

Prior to the univariate analysis, a check for normality and homogeneity of variances was also performed 

on the otolith measures (length, width, perimeter and area). 

 

 

2.4.2  Grouping hypotheses 

 

To investigate for geographical differences in otolith shape along the Swedish west coast and between 

the Skagerrak and its neighbouring areas (North Sea / Uddevalla-fjord / Kattegat) the following groups 

were considered in the multivariate analyses:  

 

▪ Coastal Skagerrak – Northern Kattegat – Norway – North Sea [age classes 1-2], in order to 

evaluate the relative distances between 3a and the neighbouring ICES divisions. The older age 

classes could not be tested because of insufficient sample size for Norway and North Sea; 

▪ Skagerrak – Northern Kattegat – North Sea [age classes 1-2], to evaluate whether their relative 

positions in the previous test were influenced by the Norwegian samples; 

▪ Skagerrak – whole Kattegat [age classes 1-3, 4], to check for differences specifically within the 

division 3a; it was not possible to run this comparison for age classes 1-2 or 3 alone since the 

sample size for central and southern Kattegat was insufficient; 
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▪ Skagerrak – Uddevalla fjord system [age classes 1-2, 3, 4, 5-6]; to specifically test the 

hypothesis of a sub-population in the fjord. 

 

Many different grouping options were designed and tested for each step of this study. This included, 

among others, evaluating different ranges of ages (one by one or grouped together) and sample sizes, 

offshore-inshore and in/out-fjords, as well as wider and smaller-ranged geographical scales. 

The combinations of groups and age classes showed in the further paragraphs were chosen as they 

seemed to best explain the shape variations and to be more significant both visually and statistically. 

The approach of reducing the analyses to one or few age classes to account for age-related differences 

is done accordingly to other studies, such as Libungan et al., 2015. 

 

 

2.4.3  Main shape features 

 

The quality of the Wavelet reconstruction was estimated by calculating the deviation of the otoliths 

from the reconstructed outlines and the number of Wavelet levels needed for a 98.5% accuracy. 

The differences in shape were visually evaluated by plotting the average shape obtained from the 

reconstructed outlines (rotated and normalised) of each group; in order to inspect which areas of the 

otoliths contourline and coefficients contribute most to the differences between the groups the mean 

shape coefficients and their standard deviation were plotted against the angle of the outline from which 

they were extracted. To further investigate the partition of this variability, the proportion of variation 

among groups (intraclass correlation, ICC) was also calculated along the outline. 

 

 

2.4.4  Univariate analysis 

 

The otolith length, width, perimeter and area within the age classes 1 and 2 were used as univariate 

shape descriptors and compared among the groups. The metrics were first visually compared with box 

plots, then the differences were evaluated with an analysis of variance (ANOVA). Length and width of 

an otolith are here intended as the longest horizontal and vertical distances within the outlines. 

 

Since a significant p-value in ANOVA only indicates that at least one group differs from the others, a 

Tukey Honest Significant Differences test (TukeyHSD) was computed on the ANOVA outputs in order 

to perform multiple pairwise-comparisons between the means of the groups, thus highlighting which 

populations contributed to the significativity of the values. 
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As all the post-hoc tests, Tukey´s test is known to be quite conservative; however, it was preferred to 

less conservative options because this kind of test is less likely to make Type II errors (false positives). 

 

 

2.4.5  Multivariate shape analysis 

 

Each otolith shape was represented by conducting a discrete Wavelet transformation on the equally 

space radii drawn from the otolith centroid to the outline, thus extracting the independent Wavelet 

coefficients. 

Since different fish populations are known to have different growth rates, the otolith shape had to be 

adjusted with respect to allometric relationships with the fish length; an analysis of covariance 

(ANCOVA) was performed to detect possible interactions between the fish length and the Wavelet 

coefficients within each population.  

The increase in the probability of making one or more type I errors due to the testing of multiple 

hypotheses simultaneously was taken into account by applying a Bonferroni adjustment during this step 

of the analysis. In fact, when k independent significance tests are performed, the probability to get no 

significant differences in all of them (what is called a Type I error) is defined as the product of the 

individual probabilities: (1 - α)k (Abdi, 2007); this means that the probability of identifying at least one 

significant result by chance increases with the number of hypotheses tested. 

The Bonferroni adjustment is a correction made to the p-values to reduce the chances of obtaining false-

positive results, by dividing the critical threshold value (α) by the number of tests performed (k):  

α′ = α / k. 

Every time a significant interaction between a Wavelet coefficient and fish length was detected within 

a population, the coefficient was discarded and excluded from further analyses. The others were kept 

and normalised. 

 

The otolith shape was then compared with overall tests and pairwise comparisons to test for regional 

differences. To investigate the variation in shape among the groups, the standardised Wavelet 

coefficients were compared with ANOVA-like permutation tests using 2000 permutations (function 

written in the vegan package) and with Canonical Analysis of Principal co-ordinates (CAP) using the 

capscale function (also in vegan). 

The relative positions of the population centroids along the first two canonical axes were graphically 

examined. The CAP scores along the first discriminant axis were compared among selected pairs of 

groups to better investigate their differences. 
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Individual assignment of the otolith geographical origin was evaluated using a Linear Discriminant 

Analysis (LDA) on the standardised Wavelet coefficients. LDA is a supervised method used to 

discriminate among predefined groups of individuals based on a sample of observations from each one 

of the original groups. The classification success rate was estimated using a leave-one-out procedure. 
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3. Results 

 

3.1 Length and age distribution 

The total length (TL) distribution of the sampled sprat (fig. 11a) shows a similar length range for North 

Sea and Norway. The sampled individuals from these two areas are mainly distributed between age 0 

and age 2 (fig. 11b; very few samples are available for North Sea at age 3 and 4, not enough to be 

included in the analyses), and show a wide length range comparable in width to the length ranges shown 

for Skagerrak.    

  a 

   

b 

Figure 11  Age (panel a) and length distributions (panel b) of the 
samples by region. Regions: Kattegat (red); North Sea (green); 

Skagerrak (blue); Norway (purple). 

 

Figure 12  Age (panel a) and length distributions (panel b) of the 
data by region. Regions: Kattegat (red); North Sea (green); 
Skagerrak (blue); Norway (purple). 
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Kattegat is the area with less variability in length (fig. 12), but the individuals within this area are by 

average as long as in Skagerrak and no differences can be observed between the overall life span 

between the two areas (maximum age 7 years; fig. 11b). 

 

 

 

 

The Norwegian and North Sea samples show in age 2 similar length ranges (fig. 13), respectively of 

80-131 and 85-135 mm. 

The mean TLs of the sampled sprat for the age class 2 (fig. 13, left panel) don´t appear to differ when an 

overall comparison is made between the Kattegat and Skagerrak; however, the Skagerrak area shows a 

high variability between coastal and fjord regions: the TLs in the coastal stations range from 86 to 150 

mm, with a mean of 128 mm; the fjord populations, on the other hand, are significantly shorter, with TL 

ranging 96-119 mm (mean 108.7 mm) in U and 106-131mm (mean 113.6 mm) in BR.  

The length range in the whole Kattegat for age 2 is considerably narrower, from a minimum of 115 to 

a maximum of 138mm. No significative differences in mean length exist between the coastal Skagerrak 

(CS) and the coastal Kattegat (CK), but both the groups differ from the two Skagerrak fjords. Similar 

relative patterns are showed in the class 3 (fig. 13, right panel): the range in Skagerrak is 101-159 mm 

(overall mean 132.4 mm, 139.3 mm with fjords excluded), with a 102-132 mm range in the fjords; in 

Kattegat, total lengths range 120-152 mm (mean 136.4 mm). 

Figure 12  Relations between age and fish length in the data. The 
observations are grouped by region. Regions: Kattegat (red); North Sea 
(green); Skagerrak (blue); Norway (purple);  
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3.2  Preliminary tests 

Replicates, left/right side and males/females were checked for differences. 

The canonical scores of the 10 sets of replicates were checked by means of a repeated-measures 

ANOVA (or within-subjects ANOVA), which is suitable to detect the effect of different treatments on 

a set of observations. The ANOVA gave an overall p-value of 0.53, which means that no significant 

differences were detected between the shapes (in terms of coefficients) of the repeated sample sets. 

The reconstructed average-shape plot for left vs right, and the t-tests performed on the coefficients of 

each pair of otoliths, showed no significant variations between the two groups (fig. 14a); less than 2% 

of the tested pairs fell below a p-value of 0.05 (which corresponds to 3 pairs out of 161; fig. 14b), with 

an average value of 0.6. 

The t-test performed on the canonical scores of left and right otoliths also showed non-significant 

differences (P-value > 0.10). 

a                 b 

Figure 14  a. Average Wavelet-reconstructed shape of left and right otoliths sampled in pairs from the same fishes; 
b. Bar-plot showing the distribution of the p-values from each t-test (significant values displayed on the right of the 
red line). 

Figure 13  Box plots showing the total length distributions  for each group. The mean values are showed as 
black numbers under each box.  Age 2 on the left, age 3 on the right. Groups: AN: central Kattegat; BR: 
Gullmarnfjord; CK: coastal Kattegat; CS: coastal Skagerrak; NS: North Sea; NW: Norway; OK: southern 
Kattegat; U: Uddevalla fjords. 
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The nested ANOVA performed on the canonical scores with respect to sex and population gave non-

significant values for all the age classes tested (table 3).  

Consequently, the following analyses were conducted on merged data for males and females, as well as 

left and right otoliths. 

 

 

 

 

 

 

 

 

 

The otolith measures for the age classes 2 and 3 (analysed within univariate analyses) were checked for 

normality by means of the Kolmogorov-Smirnov test and for homogeneity of variance with Levene´s 

test (table 4).  For the age 2, only the samples from 3a were included in the ANOVA since by including 

the North Sea and Norwegian samples the data wouldn’t respect the assumption of homogeneity of 

variances. 

 

 

 

 

 

 

 

 

 

 

 

 

Age n. males n. females p-value 

1-2 275 295 0.11 

3-4 213 303 0.31 

5-6 54 68 0.21 

    

Table 3  P-values of the nested ANOVA 
performed on 3 groups of age classes (1-
2, 3-4, 5-6)to check for variations with 
respect to sex and sampling areas. 

Age  Otolith variable K-S Levene 

2 Length 0.12 0.22 

 Width 0.95 0.65 

 Perimeter 0.43 0.31 

 Area 0.95 0.18 

3 Length 0.73 0.16 

 Width 0.75 0.32 

 Perimeter 0.87 0.12 

 Area 0.88 0.35 

Table 4  P-values of the tests performed 
to check for the normality (Kolmogorov-
Smirnov) and homogeneity of variances 
(Levene´s test) of the otolith metric 
variables in age 2 (NW - NS excluded) 
and age 3. 



31 
 

3.3 Main shape features   

The number of Wavelet coefficients extracted increases by the power of 2 for each Wavelet level; 63 

coefficients were collected for each outline in this study using 6 Wavelet levels.  

The quality of the reconstruction rises with the number of Wavelet levels (fig. 15), and the shape of 

sprat otolith appears to be precisely described (with a 98.5% accuracy with respect to the original otolith 

contourline) by the sum of the first 5 Wavelet levels.  

 

 

Overall differences among populations 

The differences among Norwegian, North Sea, Skagerrak and Kattegat for all the sampled were 

visualised by means of their average shapes (fig. 16).  

The strongest differences between 3a and North Sea (fig. 17) are detected at the excisura major (EM), 

while other minor regions of variation are in proximity of postrostrum (Po), rostrum (R) and antirostrum 

(A).  

The shape of the Norwegian otoliths differs from 3a along all the contourline, except for the excisura 

major and some regions around 150° and 270°; the strongest changes between NW and 3a occur around 

the rostrum (just past 180°) and between pararostrum (Pa) and postrostrum. North Sea (NS) and 

Norway are very similar around the antirostrum. 

Figure 15 Quality of the Wavelet outline 
reconstruction. The red vertical line shows the level of 
Wavelets needed for a 98.5% accuracy of the 
reconstruction. 
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Barely any difference can be observed at this level between Kattegat and Skagerrak (respectively KA 

and SK, the black and the blue solid lines).  

 

 

This first visual inspection seems to suggest a certain degree of differentiation among all the groups 

identified in this study, as shown by the differences in the average shapes (fig. 18) and by the high level 

of intraclass variation in the Wavelet coefficients for the areas of the otolith outline(fig. 19).  

Figure 17  Mean, standard deviation and proportion of 
variance of the Wavelet coefficients representing the shape 
differences among Kattegat (KA), Skagerrak (SK), North Sea 
(NS) and Norway (NW).  

Figure 16  Average shape for all otoliths grouped by sea. The groups 
are: KA: Kattegat; NS: North Sea; NW: Norway; SK: Skagerrak. Black 
letters: R: Rostrum; EM: Excisura major; A: Antirostrum; Pa: 
Pararostrum Po: Postrostrum. 
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The most variable regions of the otolith among different sprat populations appear to be the rostrum (R), 

the excisura major (EM) and the excisura minor (Em). 

 

  

 

Further inspections of the average shapes show that the morphology of the Norwegian otoliths (NW) is 

the most divergent of all the samples, especially at rostrum, excisura minor and on the ventral side.  

Figure 18  Average shape for all otoliths from the 9 groups tested. The areas are: 
AN: Central Kattegat; BR: Gullmarnfjord; CK: Coastal Kattegat; CS: Coastal 
Skagerrak; NS: North Sea; NW: Norway; OK: Southern Kattegat; SR: Northern 
Skagerrak; U: Uddevalla fjords. Black letters: R: Rostrum; EM: Excisura major; Em: 
Excisura minor. 

Figure 19  Mean and standard deviation of the Wavelet coefficients 
representing shape for all the sampled otoliths and groups, and 
proportion of variance among groups (ICC, black line); the higher 
coefficients correspond higher variations along the single outlines 
The X axis shows the angle in degree. 
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The first two regions are, respectively, the farthest and the closest to the average centroid among all the 

shapes.  

The two offshore populations from central and southern Kattegat (AN, OK) appear here to be the most 

similar at shape. OK, AN and CK (coastal Kattegat) are similar at rostrum, excisura major and 

antirostrum, while CK is highly different from the other Kattegat populations between pararostrum and 

postrostrum, where it mimics the shape of the North Sea population.  

The coastal Skagerrak samples (CS) seem to be the group with the longest otoliths (maximum distance 

from the centroid along the X axis), while U is the shortest. Intermediate, similar lengths are showed 

for the other 3a populations. 

By further observations made on age subsets 1-3 and 4 (not shown) similar patterns were observed, and 

the most variable regions of the otolith identified so far do not seem to change with age. 

 

 

3.4  Univariate shape analysis 

Otolith length, width, perimeter and area were used as univariate shape metrics and were analysed with 

ANOVA at the age classes 2 and 3 (table 5).  

 

3.4.1 Otolith length 

In both age 2 and 3 (fig. 20), the otoliths in 3a are the longest among our samples (mean values: ~1.8 

mm ~2 mm respectively); the only exception is Uddevalla, which otoliths are the shortest at both the 

age classes (age 2: 1.62mm; age 3: 1.79mm); the population of the Gullmarnfjord appear to have slightly 

longer otoliths than what would be expected from their TL, and no more significative differences in 

otolith length were detected among the 3a populations except for U. 

The North Sea sprat also presents very short otolith in the age 2 (with mean values similar to Uddevalla, 

~1.65mm), but this feature is not showed in the older age class, where the length values are comparable 

with 3a (~1.9mm; the Uddevalla length values, on the other hand, remain the lowest). 

Figure 20  Distributions of otolith lengths among the sampled populations. Left: age 2; right: age 3. Mean 
values shown in black under each box. Groups: AN: central Kattegat; BR: Gullmarnfjord; CK: coastal Kattegat; 
CS: coastal Skagerrak; NS: North Sea; NW: Norway; OK: southern Kattegat; U: Uddevalla fjords. 
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3.4.2 Otolith width 

While North Sea and Norwegian samples in age 2 have different otolith lengths, their otoliths don´t 

differ in width (fig. 21, left panel), with mean values similar to the Uddevalla populations (1.1mm) and 

smaller than the average for Kattegat and Skagerrak (> 1.15mm). However, as well as for the otolith 

length, the width of the NS samples grows in age 3 (fig. 21, right panel), to values similar to 3a (1.26 

vs 1.28mm), with no statistical differences detectable. 

There are no significative differences in width among the 3a otoliths (except for U) for both the age 

classes. 

 

3.4.3 Otolith perimeter 

As the otolith length, the perimeter values for the age class 2 (fig. 22, left panel)  are the lowest in U 

and NS (means: 4.5 and 4.7mm respectively), while similar – higher – values are shared between NW, 

CK and CS (~5mm). 

The otolith perimeter in age 3 (fig. 22, right panel) is the most variable among all the analysed otolith 

measures: U and NS have similar, small values as usual (along with BR), but differences are here 

detected also between CK (~5.4mm) and both CS/AN (~5.6mm). 

Figure 22  Distributions of otolith perimeters among the sampled populations. Left: age 2; right: age 3. Mean 
values shown in black under each box.  Groups: AN: central Kattegat; BR: Gullmarnfjord; CK: coastal Kattegat; 
CS: coastal Skagerrak; NS: North Sea; NW: Norway; OK: southern Kattegat; U: Uddevalla fjords. 
 
 

Figure 21  Distributions of otolith widths among the sampled populations. Left: age 2; right: age 3. Mean values 
shown in black under each box. Groups: AN: central Kattegat; BR: Gullmarnfjord; CK: coastal Kattegat; CS: 
coastal Skagerrak; NS: North Sea; NW: Norway; OK: southern Kattegat; U: Uddevalla fjords. 
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3.4.4 Otolith area 

The only differences in the otolith area (fig. 23) were detected between U and the other groups, even 

though very low non-significant values (~0.05) are computed between NS and both CS and AN. 

 

   

 
 
 [        Age 2     ]    [    Age 3          ] 

 

 

Groups length width perimeter area length width perimeter area 

U-BR < 0.001 0.04 < 0.001 < 0.001 0.04 n/sign n/sign n/sign 

U-CK < 0.001 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.01 < 0.001 

U-CS < 0.001 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

U-AN - - - - < 0.001 < 0.001 < 0.001 < 0.001 

U-OK - - - - < 0.001 < 0.001 < 0.001 < 0.001 

U-NS - - - - n/sign n/sign n/sign n/sign 

BR-CK n/sign n/sign n/sign n/sign n/sign n/sign n/sign n/sign 

BR-CS n/sign n/sign n/sign n/sign n/sign n/sign n/sign n/sign 

BR-AN - - - - n/sign n/sign 0.02 n/sign 

BR-OK - - - - n/sign n/sign n/sign n/sign 

BR-NS - - - - n/sign n/sign n/sign n/sign 

CK-CS n/sign n/sign n/sign n/sign n/sign n/sign 0.01 n/sign 

CK-AN - - - - n/sign n/sign 0.02 n/sign 

CK-OK - - - - n/sign  n/sign n/sign n/sign 

CK-NS - - - - n/sign  n/sign n/sign n/sign 

OK-CS - - - - n/sign  n/sign n/sign n/sign 

OK-AN - - - - n/sign n/sign n/sign n/sign 

OK-NS - - - - n/sign n/sign n/sign n/sign 

NS-CS - - - - 0.03 n/sign 0.03 (0.05) 

NS-AN - - - - n/sign n/sign n/sign (0.05) 

CS-AN - - - - n/sign n/sign n/sign n/sign 

Table 5  Adjusted p-values for the Tukey multiple comparisons of means performed on the ANOVA 
outputs of age 2 and 3 (empty cells indicate that the comparisons were not made). 

Figure 23  Distributions of otolith areas among the sampled populations. Left: age 2; right: age 3. Mean values 
shown in black under each box.  Groups: AN: central Kattegat; BR: Gullmarnfjord; CK: coastal Kattegat; CS: 
coastal Skagerrak; NS: North Sea; NW: Norway; OK: southern Kattegat; U: Uddevalla fjords. 
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3.5 Multivariate otolith shape analysis 

When analysing sprat otoliths, the standardisation by TL of the whole data set causes a remarkable loss 

of information, as it removes a significant number of Wavelet coefficients: respectively 19 and 13 (out 

of 63 coefficients) were discarded when the geographic region (Norway – North Sea – Skagerrak - 

Kattegat) or the area IDs were set as class variable in the ANCOVA – even accounting for the 

Bonferroni correction.  

A number of discarded coefficients > 8 was usually observed to negatively interfere with the detection 

of differences between the sampled populations; however, usually 0 – and never more than 3 

coefficients – were discarded in the ANCOVA performed prior to each one of the multivariate analysis 

shown in this paragraph on the designed subsets. 

The first two of the four grouping hypotheses presented in paragraph 2.4.2 will be analysed in the next 

paragraph (3.5.1), while  the other two will be explored respectively in the paragraphs 3.5.2 and 3.5.3. 

 

 

3.5.1 Overall differences among populations 

Significant differences in shape (table 6) were detected by the ANOVA-like permutation tests among 

all the sprat populations at ages 1-2, 1-3 and 4, with highly significant p-values  (< 0.001). When 

comparing CS and CK within the age group 1-3 no significant differences are detected between the 

groups (table 6). The within-Kattegat analysis (CK, AN, OK) detected significant differences for age 

1-3, while at age 4 the populations did not differ (but the sample size for CK at this age is very small). 

Significant differences are also found among the Skagerrak samples for both the age groups, even 

though the F-values are slightly lower in the analysis performed on age 4; the pairwise comparisons 

between CS and U also show similar patterns, with highly significant p-values for both age classes 1-3 

and 4. 

 

Examining the positions of the populations based on shape variations along the first canonical axis for 

ages 1-2 in fig. 24, is possible to identify 2 clusters: the 3a and North Sea populations stick together, 

while the Norwegian samples stand alone. Some differentiation between 3a and North Sea is observed 

along the second component, but the explained variation on this axis is very low (15.2%) compared 

with the first one (77%). This result is also supported by the pairwise comparisons between CS and NS 

and between CS and NW (table 6), where different F-values were computed among the two analyses.  
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The same analysis was performed on the same age group (1-2) with the Norwegian samples excluded 

(fig. 25); this plot further demonstrates as the short distance detected between the North Sea and 3a 

populations in fig. 24 was not biased from the fact that an external, highly different population (NW) 

was included in the same analysis, but is a constant feature: the relative positions of the centroids and 

their canonical scores along the first canonical axis are unchanged. 

 

 

 

 [ 1 - 2 years ] [  1 - 3 years ] [  4 years ] 

 df var F P df var F P df var F P 

All pop. 6 24.49 4.97 0.001 8 39.73 6.61 0.001 5 16.85 3.11 0.001 

CS vs NS 1 4.37 5.37 0.001 - - - - - - - - 

CS vs NW 1 8.84 10.45 0.001 - - - - - - - - 

NS vs U 1 2.46 3.30 0.006 - - - - - - - - 

CS vs CK - - - - 1 1.13 1.52 0.12 - - - - 

CS vs U - - - - 1 10.72 12.25 0.001 1 6.31 6.67 0.001 

CS vs OK - - - - 1 1.42 1.69 0.08 1 1.95 1.92 0.05 

OK vs U - - - - 1 3.31 4.12 0.003 1 3.57 3.32 0.004 

within KA - - - - 2 3.51 2.10 0.007 2 3.40 1.39 0.12 

within SK - - - - 3 13.63 5.20 0.001 2 9.48 4.80 0.001 

Table 6  Results from pairwise ANOVA like permutation tests based on 2000 permutations. Results for age 
groups 1-2 years, 1-3 years, 4 years are shown separately. df: degrees of freedom; var: variance; F: F-value; P: 
P-value. p<0.05 indicates a significant effect. 

Figure 24  Canonical scores on discriminating axes 1 (CAP1) and 2 (CAP2) 
for the sprat populations for age group 1-2. CK: Coastal Kattegat; CS: 
Coastal Skagerrak; NS: North Sea; NW: Norway. The black letters represent 
the mean canonical value for each population. 
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3.5.2 Division 3a 

When age 3 is included, it is possible to analyse the relative positions of the central and southern 

Skagerrak with respect to the rest of 3a (fig. 26, left panel). 

A 2-clusters pattern seems to be distinguishable (fig. 26 left panel) along the first discriminant axis, 

where the fjord population of U is separated from the others. An evaluation of the second axis seems to 

suggest a slight differentiation between the coastal and fjord samples (CS-CK-U) and the offshore ones 

(OK-AN); however, the ANOVA-like test gave a slight non-significant p-value of 0.08 when comparing 

CS with OK in this age group (table 6).  

The comparisons between CS and U and between OK and U support the CAP output and the separation 

of the Uddevalla  group. 

 

 

Figure 26  Canonical scores on discriminating axes 1 (CAP1) and 2 (CAP2) for the sprat populations analysed 
at age classes 1-3 (left) and 4 (right). AN: Central Kattegat; CK: Coastal Kattegat; CS: Coastal Skagerrak; OK: 
Southern Kattegat; U: Uddevalla fjords. The black letters represent the mean canonical value for each 
population. 

Figure 25  Canonical scores on discriminating axes 1 (CAP1) and 2 
(CAP2) for the sprat populations for age group 1-2. BR: 
Gullmarnfjord; CK: Coastal Kattegat; CS: Coastal Skagerrak; NS: 
North Sea; SR: Northern Skagerrak; U: Uddevalla fjords. The black 
letters represent the mean canonical value for each population. 
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A similar pattern was observed for age 4 (fig. 26 right panel), but as shown in the lower CAP values 

and by the values of the comparisons in table 6, the differences among populations decrease as the age 

increases. The Kattegat populations at this age seem to not differ among themselves;  along the first 

axis the 3a populations appear here as a single cluster, while U is again quite distinct, and diverges from 

the rest. No patterns are shown on the second canonical axis, where all the population centroids have 

similar scores . 

The comparison between CS and OK gives a p-value of 0.05, not in discordance with CAP. The position 

of U is also confirmed by the ANOVA-like results: in the analysis performed at age 4, in fact, the 

population remains well isolated from the rest of 3a (comparisons performed on CS-U and OK-U, both 

with significant p-values). 

 

3.5.3 Skagerrak - Uddevalla 

 ANOVA-like permutation tests and Canonical Analysis of Principal co-ordinates were performed 

separately on the Skagerrak samples CS and U, to further investigate the degree of differentiation of the 

fjord samples from neighbour coastal areas. The sample size per group was here large enough (>40) to 

perform the analysis on a larger number of separate age classes. The following age groups were 

investigated: age 1-2, 3, 4, 5-6. 

 

The CAP scores of the otoliths along the first discriminant axis were plotted in a histogram, and the two 

populations were compared against each other (fig. 27). The differences between the two groups were 

statistically significant for all age groups (table 7) which motivated further analysis at smaller 

geographical scale within the region (fig. 28). 

 

 

 

 

  

 

 

 

 

 

Age df var F P 

1-2 1 4.26 5.23 0.001 

3 1 5.21 5.41 0.001 

4 1 6.31 6.67 0.001 

5-6 1 7.83 3.16 0.001 

Table 7  Results from ANOVA like 
permutation tests based on 2000 
permutations between CS (Coastal 
Skagerrak) and U (Uddevalla-fjord). 
Results for age groups 1-2 years, 3 
years, 4 years and 5-6 years are 
shown separately.  
df: degrees of freedom; var: variance; 
F: F-value; P: P-value. p<0.05 
indicates a significant effect. 
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a      b 

c      d 

 

For this scope the samples within the Uddevalla fjord 

system were separated between those in the inner 

(U*) and intermediate (C1) part of the fjord (fig. 28).  

 Otolith shape of individuals from the two groups 

showed no significant differences at age 1-3, while 

significant differences were found for age 4 (table 8).  

The otolith shapes of age 4 fish from C1 are different, 

and they appear to be intermediate between the 

samples of CS and U*, as shown by their distribution 

along the first axis of the CAP analysis (Fig. 29). 

 

 

 

 

 

Figure 28  Map showing the fjord system near the city of 
Uddevalla (in the upper-right corner) on the Swedish 
west coast North of Gothenburg, and the ID labels used 
to refine the analysis. Labels: CS: coastal Skagerrak; C1: 
mid-fjord samples; U*: inner fjord samples. 

Figure 27  Canonical scores on discriminating axis 1 (CAP1) for the sprat populations CS (Coastal Skagerrak, blu 
bars) and U (Uddevalla fjords, red bars); (a) Age group 1-2; (b) age 3; (c) age 4; (d) age group 5-6.  
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 [           C1 -     U*      ] 

Age df var F P 

1-3 1 0.89 1.11 0.33 

4 1 2.30 2.39 0.021 

[           C1 -     CS      ] 

df var F P 

1 7.75 8.72 0.001 

1 5.20 5.62 0.001 

Table 8  Results from ANOVA like permutation tests based on 2000 
permutations between the new labels CS (Coastal Skagerrak), C1 
(mid-fjord samples) and U* (inner fjord samples). Results for age 
groups 1- 3 years and 4 years.  
df: degrees of freedom; var: variance; F: F-value; P: P-value. p<0.05 
indicates a significant effect. 

Figure 29  Canonical scores on discriminating axes 1 (CAP1) and 2 (CAP2) for the sampled populations at age 
1-3 (left) and 4 (right). Groups: CS: Coastal Skagerrak; C1: mid-fjord samples; U*: inner fjord samples. The black 
letters represent the mean canonical value for each population. 
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3.6 Discriminant analysis 

To validate whether otolith shape could be used for assigning individuals to their sampling origin, LDA 

was applied to the standardised Wavelet coefficients (table 9 a/c) with respect to the same samples and 

groups analysed in the multivariate analysis (age groups 1-2, 1-3, 4). Separate LDA analysis were also 

performed on CS and the whole Uddevalla fjord system (U) for the age group 1-3 and CS-U*-C1 at age 

4 (table 9 d). 

Classification success ranged between 20% and 78% among all the ages and geographical groups 

investigated. NW, CS and AN are the groups with the highest classification success (> 60%) among all 

the age groups, while NS and CK show the lowest rate of assignment (around 30% or lower). Individuals 

from OK are well separated at the age group 1-3 (69%), while the classification success decreases to 

55% at age 4.  

When considering only the assignment of samples to CS or the Uddevalla fjords (table 9 d) the 

classification success for CS was considerably higher (> 80%) than compared to the overall analysis 

(table 9 a/c), with a rate of misclassification decreasing from ~30/35% to ~15%.  

 

 

a                                                                         b      

 

 

c                                                                          d 

 

 

 

 

Age  CK CS NS NW U 

1-2 CK 0.33 0.45 0.10 0.10 0.02 

 CS 0.17 0.64 0.06 0.05 0.08 

 NS 0.17 0.42 0.29 0.04 0.08 

 NW 0.03 0.17 - 0.75 0.05 

 U 0.09 0.33 0.24 0.03 0.31 

Age  AN CK CS OK U 

1-3 AN 0.68 - 0.29 - 0.03 

 CK 0.04 0.20 0.60 - 0.16 

 CS 0.03 0.16 0.70 0.02 0.09 

 OK - 0.06 0.25 0.69 - 

 U 0.01 0.13 0.31 0.01 0.54 

Age  AN CK CS OK U 

4 AN 0.65 - 0.22 0.09 0.04 

 CK - 0.25 0.25 0.25 0.25 

 CS 0.10 0.11 0.64 0.07 0.08 

 OK - 0.05 0.30 0.55 0.10 

 U 0.07 - 0.12 0.03 0.78 

Age  CS U U* C1 

1-3 CS 0.88 0.12 - - 

 U 0.44 0.56 - - 

4 CS 0.84 - 0.02 0.14    

 U* 0.18 - 0.64 0.18    

 C1 0.21 - 0.23 0.56    

Table 9  Classification success (bold) of otoliths into their original group based on a linear discriminant analysis. 
Independent discriminant analysis were conducted on all the populations used in the CAP analysis at age group 
1-2 (a), 1-3 (b) and 4 (c). Two separate discriminant analysis were performed on the samples within and outside 
the fjord of Uddevalla for age group 1-3 and 4 (d). Groups: AN: central Kattegat; CK: coastal Kattegat; CS: 
Coastal Skagerrak; C1: mid-Uddevalla fjord; NS: North Sea; NW: Norway; U: whole Uddevalla fjords; U*: inner 
Uddevalla fjord.  



44 
 

 

  



45 
 

4. Discussion 
 

 

This study characterised the shape of sprat otoliths in three areas of the Greater North Sea ecoregion, 

focusing particularly on the Swedish west coast. To our knowledge this is the first study to investigate 

the otolith morphology of this species aiming to identify geographical variations which could be linked 

to population structure. 

All the analysis indicated a pattern among the sampled populations, with three major groups identified: 

 

▪ Norway; 

▪ North Sea and 3a; 

▪ Uddevalla fjords. 

 

Although the comparisons among regions performed in this study could be partly confounded by the 

variations in seasons and the long time-gap between the collection of the Swedish samples (2003-2004) 

and the Norwegian/North Sea samples (2014-2016), results appears consistent with biogeographical 

considerations, previous knowledge on sprat population structure (Limborg et al., 2009; Limborg et al., 

2012) and recent genetic analyses (ICES, 2018b). 

 

The otoliths were tested for size and shape differences with univariate and multivariate analyses. The 

univariate method was applied to morphometrics measures such as otolith length, width, perimeter and 

area as descriptors to compare samples of different origin, while the multivariate methods were applied 

to the scaled Wavelet coefficients.  

When looking at phenotypic traits and performing morphometric analysis, it is important to consider 

that shape is affected by multiple factors: citing the words of the father of morphometrics, “ the form 

of an object is a “diagram of forces” ” (D’Arcy Thompson, 1917).  

Otolith shape is mainly determined by genetic and environmental factors (Campana and Casselman 

1993). Additional factors such as age, sex and size are known to play a role into the otolith shaping 

process through the fish life. For this reason, when  studying spatial variations in otolith shape, the 

effect of these influential additional variables has to be tested and eventually removed (Burke et al., 

2008). When a wide overlap in fish size exists between samples from different regions, a multivariate 

classification based on size-independent shape variables is likely to be more effective than an analysis 

based on size alone (Campana & Casselman, 1993). It is also important to consider that differences 

between left and right otoliths could be significant for some species and should be always evaluated 

(Ider et al., 2017). In this study the age of the fish was known, so we selected different age groups with 
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the intent to minimise ontogenetic influences on shape while maintaining sufficiently large sample size 

for analytical purposes. The effect of sex and side was tested and both were found to be non-significant 

within the sampled areas. This justified the treatment of mixed samples in our study but most 

importantly it suggests that otolith collections of sprat which have generally been sampled for other 

purposes could be analysed regardless sex or using indistinctly left or right otoliths. On the contrary, an 

important limit to otolith shape analysis was found with the use of samples mounted on glass, which is 

common practice for age reading but compromised the use of sprat otoliths for the purposes of image 

analysis of shape morphometrics.  

The choice of the Wavelet transform demonstrated its effectiveness in this study since it made possible 

to detect regions of the contourline that contributed most to the variations in shape among different 

geographical samples. This could have not been achieved by use of Fourier transforms, as the lack of a 

time domain which characterise this method over the Wavelet functions does not allow the operator to 

detect in what regions of the outline the variations occur.  

The results from univariate and multivariate analyses show a certain degree of accordance; however, 

although the otolith length and perimeter were found to be significantly different among some areas 

(particularly with regard to the samples from Uddevalla), it was not possible to distinguish a clear 

pattern among these variables. 

 

Otolith shape in the Norwegian samples differentiates most from the others. These samples also showed 

a high degree of internal variability, which was proved to be related with differences among the four 

fjords in which the fish were sampled (results not showed as the main focus of this study was the 

Swedish west coast), suggesting small scale variability among some of these relatively isolated areas. 

These results are in agreement with recent genetics studies performed on microsatellite DNA loci (e.g. 

Glover et al. 2011), which pointed out as the Norwegian sprat is highly different from the North Sea,  

Celtic Sea and Baltic Sea populations, and variable levels of genetic differentiations can also be 

observed among Norwegian fjords. Nævdal (1968), analysing haemoglobin and serum proteins, 

suggested the occurrence of reproductively isolated components of sprat among western Norwegian 

fjords, and similar small-scale patterns of differentiations have already been observed for other fish 

species. Studies conducted on cod and herring (Knutsen et al., 2007; Bekkevold et al., 2005) revealed 

demographically independent populations between the fjords of southern Norway, and pointed out that 

strong natural forces may intervene in the retaining of the early life stages within these areas. 

 

Of particular interest, and unexpected at the beginning of the project, was the low level of differentiation 

between the North Sea and the 3a samples. The species, in fact, is currently assessed and managed in 

these two areas as  two separate stocks (ICES, 2018b), approach which appear in contrast with the 

results provided in our study. However, these results sum themselves with many other evidences arising 

from different methods and presented at the last ICES Benchmark Workshop on Sprat Stocks 
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(November 2018), where the merging of the two management units was finally discussed (ICES, 

2018b). 

 

The level of differentiation found between the samples from North Sea and Skagerrak appears 

considerably lower than the variations estimated within the Skagerrak region when fjord samples are 

included. An environmental gradient of differentiation between North Sea, Northern Kattegat, Belt Sea 

and Baltic Sea was previously reported by Limborg et al. (2009) based on genetic analyses, but the 

differentiation between North Sea and 3a was not investigated. In this respect, and considering the latest 

scientific advices (ICES, 2018b), corroborating evidences from independent methodologies is highly 

valuable to support revision of boundaries among assessment units which should mirror as much as 

possible biological units. However, in this study it was possible to assess the similarities between North 

Sea and 3a only within the age classes 1-2 (which were the only classes from North Sea available in 

this study). It would be therefore advisable to perform further studies on otolith shape variations 

between the two regions by sampling older age classes in North Sea and more offshore locations in 

Northern Skagerrak. 

As expected, given the lack of known physical or environmental barrier that could prevent gene flow, 

no differences is found among samples within the Skagerrak (excluded samples from the fjords) and 

part of the Kattegat region. A certain degree of differentiation is found in the central and even more in 

the southernmost samples from the Kattegat for the age group 1-3 even though, when comparing the 

fish lengths of the two areas for the same ages, no differences in growth rates seemed to emerge. Such 

gradient would support the hypothesis of a mixing zone throughout the southern Kattegat  in agreement 

with genetic studies (Limborg et al., 2009; ICES, 2018b) where a high rate of differentiation between 

samples from Skagerrak /southern Kattegat and the Belt/Baltic sea has emerged approximately from 

the same area. Some lower levels of differentiation, although with much smaller differences between 

the relative CAP scores, was detected also at age 4. However, the ANOVA-like permutation tests gave 

slightly non-significant p-values (respectively 0.08 and 0.05) while comparing OK and CS at both the 

age groups (the number of sampled individuals, unfortunately, did not allow the comparisons with CK 

at age 4). Further research is needed to better characterise this area of mixing between adjacent 

populations also in relation to seasonal variability in the level and extent of mixing. Larger sample size, 

and also a better age and spatial coverage of the southern Kattegat would be necessary, possibly 

including samples from the Belt Sea and western Baltic Sea to cover the full geographical range of 

potential overlap. 

 

The variations in the shape of fish otolith has been proved to be a function of both genetics and 

environmental inputs (Castonguay et al., 1991; Berg et al., 2018). Our results (with few exceptions such 

as in the Uddevalla fjords) also suggest that differences in the shape of sprat otoliths tend to decrease 

with age, similarly as it was found for other clupeid species such as herring (Libungan et al., 2015). 
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This phenomenon could be due to a shift from the genetic imprinting of shape at the early stages of fish 

life to a proportionally higher effect of environment as fish grow.  

Extensive studies have examined the influence of several environmental factors on the shape and 

structure of fish otoliths: physical and trophic conditions of the water such as salinity (Berg et al., 2018), 

temperature (Gagliano & McCormick, 2004), habitat depth (Lombarte & Lleonart, 1993), pH (Réveillac 

et al., 2015; Maneja et al., 2013), availability of food (Massou et al., 2002) and diet (Mille et al., 2016) 

are well known environmental factors affecting the shape of fish otoliths in many fish species. 

 

Otolith shape observed in samples within the Uddevalla fjord system was somehow different from this 

general pattern, as old sprat (age 4) tend to maintain their level of differentiation the coastal samples 

outside the fjord. High level of isolation in the inner part of the fjord from the rest of the coastal areas 

may represent a possible explanation. It must be pointed out, however, that the dispersal of larvae among 

these regions is still possible, and it would be undetectable on the otolith shape in case of a quick otolith 

diversification induced by the peculiar environmental factors within semi-enclosed systems. 

The lower body growth of the Uddevalla sprat was already observed by Lindquist (1968); the existence 

of a potentially isolated biological unit within the area was also suggested by a recent study on sprat 

growth and reproduction (Vitale et al. 2016) and seems supported by an on going genetic study (ICES, 

2018b). The analysis of small scale variability within the different sections of the fjord showed that 

otolith shape is less differentiated for the older ages along a possible gradient within the fjord. On the 

contrary, no differentiations in otolith shape could be detected in the younger age classes within the 

fjord. This change could be due to the dispersal of some older individuals from the coastal region into 

the fjord; when it comes to the inner sampling stations, however, the results indicate low mixing with 

the external populations occur so deep within the fjord.  

Fjords are semi-enclosed systems, offering potential physical limits to dispersal and hosting peculiar 

environments where the water conditions can vary over very small geographical scales. Interestingly, 

the other fjord sample from the Gullmarnfjord (BR) appears also differentiated from the rest of the 3a 

samples but  on the opposite side of the multivariate domain described by the analyses. The 

Gullmarnfjord is geographically less isolated from the Skagerrak than the Uddevallafjord but 

mechanisms of separation may still exist, as demonstrated for instance by the presence of local cod 

spawning in the inner part of the fjord (Øresland & André, 2008). Also in this case the small sample 

size represents a limit to further inference on the level of differentiation of the Gullmarnfjord sample 

from the rest of the Skagerrak, and it calls for the need of a dedicated data collection especially 

considering that most of the fjord is closed to fishing activities. 
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The success of the assignment to the right group based on the otolith shape seems to reflect the genetic 

distance between the samples, as proven by the fact that the Norwegian and southern Kattegat samples 

are better classified than other groups. When the North Sea samples are excluded from the analysis (as 

for the analysis with age group 1-3), the classification success within 3a is higher. The degree of 

similarity between groups make the classification less accurate, and the high rate of misclassification 

shown for CK and NS could be due to their shape proximity to CS. the latter, moreover, is characterised 

by a high internal variance, and may therefore be advantaged in the assignment of individuals to its 

domain. 

 

The results produced by this study suggest that the otolith shape analysis can characterise population 

structure of sprat throughout the North Sea and Kattegat-Skagerrak region, as also supported by the 

relatively good level of agreement with results from other studies and recent genetics findings. Some 

studies (Harbitz & Albert, 2015) suggest that a rate of classification success > 70% could support a 

hypothesis of separate stocks, which is indeed what we found for the Norwegian and Uddevalla samples. 

The results for the North Sea, on the other hand, seem to disagree with the boundary between the current 

assessment and management units of North Sea and 3a, and it would be advisable to further investigate 

the matter. The method, in fact, could not well discriminate between the sprat from the two areas, which 

is undoubtedly an operative limit since it would be of great interest for management purposes to assess 

the relative contribution of the North Sea sprat to the catches in 3a. The good discriminatory power 

against the separate components of Norwegian and Uddevalla fjords, however, support the hypothesis 

that this method can actually be used to discriminate between different stocks of sprat, and that the 

current management strategies in North Sea and 3a should be re-evaluated. 

 

These results mirror some other studies which proved the effectiveness of otolith shape analysis as a 

tool for identifying stock structure in many species, such as herring (Libungan et al., 2015), anchovy 

(Zengin et al., 2015), mackerel (Turan, 2006) and red snapper (Sadighzadeh et al., 2014). 

This is the first study to focus on shape analysis of sprat otoliths, and we reckon that the discriminatory 

power could be considerably improved by extending the  analyses on a larger sample set with a better 

coverage in time, space and age. Including additional variables such as biological and environmental 

information (especially maturity and average water temperature and salinity) could allow to disentangle 

the relative contributions of genetics and environmental forces on the otolith shape through the 

ontogenesis.  
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5. Conclusions 
 

The shape of sprat otoliths was observed to vary between different groups of samples according to 

geographical patterns which are interpreted to reflect a population structure in the study area which is 

supported by both biogeographical considerations and genetic results.  

The otoliths from the Norwegian fjords were found to be the most different in shape, mirroring their 

genetic distance with the neighbouring stocks and also showing a high degree of internal differentiations 

due to the morphological complexity of the area. The samples from North Sea, Skagerrak and Kattegat, 

on the other hand were relatively homogeneous, except for the fjords populations which showed a high 

degree of differentiation. These results contrast with the current management of sprat in the North Sea 

and Kattegat-Skagerrak but agree and add to the results obtained from other different methodologies 

lately applied to evaluate the consistency of boundaries between the current management units of North 

Sea and 3a. Further investigations are needed on the otolith shape to evaluate whether the patterns 

observed in this study can be confirmed also for the older age classes which were poorly represented in 

our samples.  

Relative patterns of differentiations, consistent with a shift towards the transition region of the Belt Sea, 

appear to emerge with a latitudinal gradient in the southernmost part of the Kattegat, but given the small 

sample size available in this study it is hard to make further considerations. It will also be of great 

interest to extend the methodology applied here beyond the geographical limits of the present study, 

through the Belts and towards the Baltic Sea. This is, in fact, a peculiar region characterised by steep 

environmental and genetic gradients which could be effectively mirrored by the otolith shape. 

 

The results of this study can provide support to the genetic information for the assessment of the stock 

in the North Sea and 3a. This is, to our knowledge, the first study applying shape analysis on sprat 

otoliths, and it could be affected by a number of limits discussed in the previous section. It is advisable 

to further extend the investigation, but this preliminary analysis is highly promising and it allowed to 

detect a population structure along the Swedish west coast and discriminate the stock structure of the 

area. 

Integrating this cost effective and relatively fast method in a multidisciplinary framework of stock 

discrimination studies could be easily done, and it would definitely prove itself very useful to the 

management of the stock. 
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Popular summary 

Developing a good knowledge of the different populations composing a fish stock is important since 

the fishing effort a stock can sustain highly depends on the relations between its different components. 

The shape of otoliths – small bones in the inner ear of fishes – is widely used to identify different fish 

populations within species. In this study we analysed for the first time the otolith shape of  sprat  to 

investigate its population diversity along the Swedish west coast (Skagerrak and Kattegat seas).  

Sprat is a small fish mostly used for fishmeal, oil or canning, and it is also highly appreciated in Sweden 

as a traditional food during the Christmas season. By comparing samples collected within the Kattegat 

– Skagerrak and also with samples from the North Sea and the western Norwegian fjords, we found that 

the shape of sprat otoliths varies between the different regions, and can be used to identify a population 

structure. At present, sprat from the North Sea and Kattegat – Skagerrak is managed as two separate 

units; however, our results showed that the otolith shape of sprat from these two areas is very  similar, 

and limited differentiation is also supported by recent genetic analyses. Together, these methods have 

recently informed a proposal for joining the two areas under a single stock assessment unit. 

Interestingly, the samples from the Gullmarnfjord and even more from the Uddevalla fjord system  were 

found to be significantly different in otolith shape from the other samples in the Kattegat – Skagerrak, 

supporting the hypothesis of existence of local fjord populations along the Swedish Skagerrak. 

The results here presented are promising, possibly opening the door for more extensive future 

application of shape analysis to the study of sprat populations in the region. The relatively low costs of 

otolith shape analysis compared to other techniques (i.e., genetics, otolith microchemistry) make it an 

attractive method for operational applications of stock discrimination on mixed catches.  
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