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Abstract 
Stands consisting of poplar stump sprouts and root suckers show high potential of successful 

establishment and pose a cheap management alternative to the currently planted poplar 

plantations. Due to the relatively small proportion of presently existing poplar plantations in 

Sweden, especially second generations, knowledge about production potential and silviculture 

treatments for poplar is scarce. Thus, this study focused on investigating production potential 

and response of poplar second generations to thinning treatments under the following 3 

hypotheses, namely: (1) Stump sprouts are dominant in stands of poplar sprouts and root 

suckers, (2) Thinning increases volume production (3) Thinning improves stem growth, 

production, and stem stability of crop trees 

The results showed that (1) the poplar clone “OP42” (Populus maximowiczii Henry x Populus 

trichocarpa Torr and Gray) produced significantly higher numbers of stump sprouts in 

comparison to root suckers seven years after harvest. Notably, the number of root suckers 

shared 42 % of the total number of stems in the stands; (2) Standing volume was significantly 

higher in the unthinned control treatment (6000 stems ha-1) in comparison to all thinning 

schemes; (3) Thinning increased stem diameter, volume growth, and stability of crop trees.  

In conclusion, it is important to include poplar root suckers in investigations regarding second 

generations of poplar stands. Thinning schemes of densities up to 1100 stems ha-1 are 

recommended to optimize growth, production and wind stability for pulp production. Heavy 

thinning schemes of 550 stems ha-1 are recommended for high quality timber production. For 

bioenergy-based production, no thinning (6000 stems ha-1) is recommended. Row thinning 

(3000 stems ha-1) might not be recommended.  
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1. Introduction 

1.1. Overview about needs and growth of poplar 
The growing demand for energy is estimated to increase by 50% globally until 2025 

(Pkeguezuelo et al., 2015). The aims of reducing usage of non-renewable resources and 

mitigating greenhouse gas emissions has addressed the need of new energy sources which can 

be produced at low cost and are at the same time environmentally sustainable (Sannigrahi et 

al., 2010).   

Bioeconomy as a new scientific-based economic model uses green and sustainable biomass 

sources to help reducing dependency on fossil fuel energy and offers a great opportunity for a 

new innovative and sustainable economic development (EU, 2018). It poses promising 

solutions for a climate change adaptation and mitigation (EU, 2018).  

Short-rotation forestry (SRF) is specially designed for biomass production, with rotation 

intervals of less than 30 years (Tullus et al., 2012)  and its utilization of high yielding species 

possess a promising energy source (Pkeguezuelo et al., 2015).    

In temperate regions, hybrid poplars range among the fastest growing species (Dickmann et al., 

1983; Mitchell, 1992; Sannigrahi et al., 2010) and are often planted as short-rotation energy 

crop on former agricultural lands (Sannigrahi et al., 2010). Due to this fact as well as high 

cellulose content in conjunction with low ash and extractive contents, hybrid poplar could 

provide a good source for production of bioethanol, thermal energy and pulp. (Sannigrahi et 

al.,2010).  

In Europe, native poplar species and exotic breeds from North American species were initially 

planted in Italy in the 20th century for industrial purposes (Johansson & Karačić, 2011). 

Depending on climatic conditions and production purposes spacing and rotation length varies 

(Johansson & Karačić, 2011). For instance, in Mediterranean countries, poplar is often planted 

in 4m x 4m spacings and rotations of 10 to 15 years, while in Central Europe 7m x 7m spacings 

with longer rotations of 20 to 40 years are practiced  (Johansson & Karačić, 2011) with varying 

end products from mechanical pulp to plywood, veneer, and construction lumber (Schreiner, 

1959, Mc Carthy, 2016).  
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1.2. Growing of Poplar in Sweden 
In Sweden, hybrid poplar was introduced in the 1930s with clones mostly originating from 

Oregon and Washington (Christersson, 1996). Clones with promising adaption to Swedish 

conditions were obtained from the USA, Belgium, British Columbia, Fort Nelson, Canada and 

are currently tested in field trials (Christersson, 2010).  

Cultivation of poplar in Sweden was subsidized by a Swedish governmental program in the 

1990s as part of preventing future energy crisis (Christersson, 2010). Increasing share of 

broadleaf species including poplar is promoted by the Swedish government as mean of 

spreading the risk of stands solely consisting of coniferous tree to negative impacts of climate 

change and enhancement of biodiversity (Mc Carthy, 2016).   

Presently, the area of poplar in Sweden extends itself over about 1300 ha (Dimitriou & Mola-

Yudego, 2017). Until 2010, the hybrid poplar clone “OP42” (Populus maximowiczii Henry x 

Populus trichocarpa Torr and Gray) has been the most commonly planted variety among 12 

other clones in Southern Sweden (Mc Carthy, 2016).  

Planting of bare-root seedlings is the most popular method of establishment for poplar stands 

in Sweden (Böhlenius & Övergaard, 2014). Due to their sensitivity to competition, soil 

preparation and vegetation control play key roles in survival of poplar seedlings (Böhlenius & 

Övergaard, 2015). Silvicultural treatments like spacing, pre-commercial thinning, and rotation 

length depend  on the desired final product (Mc Carthy, 2016).(e.g. biomass, pulp, timber).  A 

rotation period of 15 to 25 years (Mc Carthy, 2016) with spacings of 3m x 3m (ca. 1100 stems 

ha-1) or 2.5m x 2.5m (ca. 1600 stems ha-1) (Tullus et al., 2013, Mc Carthy, 2016) are widely 

practiced in Sweden. 

1.3. Production of poplar stands in Sweden  
When planted on farmland, poplar and hybrid aspen can yield considerably higher biomass 

production than other common planted species in Sweden (e.g. Norway spruce, Scots pine) ( 

Karačić et al., 2003; Mc Carthy, 2016). MAI (Mean Annual Increment) ranges from 10 to 31 

m3 ha-1 throughout the country (Karačić et al., 2003; Chistersson, 2010; Johansson & Karačić, 

2011; Nielsen et al., 2014). The highest MAI has been recorded at 45 m3 ha-1 in the 

southernmost parts of Sweden (Christersson, 2010). In term of biomass for biofuel, a poplar 
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stand yielded an average of 8.81 ± 0.92 ton ha-1 year-1 which is equivalent to 75-105-ton ha-1 

in a 10-15 years plantation (Johansson & Karačić; 2011). This is considerably lower than for 

willow plantation (Salix spp.), where average of MAI increment for biofuel ranges at 10-12 ton 

dry matter ha-1 year-1 (Christersson, 1986; Christersson et al., 1993; Mola-Yudego, 2010; Volk 

et al., 2011a; Stanturf & Oosten,2014).  

Volume production of poplar stands is influenced by spacing and cutting cycles (Mitchell, 

1995; Christersson, 2010). High density poplar plantation should reach a maximum of 7000 

stems ha-1 (Wright, 1998), with optimal biomass production within a period of 6 to 15 years 

(Mitchell, 1995). However, in highly dense stands lengthening of rotation often leads to high 

mortality rates caused by self-thinning or infectious diseases (Mitchell, 1995). Gradually, 

stands planted at lower density would overtakes denser stands (Mitchell, 1995). 

1.4. Browsing, wind damage and diseases of poplar in Sweden 
Hybrid aspen stands are susceptible to browsing from moose, deer and other wildlife and thus 

depend on protection through fencing (Rytter et al., 2002; Zakrisson et al., 2007; Bergquist et 

al., 2009; Christersson, 2010; Edenius et al., 2011; Myking et al., 2011; Bergqvist et al., 2014; 

Edenius & Ericsson, 2015; Mc Carthy, 2016). For planted poplar stands, a threat by browsing 

was reported in many studies and thereby caused reduction in growth and survival (Schreiner, 

1959; Stanturf et al., 2001, Charles et al., 2014; Mc Carthy; 2016). Fencing is required for 

successful establishment of poplar stands (Schreiner, 1959; Stanturf et al., 2001; Christersson, 

2010; and Mc Carthy, 2016) for a period of 8 to 10 years after planting (Christersson, 2010). It 

has been reported that wildlife prefers certain clones for browsing (Netzer, 1984; Karacic et al., 

2003). For example, 11 to 12 years old poplar stands in Sangletorp and Rydsgard neighboring 

wildlife protection areas did not show severe damages by browsing (Karacic et al., 2003). 

However, during food shortages, shifting of browsing by wild animals to unfavored clones has 

been reported (Netzer 1984). For second poplar generations, browsing impact is negligible 

(Christersson, 2011; Johansson & Hjelm, 2012; Mc Carthy et al., 2014). Christersson (2011) 

reported that for 15 years old poplar absence of fencing and thus browsing by wildlife did not 

negatively influence stand yield, because losses were compensated by the enormous number 

and fast growth of sprouts and root suckers. 
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Wind damage often refers to tree falling or uprooting (Cremer et al., 1982). Several factors 

influence the susceptibility of trees to wind damage, namely: wind climate, landscape structure, 

stand structure, site conditions, tree characteristics and silviculture treatments (Cremer et al., 

1982, Peltola et al., 2013, Hanewinkel et al., 2013). Poplar has been reported to be under great 

threat of wind damage and browsing in Sweden (Christersson, 2011). It is listed as vulnerable 

to wind damage as some species like Norway spruce (Hanwinkel et al., 2013; Peltola et al., 

2013), with damage already occurring at speeds of 10m s-1 (Gardiner et al., 2013). It is still 

unclear  under which conditions wind causes severe damage to poplar plantations and if 

resistance regarding this matter depends on climate, site, or clonal properties. For example, 

when planted on shallow soils or sites with high water levels wind damage could be a serious 

issue due to shallow root systems (Stanturf et al., 2001). Due to loose soil texture and bare root 

systems, 20% of trees in a poplar stands planted on organic soil have been reported to have 

suffered from windthrow Christersson (2010). When planted on clay soil, the hybrid poplar 

clone “OP42” has been reported to show increased wind stability with only minor related 

damage (Christersson, 2010). Additionally, a plantation of hybrid poplar (“OP42” and a 

crossing of Populus trichocarpa x Populus deltoides) was reported to be damaged by wind due 

to the combination of wind, heavy rain and the big leaves causing top shoots and branches to 

be broken. Due to high wood density with the resulting stem strengthening, P. deltoides showed 

to be more resistant to wind damage than balsam poplar hybrids (Fortier et al., 2012). In 

contrast, Hanley (1984) and Stanturf et al., (2001) also noted that some poplar clones pose high 

wind resistance, thus being at no risk regarding this matter. For example, under suitable 

conditions and right clonal choice, poplar is planted as windbreaker in agroforestry systems 

worldwide (eg. United State, China, India, Canada, Russia, Netherland, France) with a long 

history (Fortier et al., 2012, Isebrands et al., 2014, Mc Carthy, 2016).  

Diseases and pests of poplar plantations in Sweden like leaf rust, septoria leaf spot, leaf beetles 

and stem cankers have been reported to have occured through time (Schreiner, 1959; 

Christersson, 2008; Christersson, 2010; Christersson, 2011; Mc Carthy, 2016). For example, 

plantations planted for pulp production in the 1930s and 1940s in Sweden resulted to be 

unsuccessful due to pressure of various diseases (Christersson, 2008). However, the current 

effects of diseases on poplar are not severe in Sweden (Christersson, 2011). Only leaf rust, 

Melampsora and Massonia fungi have recently be reported to have caused a minor loss in 
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volume production of polar (Christersson, 2011). Presently this disease pressure persist but is 

managed by growers through application of preventive silvicultural strategies like short-

rotation, spacing, weeding, thinning and clone selection (Christersson, 2008; Christersson, 

2010; Mc Carthy, 2016). Clone selection has been proven to have a positive impact regarding 

disease resistance and should be seriously considered (Stanturf et al., 2001; Christersson, 2011; 

Mc Carthy, 2016, Ostry et al., 2014).  

1.5. Thinning of hardwood species 
There is very little knowledge about thinning and silviculture practices for second poplar 

generations in Sweden and the world in general. Many studies reported thinning to be positively 

correlated to diameter growth (Cremer et al., 1982; Graham, 1998; Juodvalkis et al., 2005; 

Rytter & Stener, 2005; Rytter & Stener, 2014; McCarthy & Rytter, 2015; Rytter & Rytter, 

2017) which is an important asset when it comes to log assortment and the possibility of 

compensating economic loss due to reduction in volume production (Rytter & Stener, 2005). 

Positive correlations between thinning intensity and diameter increment have also been found 

(Joudvalkis et al., 2005) to occur until certain thinning grades (Assmann, 1961). Height growth 

has been reported to be influenced by different thinning treatments in several studies (e.g. 

Steneker & Jarvis, 1996, Rytter, 2013; Rytter & Rytter, 2017). This condition has been claimed 

to only appear under extreme silviculture treatments Cremer (1982) and Niemistö (1995). 

Height is less sensitive to thinning than diameter (Rytter & Stener, 2005; Rytter & Stener, 2014; 

Mc Carthy & Rytter, 2015) and has also reported to be unaffected by thinning (e.g. Graham, 

1998, Rytter, 2013). Total production often decreases due to clearance of stems and wider 

spacing in thinning practices (Niemistö, 1991, 2013; DeBell & Harrington, 1997; Simard et al., 

2004, Nilsson et al.,2010) until re-occurrence of crown competition.   

Many studies reported thinning to help reducing risk of wind damage (e.g. Cremer et al., 1982; 

Hanewinkel et al., 2013) and heavier thinned stands have been reported to be less damaged by 

wind (Cremer et al., 1982). However, wind damage risk has also been reported to increase right 

after performing thinning as the result of canopy opening which can also lead to increased 

occurrence of wind turbulence in stands (Cremer et al., 1982).  More severe damage through 

wind is often caused by application of high thinning grades, thinning from above, or if remained 

trees are high and slender (Booth, 1974; Mayhead et al., 1975; Cremer et al., 1977; Cremer et 
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al., 1982, Hanewinkel et al., 2013). The essential time duration for trees to regain stability after 

thinning often ranges from 2 to 8 years (Cremer et al., 1982; Hanewinkel et al., 2013) and 

depends on various factors like stand age, growth rate, status of the stand at the time of thinning 

(Cremer et al., 1982), species, thinning grade, thinning techniques (e.g. thinning from above, 

thinning from below). The Stem Height/Density ratio is a good indicator for risk of stem 

breakage due to wind (Petty & Worrell, 1981; Cremer et al., 1982; Hanewinkel et al., 2013; 

Peltola et al., 2013) and has been reported to be more valuable in assessing of wind risk than 

crown opening or canopy roughness indices (Cremer et al., 1982). Additionally, a positive 

correlation between tree height and vulnerability to wind damage exists (Hanewinkel et al., 

2013). Dominant height can often be used as an indicator for assessing wind damage because 

it is often independent from silvicultural treatments (Hanewinkel et al., 2013).  

Immediate responses to thinning have been reported to occur in deciduous tree species such as 

hybrid aspen (Juodvalkis et al., 2005; Rytter & Rytter, 2017) due to a fast-growing ability in 

response to competition release (Juodvalkis et al., 2005). However, thinning is likely to lose its 

effects at the point when canopy closure is reached (Juodvalkis et al., 2005; Mc Carthy & 

Rytter, 2015) and further thinning is suggested to maintain the effects of thinning (Mc Carthy 

& Rytter, 2015). Self-thinning strongly appears in stands without thinning posing the possibility 

of leading to reduction in growth of root suckers (Rytter & Stener, 2005). Thinning at younger 

ages results in better volume increment in low and moderate thinning grades in comparison to 

old aged stands (Juodvalkis et al., 2005).  

1.6. Sprouts and Root Suckers 
After harvest, new poplar stands can regenerate as second generations by growing either sprouts 

or root suckers from stumps of previously harvested stands  (Johansson & Hjelm, 2012). 

Sprouts directly emerge from stumps, while suckers grow from the existing root system 

(Johansson & Hjelm, 2012). There is a number of factors influencing stump capacity of 

producing sprouts and root suckers including (1) tree species, (2) clonal differences, (3) stump 

age, (4) harvesting season, (5) stump size, (6) stump high, (7) site quality (Davidson & David, 

1972; DeBell & Alford, 1972; Strong & Zavitkovski, 1983; Stanturf et al., 2001; Mc Carthy et 

al., 2014). Among these factors, stump age (< 10 years of age) and harvesting season are the 
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most important (Johansson & Hjelm, 2012). For example, stumps harvested in summer resulted 

in fewer sprouts and reduction of sprout diameter by 50 % (Ford & Albert, 1954).  

Average numbers of sprouts produced under various site conditions and for different clones 

range in between 9 to 13 sprouts per stump (Ford & Snow, 1954; Davidson & David, 1972, 

Laureysens et al., 2003). Dominant sprouts have been reported to emerge early and competition 

from other sprouts in the same stumps to be negligible (Davidson & Davis, 1972). Sprouts and 

root suckers have been reported to be strongly produced within the first year after harvest and 

to significantly drop in the following 10 years (Wendel, 1975). Often one to two dominant 

sprouts has been found to contribute as the main source of biomass of a stump (Laureysens et 

al., 2003). In order to reduce competition for ensuring sufficient log diameter and volume for 

pulp or timber, one or two sprouts per stump are recommended (Stanturf et al., 2001) 

Beck (1977) found the numbe of sprouts as well as sprout diameter and height to not dependent 

on stump size (Beck, 1977), while Mc Carthy et al. (2014) reported a positive correlation of 

stump size and number of sprouts.  

After thinning, an average of five sprouts has been reported to emerge from thinned sprouts of 

yellow poplar by Beck (1977). Re-sprouting of the removed sprouts and root suckers after 

thinning has been reported to pose no significant risk to survival of crop trees (Beck, 1977).   

1.7. Crop trees 
Crop tree management is a silvicultural treatment which selects and favours growth and 

development of the most desirable trees through freeing them from competition of neighboring 

trees (Lamson et al., 1990; Perky et al., 1994; Vodak, 2004). Criteria for selection of crop trees 

vary depending upon management practices and the expected end products (Vodak, 2004).   

Selection of crop trees for thinning in second poplar generations is undertaken for single best 

stems among clumps in terms of size, shape, emergence from underground and absence of 

suppression from other sprouts (Beck, 1977; Rytter, 2013). 
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1.8. Problem statements and research hypothesis 
With high potential of successful regeneration from selected clones producing straight sprouts 

(Johansson & Hjelm, 2012; Mc Carthey, 2016) as well as quick establishment and inexpensive 

management, poplar sprout stands managed for biomass production pose a good alternative 

compared to conventional planting (Johansson & Hjelm, 2012). The present knowledge 

regarding management of second poplar generations mostly refers to short coppicing stands 

under short rotation periods of 2 to 10 years (Johansson & Hjelm, 2012). Moreover, due to the 

relatively small proportion of poplar plantations in Sweden as of today, information regarding 

production potential of stump sprout and root sucker stands managed intensively for pulp and 

timber as final products is scarce. Thus, there is a need to investigate how these second 

generations could be managed for pulp or timber as final products in rotations of 15 to 20 years 

and how different treatments might influence production.  

In this study we investigated the growth response and development of sprouts and root suckers 

of hybrid poplar to different thinning treatments. Three hypotheses were tested, namely: (1) 

Stump sprouts are dominant in stand of poplar sprouts and root suckers, (2) Thinning increases 

total volume production, (3) Thinning improves growth, development and stem stability of crop 

trees. 
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2. Material and methods 

2.1. Site description 
The experimental site is located in a former farmland in Sturup, Southern Sweden (Coord. N55° 

3326.3” E13° 2859.7”).  Figure 1. shows a map of Sweden with the trial position marked. 

In Sturup, the length of the growing season is 220 days year-1, with a mean temperature of 

15.1°C. Annual precipitation, mean temperature and minimum temperature are 650 mm year-1 

8.5 °C year-1 and -28 °C year-1 (Christersson, 2010). 

During 2011 to 2017, there were 365 days (1706 hours) on which wind speeds ≥ 10 m s-1 

occurred, in average on 52 days year-1. Wind speeds ≥15 ms-1 were recorded on 16 days. Strong 

wind was most frequently recorded from October to April during the observed treatment period. 

Data was obtained from Sturup weather station (Swedish Meteorological and Hydrological 

Institute, 2018) 

2.2. Description of the parent stand (first generation stand) 
The poplar plantation was established in 1991 by planting of bare rooted plants of the clone 

“OP42” (Populus maximowiczii Henry x Populus trichocarpa Torr and Gray) in square pattern 

at a planting density of 1100 plants ha-1 (3 m x 3m). The first stand was harvested in winter 

after 15 growing periods in 2004. Annual increment including branches was 27.6 m3 ha-1 year-

1 with an average biomass production of 8.9 ton ha-1 year-1 (Böhlenius, pers.comm. 2018). After 

harvest, stumps were left for growing sprouts and root suckers for a period of 7 years before 

thinning treatments were applied.  

2.3. Poplar sprout and root sucker stands before thinning (second 
generation stand) 
After clearcut, new stems emerged as stump sprouts or root suckers. Across all plots, an average 

of three stems occurred as root suckers and four stems as stump sprouts at age seven (Table 1.). 

In total, the number of sprouts in our study stand accounted for 56 % of the total number of 

sprouts and root suckers. Mean diameters of stump sprouts and root suckers were 63.6 cm and 

76.5 cm, respectively. In average, the total stem density ranged between 6250 and 6940 stems 
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ha-1 for the treatment plots with a mean value of 6700 stems ha-1. Mean standing volume was 

187 m3 ha-1 and varied between 193 m3 ha-1 and 181 m3 ha-1. Basal area varied among treatments 

from 29 to 32 m3 ha-1 and an average of 30 m2 ha-1 for all experimental plots. During the first 

seven years after clearcut, the annual increment ranged at 26 to 28 m3 ha-1. 

Table 1. Mean values for the experimental plots of sprout and root sucker stands before 
thinning in 2011 

Mean number of stump sprouts or root 
suckers 

Mean diameter of stump 
sprouts or root suckers  

Growth 
 

Total 
no. of 
stems 
[ha-1] 

No. of 
Sprouts 

[stump-1] 

No. of 
Root 

suckers 
[stump-1] 

No. total 
[stump-1] 

Stump 
sprouts 

[mm 
stem1] 

Root 
suckers 

[mm 
stem-1] 

Sprouts 
and root 
suckers 

[mm 
stem-1] 

Standing 
volume 
[m3 ha-1] 

Basal 
area 
[m2  
ha-1] 

Annual 
increment 
[m3 ha-1] 

6727 4.3 3.1 7.5 76.5 63.6 72 187 30 27 
 

 

Figure 1. Location of study area in Sturup, Southern Sweden.  
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2.4. Software and packages used 
Data was analyzed using Rstudio Version 1.1.423 (packages: agricolae, car, doBy, ggplot2, 

lattice, Lsmean, tidyr, plyr, readr, Rmisc, scales). 

2.5. Thinning treatments and experimental design 
The experiment is established as Latin square design (Model 1.). Treatments are assigned 

randomly and appear only once in each column and row (Gao, 2005; ILRI, 2011).  Additionally, 

the number of replications is required to be equal to the number of treatments (ILRI, 2011) and 

all treatments appear equally within blocks and rows (Box et al., 2005; Gao, 2005; ILRI, 2011).  

This helps to reduce the effects of site quality and geographical differences more efficiently 

than a one-direction block design and minimizes experimental errors (Box et al., 2005; ILRI, 

2011).  

Yijk = µ + ai + bj + ck + ɛijk     (1) 

Where each of i, j, k ranges from 1 to t 

ai = effect due to treatment i 

bj = effect due to row j 

ck = effect due to column k 

ɛijk: = general error terms. 

(Gao; 2005; ILRI, 2011) 

The experiment consists of four blocks and four treatments. One plot per treatment (n total = 

4) was assigned to each block (Fig. 2). Thinning treatments were as follows; Control (6000 

stems ha-1) - no thinning performed; 1100 stems ha-1 –retention of biggest sprouts; 550 stems 

ha-1 – retention of biggest sprouts and removal of every second tree row; Row thinning (3000 

stems ha-1) – removal of every second tree row. Each plot had a dimension of 24m x 24m with 

a buffer zone of the same thinning treatment (2 tree rows; 6 m) between each plot. In most cases 

thinning selection of retaining trees favored sprouts growing against the main wind direction, 

with potential of reducing wind damage. At the last measurement, the second-generation 

plantation of hybrid poplar was 13 years old. 
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Figure 2. Experimental design of thinning treatments in second generation of poplar. 
Treatments: Control (6000 stems ha-1)- no thinning (unthinned), 1100 stems ha-1 – retention 
of biggest sprouts, 550 stems ha-1 - retention of biggest sprouts and removal of every second 
tree row, Row thinning (3000 stems ha-1) - removal of every second row with retention of all 
original sprouts in remained stumps (source: modified from Böhlenius, 2017). 

 

2.6. Measurements 
The data used in this study was collected in two main time periods: (1) before thinning and (2) 

after thinning.  

Before thinning, initial stem density as well as stem diameter (1.3 m above ground) of all stump 

sprouts and root suckers were measured. Trees with a diameter < 4cm were excluded from the 

measurement. 
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After thinning treatments, the diameter of all remaining trees and height of sample trees (ca. 

220 trees) was collected in year zero, year two, year four and year six post thinning at the end 

of the growing period (fall or winter). Sprouts which emerged after thinning were included in 

the caliper measurements when they became larger than 4 cm in diameter. 

Height was measured from ground surface to tree top. Selection of sampled trees for height 

measurement (ca. 220 trees) was performed by ensuring equal numbers of sampled trees for 

every diameter class. In case sample trees were missing (e.g. due to self-thinning or wind 

damage), the next tree in the same diameter class was selected as replacement. The average top 

height of 100 dominant trees ha-1 (tree with biggest stem diameter) was calculated in order to 

assess site index of the experimental site (Stearns-Smith, 2002; Johansson, 2011).  Top height 

of dominant trees is often used as indicator for site potential in terms of suitability and 

productivity for planted species (Hägglund, 1981; Johansson, 2011). This is due to the fact that 

this variable is often free from impact of management (Cremer et al., 1982; Stearns-Smith, 

2002; Johansson, 2011, Hanewinkel et al., 2013).   

For diameter measurement, the trees were permanently marked and numbered at 1.3 m height 

above ground. All trees were measured for diameter twice at a perpendicular angle. Diameter 

was then derived by taking the average of these measurements. Diameter distribution is an 

important attribute in providing information about stand properties and to support decision 

making in forest management (Kudus et al., 2000; Li et al., 2006; Zheng & Zhou, 2010). This 

is because diameter is correlated to many other variables such as volume, stand composition, 

age, site, density and economic value (Kudus et al., 2000).   

2.7. Summary for mean experimental plot values after thinning 
applications 
Thinning treatments were applied when the second rotation reached 7 years of age. Depending 

on the respective thinning treatment, stems were removed from the stand in different thinning 

grades ranging from 56 % for row thinning (3000 stems ha-1) to 86 % for thinning 1100 stems 

ha-1, and 92 % for thinning 550 stems ha-1.  Numbers of retained stems by treatments ranged 

from 447 to 6163 stems ha-1 (Table 2). The mean basal area before thinning among treatments 

was 30 m2 ha-1 and varied from 4 to 29 m2 ha-1 after thinning from heavy thinning to unthinned 

control (6000 stems ha-1) experimental plots.  Stem diameter was significantly smaller in 
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unthinned (6000 stems ha-1) and row thinning (3000 stems ha-1) treatment stands (73 mm) than 

in 1100 and 550 stems ha-1 thinning treatments (102 to 107 mm). Standing volume significantly 

differed among all treatments and ranged from 29 to 174 m3 ha-1 in the 550 stems ha-1 treatment 

and the unthinned treatment (6000 stems ha-1), respectively. In the first growing season after 

thinning, MAI varied across treatment plots and ranged from 13 to 32 m3 ha-1, with highest 

values found in the unthinned treatment and lowest values found in 550 stems ha-1 treatment. 

Table 2. Summary of mean treatment values after thinning in 2011 

Treatment Age 
[years] 

No. of 
Stems  

[stems 
ha-1] 
 

No. of 
Stems 

removed  
[stems  
ha-1] 

 

BA 
before 

thinning  
[m2 ha-1] 
 

BA after 
thinning  
[m2 ha-1] 
 

Diam
eter  
[mm  
stem-

1] 
 

Standing 
volume 
[m3 ha-1] 

 

Annual 
increment 
[m3 ha-1] 

Control 
(6000 stems 

ha-1) 
7 6163  29 29 73 174 32 

1100 stems 
ha-1 

7 968 5972 31.6 9 107 61 27 

550 stems 
ha-1 

7 447 6306 30 4 102 29 13 

Row (3000 
stems ha-1) 

7 3000 3915 30 14 73 82 25 

 

 

2.8. Data analysis 
2.8.1. Volume equation 

Presently no volume equation specifically designed for estimating volume of second poplar 

generations for Sweden exists. Several volume equations were assessed in the past by Hjelm & 

Johansson (2012), either constructed specifically for poplar or applicable for both poplar and 

aspen for its applicability and predictive possibility under Swedish conditions. One of the most 

frequently used sampled tree clone for assessing the equation is “OP42” (Populus maximowiczii 

Henry x Populus trichocarpa Torr and Gray) (Hjelm & Johansson, 2012) which is the same 
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clone as used in this study. The equation developed by Eriksson (1972) is currently ranked 

among the best level of performance in terms of low Absolute Bias and Root Mean Square 

Error (Hjelm & Johansson, 2012). This equation had been developed for aspen in Sweden since 

1972 (Eriksson, 1972) and its wide diameter range covers this study’s data range. In addition, 

it only requires values for diameter and height as independent variables which are available in 

the data of this study.  

On the other hand, Johnsson’s volume equation constructed for hybrid aspen has been used in 

the studies of Rytter & Stener (2005), Christersson (2010), Rytter & Stener (2014) but was 

reported to give 10 % lower volume estimation than Eriksson’s equation due to exclusion of 

branches (Christersson, 2010). In addition, the function of Johnsson underestimates 25 % of 

volume production for energy (Christersson, 2010). Since our study focuses on growth 

responses of second poplar generation to thinning, inclusion of branches and leaf matter is 

important for growth assessment. Furthermore, the stems in our study treatments could serve 

various production purposes. Thus, we decided to use Erikssons equation for volume 

estimations (Model 2.) 

Since the Eriksson equation was not specifically constructed for hybrid poplar and especially 

for second poplar generations, caution should be given regarding underestimation of volume 

productions (Hjelm & Johansson, 2012).  A high multicollinearity level of Eriksson’s volume 

equation has been reported (Hjelm & Johansson, 2012) which might cause coefficient values 

to be lower or create a high coefficient standard error (Burk et al., 1989; Kozak, 1997; Hjelm 

& Johansson, 2012). However, multicollinearity was reported to not affecting the predictive 

possibility of the equation (Kozak, 1997; Hjelm & Johansson, 2012).  

In addition, estimation bias could be produced because stem diameter and density differed 

significantly among treatments (e.g. 6000 stems ha-1 for unthinned control and only 550 stems 

ha-1 for heavy thinning treatment) and only certain numbers of sampled trees were selected for 

volume estimation.  

Volume of all sampled trees was computed using the equation of Eriksson(1972) as shown 

below:  
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V = 0,01548D2 + 0,03255D2H - 0,000047D2H2- 0,01333DH + 0,004859DH2     (2) 

where:  

V = above ground over bark volume [dm3] 

D = diameter at breast height [cm] 

H = height [m]  

 

Top height was measured for only about 220 trees and stem volume estimation requires both 

DBH and top height. Thus, stem volume could only be calculated directly for 220 sampled trees 

(both height and DBH available) with the function of Eriksson(1972). In order to compute 

volume for trees for which only diameter was measured, a linear regression model (Model 3.) 

was derived between diameter and volume of sampled trees for each plot  (plot-wise method) 

(16 plots x 3 years). In order to test the fitness of the regression coefficient, a regression line 

based on the trees sampled was used as a standard model and compared with the estimated 

volumes from the regression relationship. The regression coefficients were then used to 

compute the volume of all remaining trees in the plot. It should be noted that a general equation 

was used for the whole 550 stems ha-1 treatments (treatment-wise) instead of separate equation 

for every plot of this treatment due to big gap in diameter, height and its lower density.  

logVi = β1 + β2logDi + ɛi      (3) 

Where: 

 logV i = log transformation of bark stem volume from stump to top of the tree 

logDi  = log transformation of diameter at breast height (1.3 m) 

ɛi  = general error term 

2.9. Statistics 
Treatment effects were analyzed for (1) crop trees and (2) all living trees in the treatments at 

each age after thinning.  

For individual crop trees, approx. 20 of the biggest trees (approx. 340 to 360 trees ha-1) in each 

treatment were selected to analyze effects of thinning on crop tree growth and development. 

The selection of these trees was based on tree diameter and for single best stems among clump.  
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The dominant stems should be the best in terms of size, shape, emergence from underground, 

and absence of suppression from other sprouts (Beck, 1977; Rytter, 2013).   

A Shapiro and a Levene test were initially used in order to test for normality and homogenity 

of the data. When the conditions were met, an ANOVA (Analysis of Variance) was 

implemented for a one-factorial design with treatment effects on standing volume, stand 

density, stem volume, diameter, height, and volume increment as described by the model 

(Model 4.). If one or both conditions for normality or homogenity were violated, a Kruskal-

Wallis test for non-parametric data was applied. A significance level of 0.05 was selected as 

standard for all tests. When significant difference was found for treatment effects, a pair-wised 

Tukey post-hoc test for the ANOVA test or Wilcoxon test for the Kruskal Wallis test was used 

to perform pair-wise comparisons between groups. In addition, the “BH” p adjusted method (as 

abbreviation of Benjamini & Hochberg, 1995) was also included as a method of reducing 

incorrect rejections of the null-hypothesis (false discovery rate) (Benjamini & Hochberg, 

1995).  

Yij = µ + treati + ɛij     (4)  

Where:  

Yij  = the desired observed stand characteristic (height/volume/diameter/increment),  

µ  = the overall mean, treati the fixed effects of thinning treatments, and  

ɛij  = the random term error of measurement ij.  
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3. Results after thinning 

3.1. At stand level 
 3.1.1. Stand mortality 

 

 

 

Figure 3. Mortality of poplar sprout and root sucker stands after thinning sorted by treatments. 
Treatments: Control (6000 stems ha-1)- no thinning (unthinned); 1100 stems ha-1 - retention of 
biggest sprouts, 550 stems ha-1 - retention of biggest sprouts and removal of every second tree 
row, Row thinning (3000 stems ha-1)- removal of every second tree row. Bars indicate ± SE. 
Different letters (a, b, c and d) indicate significant differences within each year (p <0.05, 
Kruskal Wallis test, “BH” p adjusted method).   

 

Mortality of poplar sprout and root sucker stands significantly differed among all treatments 

(Fig. 3). Highest mortality rates occurred in unthinned (control) treatment stands (6000 stems 

ha-1) with a self-thinning rate of 34 %, reducing mean values of treatments from 6100 to 4000 

stems ha-1. In the row-thinned treatment (3000 stems ha-1) the mortality was about 16 % of total 
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stand density during treatment period which was lower than for unthinned stands. Low or no 

mortality occurred in stands of the 1100 and 550 stems ha-1 treatments. 

 

3.1.2. Standing volume 

 

Figure 4. Standing volume for each treatment after thinning [m3 ha-1].  

 

Standing volume increased through the observed years in all treatment plots (Fig. 4). Unthinned 

control treatments (6000 stems ha-1) yielded significantly higher standing volume than all 

thinned treatments (393 m3 ha-1 at year six). The 550 stems ha-1 thinning treatment yielded the 

lowest volume (181 m3 ha-1) among all treatments which is less than half of the unthinned 

treatment. No significant differences in standing volume were found between the row-thinning 

(3000 stems ha-1) and 1100 stems ha-1 treatments with productions of 286 m3 ha-1 and 277 m3 

ha-1, respectively in year six. 
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3.1.3. Mean diameter growth of individual trees at stand level  

 

Figure 5. Mean diameter growth of individual trees at stand level sorted by treatments from 
2011 to 2017. Diameter was measured at 1.3 m height above ground. 

 

In the first two years, diameter growth of the 1100 and 550 stems ha-1 treatments did not 

significantly differ from each other, showing mean increment of 35 and 41 mm, respectively 

(Fig. 5). In contrast, diameter increment was found differed between stems diameters of the 

unthinned control (6000 stems ha-1) and row (3000 stems ha-1) treatments with the mean value 

of 9.7 and 14.5 mm, respectively.   

 After four years, mean stem diameter growth differed significantly among all treatments. 

Higher thinning regimes (removal of more trees) resulted in larger stem diameter growth. For 

example, in year six after thinning, the trees in the unthinned treatment (6000 stems ha-1) 

showed less than half of the diameter increment (27 mm) of the trees in the 550 stems ha-1 

treatment (55 mm).   
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3.1.4. Diameter distribution at stand level 

Figure 6: Diameter distribution of 13 years old poplar sprouts and root sucker stand by 
treatments at the Sturup’s experimental site  

 

The diameter distribution of the poplar sprout and root sucker stands varied depending on 

treatments (Fig.6). Unthinned control (6000 stems ha-1) and row-thinned (3000 stems ha-1) 

treatments showed similar diameter distributions with more than 90% of stems having a small 

diameter (< 20 cm). Less than 10% of stems were found to be big in the unthinned and row-

thinned treatments with mean diameters ranging from 21.7 to 22.8 cm.  

In the 1100 stems ha-1 treatment stands, the two diameter groups were found to occur quite 

balanced, stems with a diameter > 20 cm had a share of 42% and a mean value of 23 cm. Only 

very few stems showed diameters smaller than 10 cm.  

The 550 stems ha-1 treatment was the only treatment showing a higher number of stems with 

diameters > 20 cm and mean value of 25.3 cm (which is 60 %). A number of smaller trees (< 

10 cm) showed up due to re-sprouting of 2rd generation sprouts and root suckers after thinning 

application.  
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3.1.5. Mean periodic annual increment (PAI) of treatment plots at stand level 

 

Figure 7. Mean Periodic Annual Increment (PAI) of stands sorted by treatments.  

 

Mean periodic annual increment at stand level differed among all treatments in the beginning 

(Fig. 7). In the first four years, the unthinned control treatment (6000 stems ha-1) showed the 

highest increment among all treatments, showing its highest PAI of 36m3 ha-1 yr-1 at year one 

while the 550 stems ha-1 treatment showed the lowest growth rate of 13 m3 ha-1 yr-1. However, 

the trees in the unthinned stands (6000 stems ha-1) gradually decreased in annual growth 

through the observed period while the other thinning treatments gradually increased in growth. 

No significant difference in increment was observed between the row treatment (3000 stems 

ha-1) and the 1100 stems ha-1 treatment. Finally, at year six the growth of all four treatments 

was no longer distinguishable, showing a mean value of 34 m3 ha-1. 
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3.1.6. Total gross volume production of poplar sprout and root sucker stands 

 

 

Figure 8. Total gross volume production of poplar sprout and root sucker stands including 
volume removed by thinning in 2011.  

 

Volume production (standing volume) of second generations in the unthinned control treatment 

(6000 stems ha-1) in 2017 was higher in comparison to all three other thinning treatments (Fig. 

8). The amount of volume removal was highest in the 550 stems ha-1 and lowest in the row-

thinned treatment (3000 stems ha-1). Regarding inclusion of volume removal from thinning in 

the calculation of total gross volume production, differences among the unthinned control 

(6000 stems ha-1), 1100 stems ha-1, and the row-thinned stands (3000 stems ha-1) were 

negligible, ranging from 387 to 408 m3 ha-1. The 550 stems ha-1 treatment showed the lowest 

total gross volume production among all treatment with a mean value of 346 m3 ha-1.  
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3.2. Crop trees 
3.2.1. Mean diameter increment of crop trees 

 

Figure 9. Mean diameter growth of crop trees sorted by treatments (selection of approximately 
350 of the biggest trees ha-1). 

 

In the first four years, stem diameter growth of crop trees significantly differed among all 

treatments (Fig.9). Year four showed the highest diameter growths over the observed period 

with mean increment ranging from 32 to 56 mm recorded for unthinned control (6000 stems 

ha-1) and 550 stems ha-1, respectively. Afterwards, the increment curves leveled off and at year 

six, no significant different in diameter increment was found between row (3000 stems ha-1) 

and 1100 stems ha-1 treatments with the mean value ranging from 19.4 to 20.6 mm. Higher 

thinning grade (removal of more trees) resulted in bigger stem diameter growth which is also 

true to stems diameter at stand level (section 3.1.3).  
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3.2.2. Mean height growth of crop trees 

 

 

Figure 10. Mean increment of top height of crop trees sorted by treatments  (approx. 350 trees  
ha-1). Height was measured from ground surface to tree top.  

 

Mean growth of top height only significantly differed at year four after thinning with the highest 

increment of 43.6 dm in the 550 stems ha-1 treatment (Fig. 10). These differences in top height 

increment could not be found anymore in both year two and six, where crop trees showed 

similar height growth. The trees in the 550 stems ha-1 treatment showed the quickest height 

increment, because initially during the first two years the trees in this treatment showed the 

lowest mean value of about 150 dm.    

3.2.3. Top height for site index assessment 

The mean top height of the 100 thickest trees ha-1 over the experimental site regardless of 

treatments was 24m at year six. The mean height of the 100 dominant trees ha-1 for each 

treatment was also calculated with the mean value varies among treatments. The unthinned 

control (6000 stems ha-1) treatment showed the lowest mean stem height of 17.5 m which is 

10.5 m lower than in the 550 stems ha-1 treatment. The 1100 stems ha-1 stand yielded an average 

height of 24.3 m which is very similar to the overall mean top height of the whole experimental 
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site. The row treatment (3000 stems ha-1) showed a slightly higher mean value of top height 

than the unthinned control treatment (6000 stems ha-1) which is 18.8 m.  

Table 3: Mean height of the 100 thickest trees calculated by treatments over the experimental 
site at 13 years of age (2017). 

 
Control  

(6000 stems ha-1) 
1100 stems ha-1 550 stems ha-1 

Row  

(3000 stems ha-1) 

Mean height of 100 

trees ha-1 

17.5 

 

24.3 

 

28 

 

18.8 

 

Site index 

equivalents in 

Johansson (2011) 

24 30 33 27 

 

 

 

3.2.4. Height/Diameter ratio of crop trees 

 

Figure 11. H/D (Height/Diameter) ratio of crop trees sorted by treatment indicating tree 
stability against wind damage.  
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Initially, height-diameter ratios among all treatments were similar (Fig.11). During the 

following years, thinning treatment influenced the height diameter ratio, trees in the unthinned 

control stands (6000 stems ha-1) showed a higher H/D ratio in comparison to 550 stems ha-1 

thinning treatments. At year six, the 550 stems ha-1 treatment showed a lower H/D ratio in 

comparison to the other thinning treatments. All other treatments did no longer significantly 

differ from each other. 

 

3.2.5. Mean annual increment of individual crop tree 

 

 

Figure 12. Yearly increment of crop trees sorted by treatment from 2012 to 2017.  

 

Thinning showed positive effects on yearly volume increment in comparison to absence of 

thinning. For individual crop trees in general, trees in the unthinned control treatment (6000 

stems ha-1) showed the lowest increment among all four treatments six years after thinning (Fig. 

12) and the 550 stems ha-1 treatment showed the highest volume increment. Trees in the 1100 

stems ha-1 treatment initially showed similar growth to the 550 stems ha-1 treatment, with 

growth changing to become significantly lower during the following periods. The row 

33 



treatment (3000 stems ha-1) initially showed similar increment in comparison to the unthinned 

treatment after year four. At year six, the yearly crop tree increments in the row treatment (3000 

stems ha-1) was higher and comparable to the 1100 stems ha-1 treatment. 
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4. Discussion 
Before thinning, sprout and root sucker stands at age seven showed (1) in average 7.5 shoots 

per stump (sprouts and root suckers). Numbers and stem diameter of sprouts were significantly 

higher than for root suckers; (2) the annual increment was 27 m3 ha-1 yr-1 and therefore similar 

to many poplar stands planted in Sweden (Christersson2010).   

After thinning it was found that: (1) no thinning led to occurrence of the strongest self-thinning 

in stands; (2) total gross production was reduced under heavy thinning of 550 stems ha-1; (3) 

thinning reduced volume production (standing volume); (4) thinning enhanced diameter growth 

and stem volume as well as stem stability of crop trees.  

In our experimental stands, the hybrid poplar clone OP42 (Populus maximowiczii Henry x 

Populus trichocarpa Torr and Gray) produced an average of 3 out of 7 shoots per stump as root 

suckers (Table 1).  In total, the number of root suckers was high and accounted for 42 % of the 

total number of sprouts and root suckers. This is in contrast to previous knowledge, where root 

suckers were considered to only occur in balsam poplar (Populus balsamifera Linnaeus) 

(Zasada et al., 2001, Johansson & Hjelm, 2012) and often excluded from investigation due to 

low appearance (Mc Carthy et al., 2014).  Thus, it is important to include root suckers in studies 

about second poplar generations. Our findings are also in accordance with findings in six years 

old yellow-poplar stands reported by Beck (1977). Number and diameter of stump sprouts in 

the seven years old stands in our experiment are in line with the previous study of Johansson 

& Hjelm (2012) as the mean number of sprouts was four stump-1 with a diameter of 76 mm.  

A major difference between hybrid aspen and poplar is that the total number of stump shoots 

(sprouts and root suckers) in poplar (Table 1) is much lower than for hybrid aspen, which is 

known for its ability to produce massive numbers of root suckers (50-124000 stems ha-1) (Mc 

Carthy & Rytter, 2015). However, in our experiment root suckers were removed unselectively 

during thinning treatments due to practical reasons like the inability of the thinning machine to 

avoid removal.  

Dominant sprouts have been reported to emerge early (Davidson & David, 1972), with often 

two sprouts occurring in a co-dominant way (Ford & Albert, 1954; Davidson & David, 1972). 

Because of strong internal competition (Mc Carthy et al., 2014), there is a negative correlation 
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between the number of sprouts and sprout age due to self-thinning (Johansson & Hjelm, 2012). 

This means that for ensuring sufficient log diameter and volume for pulp or timber production 

only one to two sprouts per stump are recommend until the end of rotation (Beck, 1977; Stanturf 

et al. 2001). These results are also supported by our finding of only a few dominant crop trees 

growing on each stump. 

Similar to Mc Carthy & Rytter (2015) we observed a high mortality rate of 34 % in unthinned 

control plots (6000 stems ha-1) due to self-thinning (Fig. 3). Thinning still maintained its effects 

on density in the poplar stands of our study six years after thinning. In contrast, effects of 

thinning on stand density in aspen root sucker stands have been reported to diminish in time 

(Mc Carthy & Rytter, 2015). This altogether suggests that competition is less present in second 

generations of poplar than in hybrid aspen root suckers. However, these differences might have 

occurred due to site specific differences site since thinning response and self-thinning are highly 

site dependent (pers. comm. Holmström, 2018). At current growth rates, it would take years for 

the poplar stands to show the same densities in all treatments as in aspen stands since currently 

there are way too many more stems in the unthinned control (6000 stems ha-1) and row-thinned 

(3000 stems ha-1) treatments than in 1100 and 550 stems ha-1 (Fig. 6). 

Standing volume was highest in unthinned control stands (6000 stems ha-1) (Fig. 4) and 

thinning significantly reduced volume production due to removal of stems and wider spacing. 

This is in accordance with the previous studies by Niemistö (1991, 2013), DeBell & Harrington 

(1997) and Simard et al. (2004).  In contrast, Telenius (1999) reported no differences in volume 

production of unthinned to thinned stands of a planted hybrid poplar clone (Populus tremula x 

tremuloides, spacing of 1m x 2m with 50 % stems removed equivalent to 38 % biomass 

removal) after 6 growing seasons. The possible explanation might be that because in 

comparison to planted systems, stands of sprouts and root suckers have; (1) higher densities 

due to enormous numbers of sprouts and root suckers (DeBell et al., 1993; Mitchell, 1995; 

Johansson & Karačić, 2011); (2) quicker establishment and higher survival rates of sprouts and 

root suckers growing from stumps (Johansson & Hjelm, 2012; Mc Cathy, 2016) due to water 

and nutrient intake through the  existing root system (Johansson & Hjelm, 2012).   

Diameter increment was significantly higher in all thinned than unthinned control stands at both 

stand and crop tree levels (Fig 5 & 9). These results support previous studies where thinning 
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was also positively correlated to diameter growth (Cremer et al., 1982; Graham, 1998; 

Juodvalkis et al., 2005; Rytter & Stener, 2005; Rytter & Stener, 2014; McCarthy & Rytter, 

2015; Rytter & Rytter, 2017). Higher thinning regimes (removal of more trees) resulted in 

larger stem diameter growth and bigger stem dimension (appendix 1). Thus, if the higher price 

of selling pulp and timber could compensate the production loss due to thinning, thinning is 

recommended.  A thinning scheme of 1100 stems ha-1 is highly recommended since it showed 

the highest number of stems > 20 cm (Fig. 6), similar volume to row-thinning (3000 stems ha-

1) and higher production than in the 550 stems ha-1 thinning treatment (Fig 4). However, in the 

previous study of Davidson (1983) dominant hybrid poplar sprouts showed no effects on 

diameter growth three years after thinning. Similar results were reported for yellow poplar 

(Liriodendron tulipifera) stands in which thinning showed no effects upon both diameter and 

height gain of dominant sprouts 18 years after thinning (Beck, 1977). 

Our results suggest that row thinning might not be recommended as a thinning practice. The 

treatment of 1100 stems ha-1 yielded similar standing volume and total gross volume production 

to the row-thinned system (Fig. 3 & 8). The 1100 stems ha-1 treatment resulted in significantly 

bigger trees in comparison to the row-thinned treatment (3000 stems ha-1) (Appendix 1) which 

is often preferred by the pulp and timber industry with higher merchantability (Nilsson et al., 

2010). This could be explained by the fact that the removal of every second row did not 

sufficiently free retained trees from competition (Fig.3) causing the mean diameter of crop trees 

to not significantly differ from the unthinned treatment (Appendix 2). These results indicate that 

the main source of competition was situated within stumps as competition still persisted in row-

thinned stands and the techniques applied in row thinning did not sufficiently free the retained 

trees from competition. In contrast, almost no mortality occurred in the 1100 and 550 stems ha-

1 treatments as only dominant stems were retained. This suggests that thinning schemes of 1100 

and 550 stems ha-1 are sufficient in order to prevent occurrence of self-thinning within the stand. 

Even though it might be costlier to perform a selection of dominant trees in a 1100 stems ha-1 

treatment than removing every second tree row. Longer rotation (> 15 years) could be expected 

in row-thinned (3000 stems ha-1) stands to reach maturity and the density of 1100 stems ha-1 

while 550 and 1100 stems ha-1 could be harvested earlier. Hence, it might be more beneficial 

to keep the rotation shorter and start a new plantation. Additionally, higher risk of wind damage 

and diease pressure should be carefully considered.  This is because closer distance between 
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trees and canopy intersection will increase the branch swing force and touching of canopy 

leading to more severe wind damage. Same applies for diseases as these could then spread 

quicker in denser stands, especially fungal root pathogens. Christersson (2008) also reported 

stem cancer risk to be high in stands with 15-20 years of age.  

During the first two years after thinning, the PAI levels of all thinned stands were significantly 

lower than for unthinned stands (Fig. 7) (it should be noted that the increment level mentioned 

here is Periodic Annual Increment calculated for the poplar stand of sprouts and root suckers 

during observation period). This result for poplar sprout and root sucker stands also follows the 

thinning response rule (Skovsgaard & Vanclay, 2008) as volume growth of stands would be 

reduced if the basal area removal > 50% (BA removal ranging from 53% in row-thinned (3000 

stems ha-1) to 82% in 550 stems ha-1 treatments). At year six, thinning lost its effect on stand 

volume growth as the PAI was the same among all treatments even BA removal was > 50% as 

mentioned previously.  

The overall mean PAI of 13-year-old poplar sprouts and root suckers across all treatments in 

our experimental setup was 34 m3 ha-1 which is considerably higher than for commonly planted 

species in Sweden (Karačić et al., 2003; Mc Carthy & Rytter, 2015). It is also higher than 

thinned stands of planted hybrid aspen which range at a MAI level of 19.5 m3 ha-1 for stands in 

between 17 to 26 years of age (Rytter & Stener, 2014) or in between 18 to 20 m3 ha-1 in 12 

years old aspen root sucker stands  (Mc Carthy & Rytter, 2015). It is also comparable to planted 

stands as reported by Christersson (2010). 

For unthinned control (6000 stems ha-1) treatment stands, annual increment of second poplar 

generations reached a growth rate of 36.4 m3 ha-1 yr-1 at eight to nine years of age and 

maintained this PAI level in the following years. Production loss in the current experimental 

setup is expected to increase during the following years as many trees were observed to be 

dying. Regarding biomass production for energy purposes, harvesting is recommended in 

unthinned control (6000 stems ha-1) stands in accordance with Laureysens et al., (2003) and 

Johansson & Karačić (2011) at an age before counterbalance occurs by self-thinning to achieve 

high economic returns and avoid density dependent mortality (Karačić et al., 2003). Thus, 

thinning might not be necessary if energy production is considered (Johansson & Karačić, 

2011).  
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The PAI of 32.5 m3 ha-1 in the 1100 stems ha-1 treatment in our study (885 stems ha-1  in 2017) 

(Fig. 7) was considerably higher than the MAI of 23 m3ha-1 of a 16 years old same poplar clone 

with an initial spacing of 1100 stems ha-1 reported by Christersson (2010). The possible 

explanations are: (1) the poplar plantation of Christersson situated in Näsbyholm was planted 

on a less favourable soil type (organic soil), together with wind damaging 20% of the trees (due 

to loose texture of the organic soil and shallow root system) (Christersson, 2010); (2) slower 

growing of planted poplar stands during the establishment phase during which the necessary 

preliminary root system development has been reported to cause lower growth (Christersson, 

2011; Böhlenius.per.com, 2018); (3) the improved effects of poplar sprout and root sucker 

stands on productivity and production as previously mentioned.  

In our study stand, total gross volume production was slightly lower under heavy thinning of 

550 stems ha-1, while other thinning grades did not differ. This result is in line with the study 

of Nilsson et al., (2010). This could be explained that the heavy thinning grade in the 550 stems 

ha-1 treatment reduced its volume increment because it had lowest volume growth during the 

first four years (Fig. 7). 

The possibility of poplar stands with lower spacing to catch up and overgrow denser stands in 

terms of volume production after a period of 6 to 15 years as stated by Mitchell (1995) is 

unlikely to manifest in the extend of our study (Fig.4). The unthinned control (6000 stems ha-

1) treatment still posed the highest volume production, although self-thinning was observed 

(Fig. 3 & 4). Because stem loss due to self-thinning was quite small, the negative impact upon 

volume was very low.  In addition, even during excessive occurrence of self-thinning in the 

unthinned treatment, total volume was still higher than in other treatments due to the following 

reasons: (1) self-thinning removed low volume stems with the process stopping at certain higher 

densities, (2) presence of numerous high volume stems in the unthinned treatment, (3) 55 %- 

85 % of biomass was removed by thinning in the row-thinned treatment and the 550 stems ha-

1 treatment, respectively (data not shown), (4) wider spacing (e.g. 550 stems ha-1, spacing of 

6m x 3m) with higher individual increment was not able to compensate for only few stems 

being present in the stands. For example, in 2017 after seven growing seasons post thinning, 

the 550 stems ha-1 treatment yielded only less than half of the volume production of the 

unthinned treatment, 180 m3 ha-1 and 390 m3 ha-1, respectively.  

39 



Treatment effects of thinning upon height of crop trees were observed only four years after 

crown opening, when the height increment in the 550 stems ha-1 treatment was significantly 

higher than in other treatments (Fig. 10). It is clear that the significant difference in height 

growth only appeared under extreme thinning treatment (92% stem removal or 85% biomass 

removal); this result is also supported by Cremer (1982) and Niemistö (1995). At year two and 

six, thinning showed no effects since height growth no longer differed between all treatments. 

These results are in line with previous studies which reported height to show less sensitive 

responses to thinning treatments than diameter (Rytter & Stener, 2005; Rytter & Stener, 2014; 

Mc Carthy & Rytter, 2015); but in contrast with studies which reported height to be unaffected 

by thinning (Graham, 1998, Rytter, 2013). The absence of differences in height growth in all 

treatments after year four could be explained by the re-occurrence of crown competition and 

the sensitivity of poplar regarding this matter.  

According to the first site index curve constructed for poplar in Sweden by Johansson (2011) 

and based on the mean top height over the whole experiment site (24m), the site index of 

Sturup’s experiment site is 30. This is considered as good site and suitable for growth and 

development of the planted hybrid poplar.   

On the other hand, the equivalent site index of the Sturup’s experimental site by treatment is 

24 for the unthinned control (6000 stems ha-1), 27 for the row-thinning treatment (3000 stems 

ha-1), 30 for the 1100 stems ha-1 treatment, and 33 for 550 stems ha-1, respectively (Table 3.). 

We could see that thinning treatments had impacts on mean top height of dominant trees among 

treatments. Lower density stands yielded higher height of dominant trees. This is in 

contradiction to the findings of Cremer et al., (1982), Stearns-Smith (2002), Skovsgaard & 

Vanclay (2008); and Hanewinkel et al., (2013) as height of dominant trees is often free from 

silviculture management. This could be explained by the fact that in comparison to the studies 

of Cremer et al (1982) and Niemistö (1995) the thinning applications in our studies were more 

extreme. 

In addition, the 1100 stems ha-1 treatment also represents the common spacing of planted poplar 

stands in Sweden with a very similar mean top height to the overall mean top height across all 

stands. Thus, 30 might be closer to the predicted site index presented in the study of Johansson 

(2011). However, attention should be given regarding the reliability of the results as most of 
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the stands in the referenced curve were first generation planted poplar stands (rooted seedlings) 

and the author also adviced that thinning treatments should not be applied in the stand. 

The H/D ratio was calculated solely for dominant crop trees since these play a key role in 

determining stand stability (Cremer et al., 1982).  This especially accounts for when thinning 

programs are designed to retain dominant trees since this ratio could be misinterpreted when 

small stems are removed (Cremer et al., 1982). In our study location, over seven years on 365 

days wind speeds ≥ 10 m s-1 occurred (Sturup weather station, SMHI, 2018) thus showing 

potential to damage trees (Gardiner et al., 2013). However, the wind damage observed in our 

experimental stand was negligible during the treatment period. The possible explanations for 

this are: (1) strong wind events often occurred from October to April the year after, (2) higher 

wind stability as the trees remained leafless in the winter leading to lower wind dragging 

(Hanewinkel et al., 2013); (3) frozen ground in the winter time provided better stability for 

trees.  

The higher H/D ratio in unthinned control stands (6000 stems ha-1) in comparison to the 1100 

and 550 stems ha-1 treatments which occurred due to competition in our study stand has also 

been also reported by Cremer et al., (1982) (Fig. 11). This result suggests higher stability of 

crop trees within stands. Thus, our study findings suggest that thinning favoring dominant trees 

is recommended. The unselective thinning mechanism of row thinning (3000 stems ha-1) in our 

study should be avoided because it resulted in a similar H/D ratio to the unthinned treatment 

stands. This is also in accordance with (Cremer et al., 1982). Further thinning is needed four 

years after thinning to maintain tree stability in the 1100 stems ha-1 treatment and the row 

thinning (3000 stems ha-1) treatments since its H/D ratio did not significantly differ from the 

unthinned treatment stands.  

The stability of stands or trees against wind damage is related to various factors as mentioned 

previously in Cremer et al. (1982), Peltola et al. (2013) and Hanwinkel et al. (2013) (wind 

damage, pp.5). Thus, the H/D ratio is only sufficient for determining individual tree stability 

(Hanewinkel et al., 2013). Furthermore, height of dominant trees should also be considered 

together with the H/D ratio (Hanewinkel et al., 2013), because when trees reach maturity stage, 

the H/D ratio seems to lose its predictive possibility as height growth at that time occurs slower 

than diameter growth causing smaller a H/D ratio (Harris, 1981; Cremer et al., 1982).   
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Practitioners and forest owners should be aware of the possibility that the productivity observed 

in the experiment might be higher than in practice because the data was obtained from small 

experimental plots with very homogeneous conditions. In contrast, big plantations often pose a 

lower average site index, clone site matching, vulnerability to diseases and weed competition 

(Mitchell, 1995).  
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5. Conclusions  
Due to the high number of sprouts and root suckers as well as the fast growth and development 

second poplar generations of the clone “OP42” (Populus maximowiczii Henry x Populus 

trichocarpa Torr and Gray) pose a good alternative to planted poplar stands in Sweden. They 

provide same or even higher volume increment, a high rate of successful regeneration, 

mitigation of wildlife browsing risk and a wide selection possibility for later silviculture 

treatments.  

Thinning reduced standing volume in all thinned treatments. Slight losses in total gross 

production only occurred in heavy thinning of 550 stems ha-1. Thinning schemes of 1100 and 

550 stems ha-1 enhance diameter, volume and stability of individual trees. Retention of 

dominant trees is important in order to reduce internal competition and enhance growth 

development of crop trees. 

For energy production, stands of sprouts and root suckers should not be thinned. Harvest should 
be done at 8 or 9 years of age or before counterbalance (increment = production loss) occurs. 

For pulp production, a thinning scheme of 1100 stems ha-1 is recommended.  

For timber production, a thinning scheme of 550 stems ha-1 is suggested. 

Row thinning (3000 stems ha-1) might not be recommended.  
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6. Outlook 
It is important to include root suckers in studies about hybrid poplar second generations because 

their share of total stump  numbers shoots is high.  

Presently, no volume equation constructed for second poplar generation exists. Often, volume 

estimation is based upon equations designed for aspen or hybrid aspen in Sweden from the past 

which could potentially lead to underestimations of actual volume production.  

Thus, more research is needed in order to construct new volume equations for stands of poplar 

sprouts and root suckers.  

Stem quality is an important factor for timber value. The current study has just considered the 

effect of thinning on growth and volume production of stem/log/trees regardless of quality 

assessments like straightness, taper, and stem defects (knot, decay, twisted, etc.). Further 

studies about quality assessment for 2nd poplar generations are essential as the impact regarding 

this matter on log prices is high.  

A conjunction with future studies on economic potential of 2nd poplar generations is crucial to 

provide better understanding and information for supporting decision making in forest 

management since this study mainly focused on the silviculture aspect.  
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Appendix 
 

Appendix 1: Mean diameter of individual trees at stand level 

No. Treatment Year N DBH Significant 
letter 

1 
Control (6000 stems ha-

1) 2 1223 8.608013 A 
2 1100 stems ha-1 2 219 14.18219 B 
3 550 stems ha-1 2 100 14.773 B 
4 Row (3000 stems ha-1) 2 661 8.844629 A 
      

5 Control (6000 stems ha-

1) 4 1072 9.903825 A 
6 1100 stems ha-1 4 199 17.8206 B 
7 550 stems ha-1 4 89 20.54326 C 
8 Row (3000 stems ha-1) 4 616 10.59951 D 
      

9 Control (6000 stems ha-

1) 6 923 10.78852 A 
10 1100 stems ha-1 6 202 19.26881 B 
11 550 stems ha-1 6 89 23.32472 C 
12 Row (3000 stems ha-1) 6 546 11.79634 D 
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Appendix 2: Mean diameter of crop trees 

No. Treat Year N DBH Significant 
letter 

1 Control (6000 stems ha-1) 2 78 15.87051 A 
2 1100 stems ha-1 2 78 16.98974 B 
3 550 stems ha-1 2 77 16.09286 A 
4 Row (3000 stems ha-1) 2 80 15.1825 C 
      
5 Control (6000 stems ha-1) 4 76 19.06579 A 
6 1100 stems ha-1 4 68 21.29706 B 
7 550 stems ha-1 4 70 22.09143 B 
8 Row (3000 stems ha-1) 4 78 19.14615 A 
      
9 Control (6000 stems ha-1) 6 76 20.67566 A 
10 1100 stems ha-1 6 70 23.24929 B 
11 550 stems ha-1 6 70 25.09071 C 
12 Row (3000 stems ha-1) 6 78 21.08526 A 

 

Appendix 3: Mean top height of crop trees 

No. Treat Year N Height Significant 
letter 

1 Control (6000 stems ha-1) 2 13 17.23077 A 
2 1100 stems ha-1 2 24 16.25833 AB 
3 550 stems ha-1 2 39 14.81282 C 
4 Row (3000 stems ha-1) 2 14 16.06429 B 
            
5 Control (6000 stems ha-1) 4 11 20.47273 A 
6 1100 stems ha-1 4 21 20.06667 A 
7 550 stems ha-1 4 39 19.37692 A 
8 Row (3000 stems ha-1) 4 12 19.53333 A 
            
9 Control (6000 stems ha-1) 6 11 22.99091 A 
10 1100 stems ha-1 6 21 23.2381 A 
11 550 stems ha-1 6 39 22.6641 A 
12 Row (3000 stems ha-1) 6 13 22.43846 A 
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