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“As the poet [Vergilius] says of the sacred deity, 

Wheresoever the god has turned his goodly head, 

truly, whatever the person and eyes of the master are frequent visitors, 

there the fruit abounds in richer measure” 

 

Lucius Junius Moderatus Columella 

De Re Rustica, 3.21.4  

c. 60 A.D. 
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In this study I use a 56 years long dataset to study the migratory behaviours of a land-

locked population of Brown trout (Salmo trutta) in the river Dammån, positioned in 

central Sweden. I found that there was a mean female-to-male sex ratio in the 

spawning-run of approximately 2.31 with an average 50% run date on the 29th of 

July.    

I principally investigated if there were any trends in 3 different temporal scales: diel, 

seasonal and interannual. The model investigating diel effect was not significant, 

likely due to the light summer nights at this latitude. I found that there was a seasonal 

trend, where the probability of an observation being female increased by 54.33% 

during the season, indicative of a protandric trait where males gain from an early 

arrival to the spawning-grounds. The interannual model displayed a decline of 

13.85% in the proportion of females migrating over the 56 years investigated.    

Keywords: trout, salmonid, salmo, trutta, migration, upstream, Storsjon, Storsjön, 

Damman, Dammån, regulated, fish ladder, behaviour, protandry  
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Abbreviations 
 

GLM General Linear Model 

GLMMPQL General Linear Model with Penalized Quasi- Likelihood. 

FVOF Fiskevårdsområdesförening – Fishing Conservation Area Ass. 

Naturvårdsv

erket 

Swedish Environmental Protection Agency 

EPA Environmental Protection Agency 

M Male 

F Female 

NA Not Applicable 

DVM See Diel vertical migration. 
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N.B. Nota Bene – Observe 

Ceteris paribus All other things equal 

C.f. Con ferra – Refer to … 

Sec. Secundum – Along the thoughts of… 

Op. Cit. Opere Citatio – in the same work. 

Et al. Et alii – and others 

In Sensu In the sense of… 
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Technical Terms 

Adfluvial Fish species which migrates between a 

spawning river and a lake. 

Potamodromous Fish species which migrate between a 

river and a lake. 

Diel Vertical Migration Depth-related migration with a 24-

hour cycle. 

Diadromous Fish species which migrate between 

freshwater and the sea. 

Anadromous Diadromous fish species which 

migrate into freshwater to spawn. 

Catadromous Diadromous fish species which 

migrate into seawater to spawn. 
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1.1 Migratory Behaviour of the Brown Trout 

 

Great migrations are undertaken in all major animal taxa in pursuit of more bountiful 

lands, lower predation pressure, in order to avoid undue environmental adversity or 

to facilitate breeding. 

 

 Some of these form spectacular events, marvels of nature if you will, appreciated 

by laymen and scientists alike. Migrational phenomena of these scales are visible 

from the subspecies level, such as the Monarch Butterfly (Danaus plexippus 

plexippus, L. 1758); species level, e.g. Arctic tern (Sterna paradisaea, Pontoppidan 

1763); to an interspecies level, e.g. Great Serengeti Migration – by Wildebeest, 

Gazelle, Zebra et cetera.  Of these wonders, particularly associated with the 

salmonid family is the embodiment of self-sacrifice by semelparous (semel ‘once’, 

pario ‘to beget’) Sockeye salmon (Oncorhynchus nerka, Walbaum, 1792), which 

die in large numbers after they have spawned. Less known is the iteroparous (itero 

‘repeat’) nature of many of its relatives, or the variation in migratory behavior 

displayed amongst them. Of these relatives, I have studied the migration of the 

brown trout (Salmo trutta) more closely. 

 

The development of anadromy (Greek, ana- up; dromos- running) has been 

contested, wherein first Gross et al. (1988) suggested it developed as a response to 

the high productivity of marine waters compared to freshwaters at high northern 

latitudes. However, this has since been contested by one of the authors (McDowall, 

2008), who instead suggests that it may have developed to facilitate colonization of 

newly deglaciated areas. Elliott (1994) suggests that diadromous behaviour may 

1 Introduction 
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have arisen in order to increase resource allocation of a stream to juveniles through 

the means of an intraspecific resource partitioning. 

 

Nevertheless, brown trout demonstrate considerable variation in their capacity to 

adapt their life history. In general, these choices are assumed to reflect upon the 

individual’s effort to maximize their evolutionary fitness (Chapman et al., 2012b). 

Notably, S. trutta displays significant intraspecies variability in their migratory 

patterns. Elliott (1994) describes four types of life cycles which are differentiated 

between dependent on the individual’s migratory habits:  

“1) the trout remain resident in their natal stream for their whole life-cycle; 

  2) after the first year, the juveniles migrate to the parent river and adults do not 

return until just before spawning; 

  3) similar to the previous type except that the migrations are to and from a 

neighbouring lake; 

  4) similar to the previous type except that the migrations are to and from an estuary 

(estuarine or slob trout) or the sea (sea-trout)”. 

 

Partial migration and resultant phenotypic differences between individuals is 

common in salmonids cf. Elliot (op. cit.). Individual brown trout populations, such 

as that of Vangsvatnet lake, Norway, may express several or all of the by Elliot 

aforementioned life cycle divergences (Jonsson, 1985). Underlying an individuals’ 

migrational “decision”, may be environmental; inherited; and physiological 

conditions (Lucas & Baras, 2001). Differing returns for the Atlantic salmons’ (S. 

salar L.) spawning migration between populations has been shown to be attributable 

to hereditary factors, rather than environmental influence  (Hansen & Jonsson, 

1991). Similarly, there is a larger genetic divergence between geographically 

distinct brown trout populations than there is between individuals of different life-

cycles  (Hindar et al., 1991). 

 

This polyphenic nature of brown trout migration is well covered in (Jonsson & 

Jonsson, 2011). There is a disparity in the number of each sex which choose to 

migrate – often amounting to a highly skewed ratio of females to males. An average 

ratio of 1.5 was found in 17 streams ≤1 m3/s in Norway (Jonsson et al., 2001). 

Similarly, Campbell (1977) approximated a female to male ratio of 1.4 for sea-trout; 

female surplus is demonstrated also in Jonsson (1985), for graphic overview. This 

is thought to reflect on the differing return of investment from migratory behaviours 

as measured in evolutionary fitness between the sexes. As pointed out in Harris and 

Milner (2006), female surplus among migrants is largely mirrored by male 

overrepresentation among the resident demographic. 
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A longer upstream migratory distance is associated with higher energetic costs prior 

to spawning, limiting gonadal investment (Jonsson & Jonsson, 2006) cf. trade-off 

concept by Wright (1932). Fleming et al. (1996) found that body size alone could 

explain ~80% of the variance in female fecundity for wild Salmon (S. salar), 

measured as amount of viable eggs found in the redd. A larger body size in females 

is connected to an increased size and number of eggs oviposited (Fleming, 1996). A 

larger body size may also be an adaptation to facilitate the higher energy demands 

of longer or steeper upstream migrations (Bohlin et al., 2001; Labeelund, 1991). 

However, females may be size limited by increased risk of injury in streams with 

low flow (Fleming, 1996). 

 

This is closely related to the asset-protection principle (Clark, 1994), wherein I 

consider the environment to be considered analogous to predation risk. A brief 

overview of forces stabilizing spawning time is given by Fleming (1996), herein 

recounted briefly:  The earliest time of spawning is limited by the initially higher 

exposure to predation of the earliest hatching juveniles, and the risk of redd 

destruction by subsequent female spawners or egg predation. The latest spawning 

time is limited by the lower quality of remaining redds the female can compete for; 

availability of resources which the juvenile can compete for.       

 

In contrast, the breeding success by male spawners seems to be less governed by 

gonadal investment, but rather as a direct function of body size – as they otherwise 

have little chance in competing with larger males for breeding opportunities and 

must invest more time in searching for an unattended mate (Jonsson & Jonsson, 

2011).  

 

This masters’ thesis considers the migrational variation at three temporal 

resolutions (diel, seasonal, interannual) between the sexes among migrating brown 

trout. Many different variables combine to affect the temporal variation displayed 

in the migration of different species.  

 

In general, trout are noted to undertake migrations during nocturnal conditions, 

likely to avoid predation (Haraldstad et al., 2017; Jonsson, 1991). Jonsson (Op. Cit.) 

however notes in the review that this condition is not absolute, and daylight 

migration seems to be facilitated by particularly high flow conditions, midnight sun, 

or when there is safety in numbers. 
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Diel vertical migrations with nocturnal ascent and diurnal descent occur widely 

among fishes – likely to maximize foraging efficiency or take advantage of an anti-

predation window (Gutowsky et al., 2013). Salmonids do not migrate efficiently on 

land due to the imminent risk of asphyxiation stemming from the collapse of the gill 

structure and lack of organs well developed to facilitate movement out of water. 

Smaller structures such as dams by beavers should however not be considered major 

obstacles to migrating salmonids (Ecke et al., 2017).  

 

Seasonal variation in salmonid migrants’ time of arrival is known to correlate well 

with several variables and events, including: body size & maturity (Jonsson & 

Gravem, 1985), freshets cf. comprehensive review by (Jonsson & Jonsson, 2011); 

and to a lesser degree water temperature (Jonsson & Jonsson, 2002; Quinn & 

Adams, 1996).  

 

Generally, an inherited sensitivity to photoperiod seems to synchronise the upstream 

migrations among Atlantic salmon (Salmo salar) and brown trout; the hypothesis 

being that a decrease in the amount of melatonin spurs maturation – and perhaps 

also the timing of spawning (Migaud et al., 2010). This is most likely an inherited 

trait, as different populations may have to depart from shared feeding grounds 

several months before of spawning season, well-illustrated by the Klarälven trouts’ 

400 kilometre migration begun from mid-May in order to spawn in October, at the 

same time as the Gullspång trout, whose migration takes roughly 2 weeks (Ros, 

1981). 

 

Although there is still much to investigate on this matter, as an end result, brown 

trout males generally arrive at the spawning grounds earlier than the females 

(protandry) (Jonsson & Jonsson, 2011), s.271; in order to have the opportunity mate 

with as many females as possible (Morbey, 2002).  

 

Size and composition of salmonids’ spawning-run can change drastically 

throughout the years, cf. Oncorhynchus spp. decline in the Puget Sound region. 

Ohlberger et al. (2018), show that Chinook salmon (O. tshawytscha) populations on 

the east coast (both spawning and marine samples) – particularly the northern range 

- have had declining mean weights among the senior fish; mean age in general has 

decreased. Ohlberger et al. (2018) recount that common hypotheses include size-

selective harvest, environmental pressure, introduction of hatchery-raised brethren, 

competition – but also suggest that the rebounding populations of larger marine 

predators (incl. killer whales (Orcinus orca) may be playing a role in shifting the 

composition towards smaller fish. 
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As the capacity for population growth and resilience is often limited by the amount 

of “Big Old Fat Fecund Female Fish” (Hixon et al., 2013), certainly in heavily 

exploited populations, it is also of interest to explore the development of the sexes 

bodyweight in relation to any unearthed divergences.  

 

Salmonid research has flourished as a result of society’s need to further comprehend 

the full scale of our impact on our natural resources; not only by our historic actions, 

but also our present. It is therefore of large interest to ensure that our mitigating 

interventions, such as implementation of fish-ladders and similar structures are 

functioning efficiently, and in an intended manner.  

 

 

1.2 Questions 

 

1. Is there a difference between males and female brown trout in the propensity to 

migrate during night or day? 

2. Is there a difference between male and female brown trout in seasonal migration 

intensity? 

3. Is there a trend in the sex ratio of brown trout over years? 
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The Storsjön S. trutta population migrate 

between the main lake and the Dammån riversystem 

to spawn (Hellström, G. 2017, pers. comm., 10      

November). In order to monitor the scale of 

migration, the local fiskevårdsområdesförening 

(roughly, fishing conservation area assoc.), FVOF, 

has since 1950 kept record of all trout which pass 

the fish ladder. Utilized variables for this study 

include fish length (cm), weight (hg), sex (M/F). 

 

A few important years in the environmental history 

of Dammån is given by (Anon.): Dammån was 

subject to timber-floating, and recurring annual 

interventions maintaining the float-way occurred up 

until ca 1965. The last timber floating occurred 

1967. Subsequently, interest in restoring the 

waterway resulted in the first restoration, in 1973. 

There was a second restoration 1982. (Anon.)  

 

The Dammån river-system is deemed an area of 

substantial national importance in several limnic 

categories, and receives protection as a designated 

Natura 2000 area - in particular for its oligo-

mesotrophic qualities, variation in water flow and 

large variation in associated structures (Granath & 

Norman, 2006).  

 

 

2 Site 

Figur 1. Maps of differing scale showing the location of 

the fish ladder (indicated by black dot), and its 

surroundings. 
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A migration can be defined in several ways, depending on its’ scope and purpose. 

For the purposes of this study, I have defined migration as the homeostatic annual 

venture between a lake and the tributary spawning grounds. Disrupted migration is 

common, although I assume that repeated migration past the Dammån power station 

and fish-ladder is negligible. I also assume that the trout belong to the same 

population.  

 

As the hypotheses required different levels of resolution, I’ve used R Studio to 

reshape, clean and analyse the data. A complete disclosure of the used packages and 

their version is included in Appendix. Below, I will outline by which rules I sorted 

the data, beginning with the most comprehensive cleaning. An overview of the 

structure of the data is given in table 1 below. 

Tabell 1. An aggregation describing the completeness of the dataset 1950-2006; as given from the 

most relevant cleaning process for each variable. 

The Dammån Brown trout dataset is detailed, given that the FVOF has maintained 

operation for an excess of 55 years. In total between 1950 to the end of the 2006 

season, the fish-ladder was operational on a total of 5446 days; despite that there is 

no data 1955 and 1960. This has amounted to a total of 37’774 trout observations, 

the vast majority for which sex, weight and length have been successfully recorded.  

3 Method 
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As the season the fish ladder is active has not been uniform throughout the years, 

and it is uncertain that such should represent the full migrational season, I have 

employed a cut-off on the basis of the latest season start and earliest season closure 

as measured in day of year. This as to ensure that each years’ “total” count is based 

on a similar expedited effort. As shown in figure 2, this has led to discarding 18.36% 

of the total available data.  

 

 

Fulton’s Condition Factor, K, was calculated with a slight modification to the 

formula as given in Tesch (1978):   

 

𝐾 = 100 × 𝑊 (g)  × 𝐿 (cm)−3 

 

 

Fulton’s K was used to eliminate erroneous data, where:  𝐾 ≠ [0.35, … ,1.5]. In total 

this removed 22.0% of the records when calculating mean weight and length. 

 

175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175175
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Figur 2. A density plot illustrating how the catches of fish are related in time. The latest start and 

earliest closure of the fish-ladder are marked by the red intercepts. N.B. there is no data for 1955 

or 1960. 18.36% of the data is outside of the boundaries in red. The bold lines emphasise the first 

and last day of the season for each year. 
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3.1 General Migrational Statistics 

 

The 50% run date was calculated as the median run date each year.  

N.B. in the R language, Julian date refers to the day of year! 

 

To explore whether the means of the two sexes weights and lengths were 

significantly different, I conducted Welch’s Two Sample t-test as the variances were 

unequal.  

 

The variation in peak migration date was graphed visually and the earliest and latest 

migrational date was observed. All dates are given as a day of year out of 366. 

 

 

 

3.2 Assessing diurnal patterns 

 

The fish ladder is emptied twice daily, at 08:00 and 16:00. During primarily 

earlier years, the fish ladder was emptied less regularly. In order to make these more 

directly comparable, I have standardized all times to 08:00 or 16:00 with the 

following statement: 

 

For     t > 16 | t ≤ 8  → t = 8. 

For    9 ≤ t ≤ 16 → t = 16 

• Obvious errors such as “1600” were corrected manually. I also filtered out NA 

time-stamps. 

 

• There were no records for the years 1955 and 1960. The years 1950,1951,1992, 

1995 do not detail the hour during which the fish-ladder was emptied. They were 

discarded in this analysis. 

 

• To avoid presenting unduly high numbers of fish when the fish ladder has not 

been emptied for an interim longer than 1 day, the first day following an interim 

is discarded.  

 

o If the fish ladder has been emptied only once per day, it is discarded.  
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Filtering for times removed ≈10.10% of the observations included in the dataset, 

in total 3814 records. 

 

After removing the unsuccessfully sexed fish and fish which were caught but not 

given a valid time-stamp; as well as filtering for the abovementioned: there 

remained 26’459 observations, c. 70.0% of the total amount of observed fish.  

 

The data was then aggregated to reflect the total amount of male and female 

migrants per day and collection.  

 

As is visible in figures 3 & 4, the number of migrants of respective sex is highly 

variable. An analysis of solely the abundance of migrants would therefore skew 

the data towards those years with a high or low number of migrants. Similarly, if 

one were to compare the proportion of migrants, one would be remiss to disregard 

the bias of, particularly in hypotheses referring to a higher temporal resolution, 

chance causing heavy skewing when there are very few migrants. I have therefore 

chosen to weight the sex ratio of the migrants by the number in which they have 

arrived. 

 

To investigating any diel patterns, I used a general linear mixed-effect model 

(GLMM) with a binomial distribution and logit function. I modeled Diel cycle as a 

two-level nominal variable (Day / Night) with season as an integer variable 

constituting the day of year to account for changes in photoperiod during the 

season which the fish-ladder is operational each year. The different years were 

included in the model as a random effect in order to account for dependence in-

between years. I assumed that t is stationary. The full model took on the form: 

 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) = 𝛼 + 𝑆𝑒𝑎𝑠𝑜𝑛 ∗ 𝐷𝑖𝑢𝑟𝑛𝑎𝑙𝑖𝑗 + 𝑎𝑗 

 

Where p is the probability of observation i in year j being female. 𝑆𝑒𝑎𝑠𝑜𝑛 ∗
𝐷𝑖𝑢𝑟𝑛𝑎𝑙𝑖𝑗 is shorthand for the interaction term        

𝛽1𝑆𝑒𝑎𝑠𝑜𝑛 +  𝛽2𝐷𝑖𝑢𝑟𝑛𝑎𝑙 + 𝛽1𝛽2𝑆𝑒𝑎𝑠𝑜𝑛 ∗ 𝐷𝑖𝑢𝑟𝑛𝑎𝑙. 
 

 𝛼 is an intercept and aj is a random effect to account for between-year 

dependence.  

 

Thus, the predicted values represent the probability of the next migrant being 

female, given a certain time of day, season and year. The model was 

overdispersed, and this was corrected for by adding an observational level random 

effect based on  Zuur et al. (2012). 
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3.3 Seasonal variation between the sexes 

 

In order to assess the importance of potential seasonal effects on the respective sexes 

tendency to migrate past the fish-ladder, as indicated by Jonsson and Jonsson (2011) 

and Morbey (2002); my data preparation consisted of removing fish which were 

unsuccessfully sexed, and subsequently aggregating the data by date of observation 

and sex. In total 29’560 fish were successfully sexed, amounting to ≈ 78.5% of the 

amount of observations being able to be used for this model. 

 

This model is similar to model in 4.1; it is also a GLMM with a binomial distribution 

which accounts for the effect of season, and interdependence between years and 

additionally, the time of season. This interdependence is modelled by the integer 

variable observationday. Observationday ensures an internal order of the days of 

observation by numbering the dates during the fish-ladder was active through all 

seasons. 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗𝑘) = 𝛼 + 𝑆𝑒𝑎𝑠𝑜𝑛𝑖𝑗𝑘 + 1|𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑑𝑎𝑦𝑘 + 1|𝑌𝑒𝑎𝑟𝑗 

This model also accounted for overdispersion in the predicted values and used the 

same function by Zuur et al. (2012) as described in 3.1. 

 

3.4 Assessing yearly trends in the sex quotient 

Aggregation consisted of summarizing the dataset by given year and sex. This was 

modelled by a general linear model (GLM) which took the following form: 

 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) = 𝛼 + 𝛽1𝑌𝑒𝑎𝑟𝑗 

 

Where 𝑝𝑖𝑗 represents the log-odds of the next observation, 𝑖,  being female in the 

year 𝑗. Again, 𝛼 represents the intercept. 
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Mean 50% run date for the Dammån population was calculated as the average 

median run date across all years: 29th of July ±5.61 days (95% C.I.). 

 

The mean female-to-male ratio of the migrants is 2.31 (95% CI=2.16-2.45).  For 

means taken over years, the mean weight and lengths for respective sex can be 

viewed in table 2. Males are significantly larger than the females.   

 

Tabell 2. Mean weights and length of migrants of respective sex. 

Sex Mean Weight  Mean Length  

Female 1799g 54.2 cm 

Male 2454g 59.3 cm 

 

 

 

The diel nominal variable for day or night did not significantly explain the variation 

in when the migrants passed the fish-ladder. The model was therefore discarded. 

 

 

4 Result 
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There is a very sudden change in weights after 1978, which is particularly clear in 

the male demographic, although it is also visible among females. There is a 

tendency beginning 2002 for both female and male weights to recover. 

 

Figur 3. The mean weight of (A) female, and (B) male observations of S. trutta between 1950 and 2006.                                      
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Figur 4. Violin plots of the length (A) and weights (B) among the migrant sexes. Shaded area 

corresponds to the distribution of observations. Boxplot superimposed.    
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Violin plots in figure 4 display the distribution of weight and lengths among the 

migrant sexes. Using Welch’s two sample t-test of respective variables, we cannot 

cast aside the alternative hypothesis that the means for the sexes are unequal 

(p<0.001 for both length and weight). Females display a single peak around 50 cm 

of length and slightly above 12 hg of weight. The male demographic displays the 

same peaks, but the distributions have much longer tails, showing a higher variance 

among the male migrants. Male lengths display a bimodal distribution, with a first 

peak at c. 50 cm, followed by a second peak at c. 70 cm.  

4.1 Seasonal Effect on female tendency to migrate.  

 

The seasonal variable observationdate was very well correlated with seasonal 

changes. In conclusion, the model of how the probability of female observations 

changes throughout the season was very significant (2 = 29.486, DF=1, Pr(> 

2<0.0001,n=4113). For every day during the season, the log-odds of an observation 

being female increases by 0.00364. For a season between the earliest and latest 

observations, i.e. a total of 119 days; using equations (1.) and (2.) below, and 

inserting the intercept and term coefficient for the day of the season we see that the 

chance of a female observation on day 119 is 54.32% higher than that of a female 

observation on the first day of the season.  

 

 

 

Calculating the Log-Odds: 

ln (
𝑝

1 − 𝑝
) =  𝛽0 + 𝛽1(𝑆𝑒𝑥)(𝑑𝑎𝑦 𝑜𝑓 𝑠𝑒𝑎𝑠𝑜𝑛) ⇒ 

ln (
𝑝

1 − 𝑝
) = 0.04368647 + 0.00364632(𝑆𝑒𝑥)(𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑒𝑎𝑠𝑜𝑛) ⇒ 

ln (
𝑝

1 − 𝑝
)  = 0.04368647 + 0.00364632(1)(119) ⇒ 

ln (
𝑝

1 − 𝑝
) = 0.47759855 

 

(1.) 

Calculating the Log-Odds Ratio: 

𝑂𝑑𝑑𝑠 𝑎𝑡 𝑒𝑛𝑑 𝑜𝑓 𝑠𝑒𝑎𝑠𝑜𝑛

𝑂𝑑𝑑𝑠 𝑎𝑡 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑠𝑒𝑎𝑠𝑜𝑛
=

𝑒0.47759855

𝑒0.04368647
= 1.543283  

(2.) 
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4.2 GLM of male to female ratio 

 

The GLM of the male to female ratio throughout the years indicates a 13.85% 

decline in the probability of a female observation throughout the 56 years the study 

has been ongoing.  The model was highly significant (2 = 13.45, DF=1, Pr(> 

2=0.0002). 

ln (
𝑝

1 − 𝑝
) =  𝛽0 + 𝛽1(𝑆𝑒𝑥)(𝑌𝑒𝑎𝑟) ⇒ 

ln (
𝑝

1 − 𝑝
) = 6.0573110 − 0.0026625(𝑆𝑒𝑥)(𝑌𝑒𝑎𝑟) ⇒ 

ln (
𝑝

1 − 𝑝
) = 6.0573110 − 0.0026625(1)(56) ⇒ 

ln (
𝑝

1 − 𝑝
) = 5.908211 

(3.) 

𝑂𝑑𝑑𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑦𝑒𝑎𝑟

𝑂𝑑𝑑𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑦𝑒𝑎𝑟
=

𝑒5.908211

𝑒6.0573110
= 0.861483 

 

1 − 0.861483 =  0.138517 

 

(4.) 
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4.3 Variation in the timing of Peak Migration 

 

 

Figur 5. Graph illustrating the variation in the peak migration date. Earliest (25th of June) and latest 

(9th of September) values are dotted lines. N.B. by definition, years can have multiple peaks. 

 

Looking at when the peak migration (day of highest number of migrants) occurred 

in figure 5, we can see that it has kept steady around the mean peak migration 

date, 30th of July, with the most extreme year having its peak migration date 41 

days away (September 9th).  
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The variation in the populations migrational timing has stabilized at  ≈ 23 days. 

As visible in fig. 6, there was marginally higher volatility during the earlier years.       

 

 

 

Figur 6. The coefficient of variance of the date of migration, by year.  
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4.4 Mean Fulton’s K by sex and year 

 

 

Figure 7 displays the development of Fulton’s K throughout the years. There is no 

clear trend; values remain close to 1, with the exception of the 1970’s and a peak 

in 1984. 
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Figur 7. Graph illustrating the mean Fulton’s K for the migrant brown trout for each year; each sex 

illustrated individually. Black line depicts the average of the means. 
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4.5 Total amount of trout passing through Dammån fish-

ladder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The total amount of trout which has passed the fish-ladder (fig. 8) has been 

highly variable through the years, with some explosive increases prior to the clear 

peaks in 1954, 1982. 2004-2006 is also a period of high numbers of migrants, 

although the precursory increase has not occurred as rapidly. My visual observation 

is that there is a bi-decadal cyclic fluctuation. An all-time low was observed in 1972, 

when 318 migrants were observed. The maximum number of migrants, 1099 fish, 

was observed in 1954. 
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Figur 8. Graph displaying the total amount of migrants passing through the fish-ladder between the 

day of year 175 and 241 over the years, including fish which were not successfully sexed. 
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When the migrants are divided into their respective sexes, it is clear that the sexes 

closely follow one another. 

 

 

 

 

Figur 9. Graph displaying the count totals of migrants which were successfully sexed. 
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5.1 Tendencies in migrational timing 

5.1.1 Diel 

 

The diel model with a two-category nominal variable of day and night was not 

significant. It is likely that the very long summer days at the sites’ latitude may 

significantly overlap the times when the fish-ladder is emptied.  

 

5.1.2 Seasonal 

 

I observed in the seasonal model a tendency for female migrants to arrive later in 

the season than males. The chance of an observation being female increases by 

54.33% during a season of 119 days (formulae 1 & 2). This can be compared to the 

protandry predicted by Morbey (2002) to be predominant among Pacific salmon, 

and also commonly observed in adfluvial trout populations (Jonsson & Jonsson, 

2011). 

 

This tendency could also be coupled with the asset-protection principle, wherein the 

larger the current reproductive investment, the larger the interest to protect it (Clark, 

1994). As brought up in the introduction, I see the consequent anti-predatory 

responses as both analogous and complementary to environmental risk responses – 

which would favour that females would be more risk averse as a result of their body 

5 Discussion 
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size being intimately connected to their absolute reproductive capacity. For 

migratory males, however, the asset-protection principle should relate more to 

ensure an early return to the spawning grounds in order to breed with as many 

females as possible – certainly as their absolute capacity to impregnate eggs is 

limited by competition, not the production rate of spermatozoa. As such, it is of 

higher importance that they arrive to the spawning grounds before as many females 

as possible.   

5.1.3 Interannual 

 

Differences in returning migrants as shown in the GLM of the probability of a return 

of female sex (formulae 3 & 4),  can be argued to arise as a result of divergent 

pressures acting on the sexes as a result of spatial segregation as presented by 

Haraldstad and Jonsson (1983). In total, the model suggests that there is a total of 

13.85% lower chance of an observation being female during the 2006 season 

compared to the 1955 season. This trend among upstream migrants could be 

attributed to several factors, see table 3 for overview.  

Tabell 3. A broad range of reasons which could underlie a decrease in the proportion of migrating 

females. 

Cause Enabling Assumption 

Harvest Pressure Spatial segregation in lake 

Predation Pressure Change in trophic composition. 

Environmental Pressure Predisposition determined in embryonic 

development; resident or migrational mortality. 

Male Residential Premium Diminished habitat complexity decreases 

possibility for male parr maturation. 

Female Migrational Premium Relaxed intrasexual competition for redd habitat. 

 

 

The constituents comprising high quality habitat among aquatic organisms are not 

uniform –we have a need to simplify the mechanisms and structures which 

substantiate an improvement to any degraded site or area. The Danish EPA, cf. 

Madsen and Denmark. Miljøstyrelsen. (1995), has developed a triad approach 

towards general watercourse quality: ensuring continuity in water quality, quantity; 

and habitat structure. 

 

Sala et al. (2000) show that freshwater lakes & streams may experience significant 

change in the species community and/or biodiversity dependent upon the pressure 

from anthropogenic disturbances, most notably land-use change, climate change, or 
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biotic exchange; in sensu the threat posed to the native community by invasive 

species.  

 

Scandinavian freshwater systems are no strangers to abovementioned factors, and 

have, at least in northern Scandinavia, been extensively employed for timber 

floating. In 1959 there were some 33’000 kilometres of public channels in Sweden 

(Sundberg, 1978). Interventions to facilitate the floating, e.g.: straightening the 

channel, installing stone piers, and clearing the riverbed of boulders and coarse 

woody debris with the aid of dynamite and bulldozers were commonplace (pers. 

obs.). It’s thought that these interventions, as an extension of niche theory, have had 

an adverse impact upon the limnic biodiversity: largely due to the homogenization 

of habitat, recurring stressors or removal of disturbances.  

 

As such, restoration efforts in Sweden have been focused on recreating larger 

structural heterogeneity, however this approach has been critiqued for its lack of 

empirical backing. Lepori et al. (2005) could show that restored sites did not majorly 

differ in macroinvertebrate or fish diversity; however, due to the increase of habitat 

area, restored sites could host a larger population. The inconclusive results of 

geomorphic restructuring for gains in biodiversity is seconded in the subject review 

by Palmer et al. (2010), who suggest that geomorphic heterogeneity is of lesser 

importance than anthropogenic interventions, catchment variables, riparian 

vegetation, disturbance regimes and water flow. Several papers suggest that this 

may be due to the scale of interventions failing to address critical structures 

(Chapman et al., 2012a; Tews et al., 2004). If the restoration attempts in Dammån 

(1973 & 1982) were of a short-term nature only, and in conjunction with the 

continuous timber-floating up until 1967 increased the male residential premium by 

providing much debris from logs and log-jams; this could have contributed to a 

higher female representation among the migrant demographic during the earlier and 

middle years of the study. 

 

It is also possible that the decrease in the chance of an observation being female is 

due to a successive increase in abundance of inherited epigenetic methylations (not 

relating to the base DNA) which predispose male offspring to display migratory 

behaviour. Transgenerational epigenetic changes have been displayed in salmonids 

(Baerwald et al., 2016) &  several other taxa (Eva Jablonka & Gal Raz, 2009).  

   

 

Additionally, Lake Storsjön has had several invasive species introduced which have 

had the potential to bring about the trophic changes discussed by Sala et al. (2000). 

Lansstyrelsen Jamtlands lan (2015) give a report on different introduced species, 
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including: Brook trout (S. fontinalis, Mitchill 1814), Lake trout (S. namaycush, 

Walbaum 1792) & Rainbow trout (O. mykiss, Walbaum 1792). If any resultant 

trophic changes have affected the sexes differently, sec. Haraldstad and Jonsson 

(1983), they are also capable of bringing about a decrease in the number of female 

migrants.  

 

5.1.4 Timing of Spawning Migration 

 

Averaged over all years, the median run date I observed in Dammån was the 29th of 

July. 

 

Carlsson et al. (2004) studied two tributaries to the river Ammerån, which has its 

confluence into Indalsälven roughly 150 kilometers downstream of Dammån fish 

ladder; the tributaries, whereof one was passable for migratory trout, experienced 

their upstream migratory peak mid-July. This peak is largely comparable to the peak 

migration dates in Dammån. 

 

Dahl et al. (2004) studied the migration time of brown trout from 1960-2002 in 

Dalälven, located at 60°08′40″N 16°15′48″E, roughly 350 kilometers south of 

Dammån fish ladder: 50% run date of females was the 20th of august ±14.9 days. 

For males, the 50% run date was 29th of august ± 17.2 days. The later upstream 

migration observations by Dahl et al. (2004) might be expected in a latitudinal cline, 

where the window of opportunity might occur earlier at higher latitudes, in order to 

avoid the freeze. 

 

As can be deducted by the low amounts of observations migrating at the very start 

or end of the season (figure 2), the current season at the fish-ladder seems 

appropriate.  As seen in figure 5, the day(s) of peak migration have remained stable 

throughout the course of this study. Similarly, as can be seen in figure 6, the 

volatility in migrational timing as measured by COV has not changed to a 

noteworthy degree.   
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5.2 General Migration 

5.2.1 Population Trends 

I believe that there is some indication of a bi-decadal population cycle, peaking in 

1954, 1982, 2004 (see figure 8). These fluctuations are not exclusive to one sex 

(figure 9). Population cycles of various lengths are known in several other species, 

notably among Lynx (Lynx canadensis) & Snowshoe hares (Lepus americanus) in 

Canada (Elton & Nicholson, 1942); in British populations of Red Grouse (Lagopus 

lagopus scotica) (Hudson et al., 1998) and in Skagerrak Cod (Gadus morhua L.) 

outside the Norwegian coast (Bjornstad et al., 1999). It is generally understood that 

these cycles may be the result of density-dependent structures, climatic fluctuations, 

predation, inter- or intraspecies interactions, parasitism and the interaction of any 

combinations or all of the above mentioned (Bjornstad & Grenfell, 2001). As there 

are no obvious visual indications that the conditional index changes negatively as 

an immediate result of the total amount of spawning trout, it is possible that there is 

a density-dependent lag affecting other life-stages or life cycle choices.  

 

Blanchfield and Ridgway (2005) demonstrate for lacustrine S. fontanilis a situation 

where the egg loss owing to a sub-par redd habitat is far higher than the respective 

loss owing to female competition. If the same were to apply to our study, it is 

possible that the combination of a stochastic negative environmental effect and an 

increasing amount of superimposed redds leverage a supra-additive mortality 

among the eggs. 

5.3 Female to male ratio 

 

Contrary to the summarization by Jonsson and Jonsson (2011) who found that the 

female-to-male ratio of partially migrant, anadromous brown trout populations in 

coastal streams roughly amounted to 1.5, I instead find in the migrant demographic 

of land-locked adfluvial brown trout a female-to-male ratio of 2.31.  

 

I interpret the high ratio, compared to Jonsson and Jonsson (2011), as illustrative of 

a disproportionally high intrasexual competition among females for limited nest 

sites in Dammån.  
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5.4 Weight and Lengths 

 

I observed a very rapid drop in the mean weights among the migrants, first in 

1978, which quickly recovered in the following years before dropping again to the 

lower level which has since persisted (figure 3). As the population recovered quite 

quickly after the first drop, I am hesitant to suggest that any obstacle has hindered 

larger fish from migrating. Quite interestingly, the violin plots of the migrant 

lengths’ show that the females very much concentrate around a single peak, which 

would suggest that there is a stabilising selection occurring. Among female weights, 

I observe the same trend, albeit not as clearly. The two sexes do not display similar 

distributions, and Welch’s two-sample t-test indicates that we cannot rule out that 

the means are unequal; males do not seem to be affected by this stabilizing selection 

to the same degree, instead assuming a bimodal distribution. If the anthropogenic 

harvesting pressure is significant, is there a preference among fishermen to release 

mature males? Do the females require more time to regain lost condition post-

spawning, and as a result do not fill the largest classes before they die if they spawn 

iteratively? As the selection seems to mostly impact the largest sizes, I find it 

difficult to assume a non-human predation as any notable cause. 
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As reviewed by Subbey et al. (2014), there remains tremendous challenges in 

modelling recruitment, despite the inclusion of environmental variables – certainly 

since organisms with high fecundity may display quite some chaotic dynamics, and 

there is outstanding difficulty in determining an appropriate scale of detail in 

complex processes. I generally agree with Subbey et al. (2014) that there exist two 

major reasons to develop recruitment models; either to i) guide policy, or ii) 

understand underlying processes.  

 

Szuwalski and Hollowed (2016) discuss how some forecasts can become biased - 

perhaps most importantly, if there is driven change in an underlying variable, this 

can to differing degrees introduce bias through its non-stationarity. This type of bias 

may be apparent in longer time-series. Good examples might include changes in 

harvest strategy, crossing climatic tipping points, or the introduction of an invasive 

species. While recognizing some information from the long-term data, e.g. carrying 

capacity; it may be prudent to consider a shorter time-span during which it is 

reasonable to assume that there have been no major structural changes. Similarly, 

individual interventions may have an unduly strong effect on the model depending 

on what degree of smoothing which is applied, or what type of model is chosen.  

 

As the history of the tributary is well known, and we have a high-resolution data set, 

it would be interesting to conduct an intervention analysis to see if it is possible to 

correlate individual events to the migrational dynamics. In such an analysis, it would 

become increasingly pressing to also include a temporal autocorrelation in the 

model in order to be able to clearer root out trends. In particular, I would recommend 

to further implore how the sudden weight loss in 1978 came about.  

 

Imputational method becomes increasingly important with a growing amount of 

incomplete data; by adjusting the length of the time-series it may be possible to 

6 Future Directions 
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avoid more significant gaps. This is also concluded by Bjornstad and Grenfell 

(2001), whom note that restructuring capacities provides great value as it is not 

always feasible to measure all variables. 

 

I would encourage an effort to include later years of the time series in order to see 

if the periodicity of the perceived population cycle has been maintained, and if 

further time series analyses can confirm a pattern. It is possible to connect further 

environmental variables which have fallen outside of the scope of my current work. 

Perhaps fishing records from the County Administrative Board are available and 

can be used to model an approximation of the harvest pressure. 

 

Pertaining to the adaptive management of fisheries, it is my firm belief that 

developing predictive models is a sound research objective – beyond the basic 

monitoring which facilitates the development, statistical models may allow us to 

continually evaluate potential structural changes while simultaneously providing 

managers with valuable short and midterm guidance. 
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