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Summary 

Hyperspectral phenotyping is a promising high-throughput plant phenotyping method that 

addresses the phenotyping bottleneck, in fields of plant science like crop improvement or study 

of plant diseases. However, high-throughput hyperspectral data poses a data management and 

analysis problem due to the sheer volume of data generated in the data collection process. The 

R Package presented in this paper seeks to address this problem by implementing a tool for easy 

and quick handling of large spectral datasets, and to provide functions for processing and 

analyzing of spectral data. This project also aims to implement functions in the package for 

calculating vegetation indices, and data visualization functions. Furthermore, this R package is 

extended into an online tool, that provides and interactive graphical user interface to the 

underlying R code. 
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Abbreviations 

• NDVI = Normalized Difference Vegetation Index 

• NIR = Near Infrared 

• PCA = Principal Component Analysis 

• PRI = Photochemical Reflectance Index 

• REIP = Red Edge Inflection Point 

• WI = Water Index 
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Introduction 

The high-throughput plant phenomics (HTPP) techniques aim to address the plant-phenotyping 

bottleneck (Furbank & Tester, 2011), by designing phenotyping methods and platforms that are 

cost-effective, specific, rapid and adaptable to robotics and automation (Fahlgren, Gehan, & 

Baxter, 2015). For example, the study of plant disease in fields like crop improvement relies on 

manual visual scoring, while molecular techniques, such as Polymerase Chain Reaction and 

Enzyme-Linked Immunosorbent Assays, used for studying and identifying plant pathogens, 

require lab-work and pathogen-specific reagents. While in forestry, the assessment of tree 

health is primarily done through scouting  (Sankaran, Mishra, Ehsani, & Davis, 2010).  

Precision agriculture 

Rapid assessment of plant traits is also of interest in precision farming. In conventional 

phenotyping practices, the variation of crop conditions and resources that exists in a field is 

often not considered, and fields are often treated as homogenous units (Diacono, Rubino, & 

Montemurro, 2013). For example, fertilizer is often over-applied by farmers, who want to 

ensure that their crops get enough nitrogen. This can result in the contamination of water bodies 

as a result of nitrogen runoff and economic loss due to inefficient use of nitrogen (Diacono et 

al., 2013; Khosla, Fleming, Delgado, Shaver, & Westfall, 2002). According to Diacono et al 

(2013), in the case of wheat, the over-application of nitrogen may also result in “weed problems 

and could result in an increased risk of lodging, delayed maturity and greater wheat 

susceptibility to diseases”. 

Precision agriculture seeks to address the abovementioned problems by providing a sustainable 

and site-specific approach to farming, that considers the variation in the field when applying 

fertilizer or pesticide treatments (Pierce & Nowak, 1999). Among the key technologies to 

achieve this are better sensor-based phenotyping technologies for accurately quantifying site-

specific crop properties like disease outbreaks, or nitrogen status (Diacono et al., 2013). Thus, 

better HTPP methods can enable precision farming and contribute to more sustainable and 

economic farming practices. Furthermore, sensor-based technologies could be extended to be 

used on unmanned or autonomous vehicles, such as drones,, enabling automated assessment of 

crop status.  

Spectral phenotyping 

Spectral HTPP methods focus on collecting spectral and imaging data from plant tissue using 

remote sensing data from satellites or ground-based sensors (Sankaran et al., 2010). The idea is 
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to collect data on light reflected from the plant tissue, or data from fluorescence experiments, 

and use that data to estimate a trait or a plant condition like biotic or abiotic stresses. Reflectance 

occurs when light is reflected from a surface (as opposed to absorbance). For example, as is 

commonly seen in case of plant tissue, wavelengths of light that correspond to the colors red 

and blue are absorbed by pigments, while green light is reflected (Furbank & Tester, 2011). 

This is what makes plant tissue like leaves appear green to the human eye. Hyperspectral 

phenotyping goes beyond the visible spectrum (400 – 700 nm) by collecting reflectance data 

from a large amount of narrow spectral-bands in the visible spectrum and beyond (Fahlgren et 

al., 2015), for example in the near-infrared (NIR) region (700 – 1000 nm), where plant tissue 

typically shows high reflectance (Furbank & Tester, 2011).  

The idea is to identify changes in 

reflectance in specific plants caused by 

specific traits or stresses, then 

characterizing those changes, for 

example by identifying wavelengths that 

are most affected, and using that data to 

build predictive models that can estimate 

a trait or a stress condition (Fahlgren et 

al., 2015). A typical plant leaf will show 

low reflectance in the visible region (400 

– 700 nm), high reflectance in the NIR 

region and a sharp increase in reflectance 

around 700 nm, known as the Red Edge, 

as shown in Figure 1. As previously mentioned, the low reflectance in the visible region is due 

to light absorbance by leaf pigments. Some examples of important pigments are chlorophylls 

and carotenoids, which are crucial for light harvesting in photosynthesis. Other examples of 

pigments include the flavonoids and anthocyanins, which can protect plant tissue against both 

UV-radiation and excessive radiation in the visible spectrum (Merzlyak, et al., 2003). The high 

reflectance in the NIR region is due to the internal cell structure of the leaf, which reflects about 

40-60% of the light in this range, while the rest is transmitted (Knipling, 1970; Josep Peñuelas 

& Filella, 1998).  

Reflectance thus depends on structural and biochemical properties of the leaf, and it is thought 

that studying reflectance would allow measuring those underlying plant properties in a non-

 

Figure. 1 An example of a reflectance spectrum 

of plant tissue.   
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destructive way. For example, the red edge region can be used as an indicator of chlorophyll 

content in a leaf, which is associated with plant traits such as plant nitrogen status, but also 

affected by other forms of plant stress, while individual wavelengths in the visible spectrum are 

associated with specific pigments (Merzlyak et al., 2003; Josep Peñuelas & Filella, 1998).  

Spectral data 

Spectral data can be collected in an imaging and non-imaging format (Furbank & Tester, 2011). 

Imaging data contains the spatial distribution of measured intensities of a range of wavelengths, 

much like color values per pixel in a photograph from a consumer-grade digital camera. Non-

imaging spectral data forgoes the spatial information and instead collects the average intensity 

data across the whole measured area. Typically, a spectral readout will contain an intensity 

value for each measured band.  

Vegetation indices 

As mentioned previously, the reflectance at individual spectral bands in vegetation can be tied 

to specific biochemical or structural properties, such as for example the chlorophyll 

concentration. The reflectance at these specific bands can be summarized in vegetation indices, 

which are unitless ratios or differences between measured wavelengths. The indices are used to 

enhance or highlight specific plant properties (Agapiou, Hadjimitsis, & Alexakis, 2012; 

Sankaran et al., 2010). There are over 100 vegetation indices with different uses, and the most 

commonly used index is the normalized difference vegetation index (NDVI, Rouse, Haas, 

Schell, & Deering, 1973), which is expressed as the “quotient of the difference and sum of the 

reflectance in NIR and red regions” (Wojtowicz, Wojtowics, & Piekarczyk, 2015). NDVI has 

been shown to be related to other plant properties such as biomass, nitrogen and chlorophyll 

(Hansen & Schjoerring, 2003; Resea, Molero, Group, Agricultur, & Nogu, 2014). Other 

examples of specific vegetation indices include the water index (WI), that measures plant water 

status (J. Peñuelas, Filella, Biel, Serrano, & Savé, 1993), or the Photochemical Reflectance 

Index (PRI), which is affected by carbon dioxide uptake or photosynthetic efficiency (Gamon, 

Serrano, & Surfus, 1997).  

In conclusion, spectral phenotyping shows high potential as a HTPP method. Both fluorescence 

and reflectance can be measured without destroying plant tissue. The measurements themselves 

are rapid and avoid the time-consuming laboratory work associated with molecular techniques, 

and thus lend themselves well to initial screening for a trait of interest. The cost-effectiveness 

depends on the imaging device used for the measurements. Typically, the case is that the 
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broader the spectrum of the measured wavelengths, the more expensive the equipment. 

Wavelengths in the visible spectrum can be measured using a consumer-grade camera, while 

hyperspectral measurements require more advanced and expensive equipment (Fahlgren et al., 

2015; Sankaran et al., 2010). 

Example application of spectral phenotyping 

An example of successful application of spectral phenotyping is a paper published in 2014 by 

(Ashourloo, Mobasheri, & Huete, 2014), which demonstrates the use of vegetation indices 

combined with hyperspectral imaging for detecting leaf rust in wheat. Light reflectance was 

measured within the range of 450 – 1000 nm for different stages of leaf rust infection. The 

authors designed two indices based on the observed change in reflectance at the three 

wavelengths: 605, 695 and 455 nm, which could be used to estimate different stages of the 

disease with an R2 value as high as 0.94 (Ashourloo et al., 2014). 

Spectral analysis software 

A multitude of open-source software already exists for analysis of hyperspectral spectroscopic 

or imaging data. For example, the R package hsdar (Lehnert, Meyer, & Bendix, 2016) offers a 

library for managing, analyzing, and simulating hyperspectral data, with focus on plant remote 

sensing data. Hsdar offers functions for handling spectral data: users can load their spectral 

data, subset it and aggregate it by attribute data. Hsdar also offers basic data analysis 

functionality, calculation of vegetation indices, machine learning functionality, and more, but 

requires that the user is familiar with coding in R to use it. 

The Python equivalent HyperSpy (de la Peña et al., 2015) likewise provides well-documented 

tools to analyze both non-imaging and imaging hyperspectral datasets, complete with plotting 

functions and machine learning functionality. However, just like hsdar requires knowledge of 

R programming, HyperSpy requires that the user is familiar with programming in Python to use 

it. 

Aim of the project 

The aim of this project is to implement an R Package called PlantSpec, which streamlines the 

handling of large hyperspectral datasets by combining spectral measurements for the user, and 

which provides a variety of data processing and analysis functions geared towards spectral data. 

The software should be able to load large spectral data sets with ease and handle or be extended 

to handle different spectral file formats from the various types of devices and measurement 

software available to users. 
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Besides the file reading functionality, PlantSpec should provide data processing functions like 

the calculation of vegetation indices from loaded spectral data. PlantSpec should also provide 

data visualization functions in the form of meaningful plots that highlight the difference in 

spectra between different groups of spectral samples and individual spectral samples in the data 

set. 

This project should make the abovementioned functionality accessible to users with minimal or 

no prior programming knowledge, by extending the R package into a web application that 

provided a graphical user interface to the underlying R code. 

The functionality of the package and web application will be illustrated by a case study with an 

analysis of spectral data collected in a field trial of winter wheat subjected to different levels of 

nitrogen treatment, with the aim of showing how the visual analysis functions can show 

differences in the data between the treatment groups. 

Methods 

R package 

PlantSpec is implemented in several distinct layers, as shown in Figure 2. At the core of 

PlantSpec lies an R package that provides a file-reading, processing and visualizing 

functionality. The PlantSpec R package is implemented in R (3.3.2), which is a programming 

language developed for statistical analysis. It evolved out of the statistical programming 

language S around 1993 and has become one if not the most widely used tool in the world of 

science for statistical analysis. R comes with a wide variety of libraries implementing statistical 

and graphical tools that are made available through the Comprehensive R Archive Network 

(CRAN), or projects like Bioconductor (R Core Team, 2016). Implementing the software in R 

allows for making use of the many open-source libraries that are made available on CRAN. 

Furthermore, it also allows for distributing the software as an R package in the future, so that 

users that are familiar with R can download it and run in their statistical analyses. 
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Figure 2. A map of tools and packages used to implement the PlantSpec R package, Shiny 

application and complete web application. 

 

The R package relies on the R library hsdar (0.5.1) for the Speclib class used to store and 

manipulate spectral data. PlantSpec primarily makes use of the helper functions for Speclib 

objects provided by hsdar for manipulating spectral data, but also implements its own thin 

wrapper function around hsdar’s vegindex function, that expands the list of available vegetation 

indices. PlantSpec uses the 115 indices included with the hsdar package1 (Lehnert et al., 2016) 

and adds 21 indices that are described in Table I in the Appendix. 

Interactive plots are implemented using the plotly (4.5.6) package, which provides an R API to 

plotly.js (Sievert et al., 2016). Plotly is an open-source data visualization tool that enables 

creating interactive java-script based charts and diagrams from R. PlantSpec uses plotly to 

provide interactive plots instead of static image plots. This means users can hover over data 

points in charts for more information, zoom in and out of plots, while also being able to save 

the plots to disk. Furthermore, the PlantSpec R package makes use of the dplyr R package 

(Wickham & Francois, 2016) for the internal functions, mainly related to subsetting data for 

the purpose of building plots. PlantSpec also makes extensive use of the melt function from the 

reshape2 R library (Wickham, 2007), which is used for converting data from wide format, 

where all spectral bands are organized into their own columns, to long format, where all the 

bands are collapsed into one column. This is mainly used in some of the implemented PlantSpec 

plotting functions, where having spectral bands in one column is necessary for plotting 

reflectance values as a function of wavelength. 

                                                 
1 For a reference list of indices included in hsdar, please refer to this link: https://cran.r-

project.org/web/packages/hsdar/vignettes/References.pdf 

https://cran.r-project.org/web/packages/hsdar/vignettes/References.pdf
https://cran.r-project.org/web/packages/hsdar/vignettes/References.pdf
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Shiny application 

The R package described above is extended using the open source R package Shiny, which 

provides a framework for implementing web applications using R code (Chang, Cheng, Allaire, 

Xie, & McPherson, 2017). Shiny makes it possible to implement a web application that allows 

the user to interface with the R code that underlies the handling and processing of the spectral 

data. The implemented Shiny application makes use of the DT package, which serves as an 

interface to the javascript DataTables library (Xie, 2016). DataTables is used to display tabular 

data in web documents, while also providing advanced interactive features such as selecting, 

filtering or searching for data in the tables. Finally, the Shiny application relies on the htmltools 

R package, which is used to generate HTML output in the user interface (RStudio & Inc., 2016). 

Web server 

The data upload is handled by a CGI-script coded in the scripting language Python 3.5, that 

unpacks the user-uploaded archive, generates a job ID and associated folder structure, and 

passes the user data to an R script that processes the data before loading in the Shiny app. The 

Shiny application is served using the free Shiny server software and the website is hosted and 

coordinated using Apache2.  

Case study data 

25 varieties of winter wheat were sown in a field trial in Svalöv, Skåne in Southern Sweden in 

2015/2016 by Tina Henriksson, Lantmännen Lantbruk. The varieties were randomized into an 

alpha lattice design, with three nitrogen treatments (140, 180 and 220 kg Ha-1) and two 

replicates per treatment. The plant material was a combination of breeding lines and elite 

varieties.  

Spectral reflectance measurement 

The hyperspectral reflectance of the canopies was measured using the handheld Apogee PS-

100 visible to near infrared range spectroradiometer (SpectraWiz PS-100, Apogee, Roseville, 

CA). The spectroradiometer calibrated against the default white reference, with additional 

calibration performed every second reading. Measurements were made in the range of 339.0 – 

1177.5 nm. Due to a low signal-to-noise ratio in the areas around the edges of the measured 

spectral interval, the collected spectral data was restricted to the interval of 400 – 1000 nm. The 

measurements were made in 11 June 2016, during midday, under a clear sky. The 

spectroradiometer was held approximately one meter above the canopies while collecting the 

reflectance data. 
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Data analysis 

The spectral data from the field trial was loaded into PlantSpec and analyzed using the available 

data visualization and processing functions. The mean spectra were compared between the three 

treatment groups. The spectral data was processed into four vegetation indices, as seen in Table 

1, which were compared between the three treatment groups. 

Table 1. Vegetation indices used in a case study analysis of wheat reflectance spectra. 

Index name Formula 

Normalized Difference Vegetation Index (NDVI) 
𝑅680 − 𝑅800

𝑅680 + 𝑅800
 

Red edge inflection point approximating index (REIP) 

(𝑅670 + 𝑅780)
2 − 𝑅700

𝑅740 − 𝑅700
 

Water Index (WI) 
𝑅900

𝑅700
 

Custom index 
𝑅400

𝑅500
 

 

 The nitrogen status analysis was performed using the Normalized Difference Vegetation Index  

(NDVI, Rouse, Haas, Schell, & Deering, 1973b) and the Red Edge Inflection Point 

approximating index (REIP). NDVI is an indicator of green biomass in remote sensing data, 

and sensitive to chlorophyll content in vegetation.  REIP is a standard index developed by 

(Guyot, et al, 1988 as cited by Heege, Reusch, & Thiessen, 2008) and shown to be better 

correlated with nitrogen status than other standard indices, including NDVI (Heege et al., 2008). 

The Water Index (WI) is a simple ratio proposed to be sensitive to plant water status (J. Peñuelas 

et al., 1993). WI is used to compare a trait other than nitrogen status between the three groups. 

Finally, the final custom index is not known to be indicative of any plant property, and is used 

to illustrate an index that does not indicate any pattern in the data. 

Results 

The result is an R package and an implemented web application following the specifications 

laid out in the methods. The R package contains high-level functions that allow users to analyze 

their hyperspectral data following the workflow shown in figure 3. The web application 

provides a high-level interface to the functions specified in the R package.  
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Data processing 

The PlantSpec R package implements a function for 

reading spectral data, where users can specify the file 

format and file or directory path. The function will read 

and combine individual files into a Speclib data object 

(from the hsdar package) or a matrix with spectral data. 

Currently, PlantSpec only supports spectral data 

obtained from SpectraWiz software bundled with 

Apogee spectroradiometers, and standard long and 

wide-format data. The package implements a function 

for calculating vegetation indices from Speclib objects. 

The function acts as a thin wrapper around hsdar’s 

vegetation index function: it expands hsdar’s built-in 

vegetation index calculation function with an expanded list of built-in indices, of which 

PlantSpec offers 140.. PlantSpec implements a function that preprocesses and performs a 

Principal Component Analysis (PCA) on the spectral data. The preprocessing involves 

removing all spectral bands that show no variance from the spectral data and passing the 

remaining data to R’s built-in prcomp function. 

Data visualization functions 

The package offers several high-level visualization functions for producing interactive plotly 

plots from the spectral data, with some examples shown in figure 4. Users can visualize the 

reflectance as a function of wavelength. The reflectance can be plotted by individual samples, 

or aggregated as a mean, median or variance. Figure 4a shows an example plot of mean 

reflectance. The aggregated plots can be split by attributes. The package also implements a 

function for visualizing PCA plots created from the spectral data, as seen in figure 4c. Users 

can use it to plot the two first principal components against each other, and map the marker 

aesthetics to attribute data.  

 

Figure 3. The PlantSpec data 

processing and visualization 

pipeline. 
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Figure 4. Example plots of spectral data made in PlantSpec, from left to right, top to bottom: 

a) Mean reflectance spectrum of a winter wheat canopy. b) PRI values between three nitrogen 

treatment groups, c) PCA plot of spectral data visualized by nitrogen treatment group 

colorwise and size mapped to NDVI values. d) Distribution of NDVI values in the field where 

the spectral data was collected. 
 

The PlantSpec package offers several vegetation index visualizations. The first one are basic 

vegetation index plots, where users can visualize a selected vegetation index against attribute 

data, or for individual samples. Vegetation indices can be visualized in the form of scatter plots 

or boxplots, with an example boxplot shown in figure 4b. A basic dot-plot is used when 

visualizing all calculated index values in a data set. Furthermore, as seen in figure 4d, users can 

supply a matrix representing the spatial distribution of their samples to a function that produces 

a spatial “field map” of index values, where each square corresponds to for example a wheat 

variety or plot. 

a) b) 

c) d) 
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Figure 5. The homepage of PlantSpec. Users select a data-format and upload a zip-archive 

with the data. 

 

Web application 

The web application serves as an interactive high-level interface to the functions outlined above. 

The Shiny web application that implements the interface to the R code is hosted on a Shiny 

Server. The users upload their data in the form of a zip archive on the homepage of PlantSpec, 

seen in figure 5, and select the format of their data. The data is processed by a CGI script coded 

in Python and R, where the user data is assigned a unique job ID, processed into a serialized 

Speclib object, and loaded in the Shiny application. 
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Figure 6. The spectral plot visualization menu in the PlantSpec web application. Users 

access other sections of the site using the (1) top navigation bar. Current plots and tables 

can be adjusted using options in the sidebar (2) and plots are visualized in the main view 

(3) 

 

Figure 6 shows the implementation of PlantSpec as a Shiny application. Users can access the 

different functions of the application using the navigation bar at the top of the view (1). Most 

pages implement a sidebar (2) for adjusting data and plot options and a main view (3) where 

tables and plots appear. The Start menu is where users arrive after successfully uploading their 

data, and shows a summary of the spectral data and any attributes. The Setup page lets users 

modify their data into a working data set. The Visualize menu contains links to various 

visualization options that reflect the implemented plot types in the R package, and the Export 

menu lets the user export their processed spectral data.  

3 

1 

2 
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Figure 7. PlantSpec setup page, for modifying uploaded data into a working data set. 

 

The setup page, seen in figure 7, lets users view their raw data, which includes reflectance data 

and any attribute data. Here, users can modify their data into a working data set that will be 

used in the subsequent visualizations and calculations of vegetation indices, by removing 

unwanted samples, or specifying which attributes they are interested in in subsequent analysis. 

Users can also mask undesired wavelength intervals in their spectral data. 

 

Figure 8. PlantSpec vegetation index visualization menu. 
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The vegetation index visualization section, seen in figure 8, allows the users to calculate and 

visualize any of the built-in or custom vegetation indices from their data, and plot them against 

categorical attributes in a boxplot, or continuous attributes in a scatter plot. The view in figure 

8 shows the menu for visualizing box plots. Users can choose a predefined or custom vegetation 

index they would like to visualize, and the attribute by which the index values should be 

grouped. Then the user can adjust plot-specific options, like mapping attributes to plot-

aesthetics. 

 

Figure 9. Field vegetation index plot menu in PlantSpec. 
 

The web application implements the option to let users visualize field maps of vegetation index 

values, as seen in figure 9. Users can map a predefined or custom index to a matrix that 

represents the distribution of samples in a theoretical field. Users can upload several field 

matrices, if their uploaded data set consists of data from more than one field, or timepoint. 
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Figure 10. PlantSpec PCA plot menu 
 

Finally, for web application users interested in clustering the spectral data, the web application 

implements an interface to creating previously mentioned PCA plots based on the spectral data, 

as seen in figure 10. Users also have the option to map the size and color of markers in the PCA 

plot to attributes, allowing the visualization of the clustered spectral data in relation to attribute 

data. 

 

Figure 11. PlantSpec export menu. 
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As seen in figure 11, after the Visualization menu comes the Export menu, where users can re-

export their spectral data as a comma separated value file, and build a custom table of selected 

vegetation indices for each sample, or calculate the mean vegetation index value by a 

categorical attribute of choice.  

Case study 

The case study data outlined in the Methods section was loaded into and analyzed in PlantSpec. 

In figure 12, the mean reflectance was split between the three nitrogen treatment groups. The 

figure shows that on average the reflectance varies the most between the first treatment group 

and the other two. The first treatment group has a higher reflectance in the photosynthetic region 

of 400.0 – 700.0 nm, and a lower reflectance in the NIR region of 700.0 nm and upwards. The 

two remaining groups seem to vary noticeably in the NIR region, with treatment group two 

showing a higher reflectance than group three. 

 

Figure 12. Mean reflectance spectra of winter wheat subject to three 

different nitrogen treatments (140, 180 and 220 kg Ha-1)  
 

The reflectance data was analyzed in a PCA as seen in figure 13. Each point in the figure 

represents a sample and is colored by the nitrogen treatment group. In the figure it is seen, again, 

that the samples collected from the first treatment group cluster away from the second and third 

treatment groups, while treatment groups two and three cluster together. 
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Figure 13. PCA plot based on spectral reflectance data from winter wheat 

subject to three different nitrogen treatments (140, 180 and 220 kg Ha-1) 
 

PlantSpec was used to compare the three treatment groups relative to the calculated vegetation 

index values using the indices outlined in table 1. Figure 14 shows the four indices compared 

using boxplots. The NDVI (figure 14a) and REIP (figure 14b) results both show that the 140 

kg Ha-1 separates from the remaining two treatment groups with higher applied nitrogen. The 

REIP index shows higher separation between the 1st treatment group and the other two. The WI 

(fig 14c) plot shows more variation in the index values of the low nitrogen treatment group 

compared to the two other groups. The custom index shows roughly the same distribution of 

values for each group.  



 

24 

 

  

  

Figure 14. Vegetation index data from winter wheat reflectance spectra subject to three 

different nitrogen treatments (140, 180 and 220 kg Ha-1):  a) NDVI b) REIP c) WI d) Custom 

index (R400/R500) 
 

In figure 15 the same indices are plotted in a field map, where the position of each value in the 

matrix corresponds to the position of the wheat plot from which it was collected in the field. 

The low, medium, and high nitrogen treatment groups follow each other from left to right. 

Meaning that rows one and two belong to the low nitrogen treatment group, three and four are 

the medium treatment, and so on. Again, the distribution of NDVI values reveals that the first 

treatment has lower NDVI values compared to the rows with medium and high nitrogen 

treatment, but this time it is revealed how individual wheat plots respond to the different 

treatment groups. The REIP matrix mirrors this pattern but shows a more pronounced difference 

between the low nitrogen group and the other two. The WI field map suggests lower WI values 

in the 2nd and 6th rows, while the custom index does not reveal any pattern. 

a) 
b) 

c) 

d) 



 

25 

 

 

 

 

 

 

 

 

 

Figure 15. Vegetation index data from winter wheat reflectance spectra subject to three 

different nitrogen treatments (140, 180 and 220 kg Ha-1 ). Each square represents a different 

wheat line. a) NDVI b) REIP c) WI d) Custom index (R400/R500) 

Discussion 

Spectral HTPP methods generate substantial amounts of data, creating a challenge in merging 

the data together with any phenotypic data into a workable format. This problem can be resolved 

by user-friendly software that simplifies the task of handling these large data sets and making 

the information contained within available for processing and analysis. High interactivity and 

meaningful analysis functionality are necessary in such software. PlantSpec accomplishes the 

aim of providing an R package extended into a web application that meets the criteria above. 

High-level functions allow users to visualize patterns in their spectral data by either looking at 

        140                   180                    220 
Nitrogen / kg Ha-1 

        140                     180                    220 
Nitrogen / kg Ha-1 

        140                    180                    220 
Nitrogen / kg Ha-1 

        140                   180                    220 
Nitrogen / kg Ha-1 

a) b) 
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the reflectance profiles or calculated vegetation indices. Users can combine spectral data from 

files or directories, and extract vegetation indices from their data — both using the R package 

and the web application. The graphical interface provided by the web application allows users 

with no prior knowledge of programming in R to gain access to the data visualization and 

processing functions. 

The usefulness of the data visualization and processing functions are shown in the figures 

produced in the case study. Figure 12 shows how the mean reflectance can be compared 

between spectral samples partitioned into different treatment groups. The option to plot PCA 

results and map the plot aesthetics to recorded attributes likewise allows for visualizing trends 

in the spectral data, but on a finer level compared to the aggregated reflectance. PCA plots also 

come with the added benefit of visualizing potential outliers. Returning to the case study results, 

the PCA plot in figure 13 uses data obtained from a PCA of the raw spectral data to illustrate if 

and how the data clusters in relation to the three fertilizer levels. Users can do the same analysis 

in relation to any categorical or continuous attributes, with the added benefit of visualizing 

outliers. In the case of the case study, the two figures reveal that the reflectance of the canopies 

that received the 140 kg Ha-1 treatment differ from the two other groups (180 and 220 kg Ha-1).  

PlantSpec allows users to analyze their data using over 100 vegetation indices. The case study 

results show how spectra can be processed into vegetation index values and compared in 

relation to attribute data. In the case study, the fertilizer groups were compared using two 

indices known to correlate with plant nitrogen status (Hansen & Schjoerring, 2003; Li et al., 

2010). Vegetation indices that have been identified as correlated with, for example, nitrogen 

status, as is the case with NDVI and REIP, or traits like yield or water status, can be used to try 

to predict those attributes in all samples or between treatment groups. Figures like the figures 

14 and 15 show examples of visualization of vegetation indices in PlantSpec, and can be useful 

for identifying vegetation indices that are correlated to differences in plant trait data. This is 

useful for variable selection, in the sense of identifying indices to explore when building 

statistical phenotyping models. Figure 14 helps discern the distribution of index values between 

treatment groups, allowing the user to identify indices that are correlated to selected attribute 

data. Figure 15 shows the spatial distribution of the same values in a representation of the field 

that the data was collected in. In the context of the case study, figure 15 is useful for identifying 

how the selected vegetation index value differs between varieties in the three different groups.  
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The implemented Shiny web application fulfils the goal of enabling users to access PlantSpec 

without having to program. The code is made interactive via simple navigation and sidebar 

menus which helps in keeping things simple for the end-user. As seen in figure 11, the web-

application also allows users to easily extract their combined or processed data as a csv-file, for 

use outside of PlantSpec. 

As stated previously, hyperspectral data provides a promising way of detecting diseases and 

other forms of plant stress in vegetation (Sankaran et al., 2010). Hyperspectral data can be 

processed into hyperspectral indices and related to diseases, but also crop traits like yield or 

leaf cover (Thenkabail, Smith, & De Pauw, 2000). PlantSpec offers an open-source tool for 

exploratory data analysis and visualization of high-throughput hyperspectral data. It offers data 

visualization functions that allow the end-user to visualize how the spectral data behaves in 

relation to any traits of interest and to identify spectral bands or vegetation indices that can be 

investigated in statistical models of the same traits. Most importantly, PlantSpec lowers the 

entry barrier to hyperspectral data analysis, by packaging the software in the form of a fully 

functional online tool, that abstracts all required programming into an easy-to-use graphical 

user interface. 

Future work 

Although PlantSpec in its current state is useful for basic exploratory analysis of hyperspectral 

data, the application has its limitations. PlantSpec currently only supports three filetypes 

(SpectraWiz files and tab separated long and wide-form data). However, it can be easily 

extended to support more filetypes, and work is underway to add support for ASD FieldSpec 

binary data files, by incorporating the asdreader R package (Roudier, 2016) into PlantSpec. 
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Figure 16. Correlation between measured spectral reflectance 

at individual bands and three levels (140, 180 and 220 kg Ha-1) 

of nitrogen treatment in a field trial of winter wheat. 
 

PlantSpec currently provides no high-level functions for visualizing correlation between 

numeric attributes and individual spectral bands. This sort of relationship is usually visualized 

in a correlogram, as seen in figure 16, and is seen in use in a wide array of papers trying to 

identify spectral bands for characterizing crop traits, for example in (Thenkabail et al., 2000). 

This is also currently in the works and will be included in a future version. 

The web-application does not offer the possibility of aggregating boxplots and spectra by more 

than one variable. This makes it impossible to study something like the mean spectra of three 

different treatments over a second attribute, like for example a temporal variable. Adding this 

functionality would make it easier to study spectral data by attributes over time. 

Another crucial feature missing from PlantSpec is functionality for handling replicates. In cases 

where users want to merge biological or technical replicates into their respective mean values, 

they cannot yet merge replicates in the web application, but must do it beforehand. This goes 

against the goal of minimal data pre-processing required to use the application. 

Aside from the concerns outlines above, the R package and web application code requires more 

testing and more robust error handling. Plots like the PCA plot, although useful, could be 

updated to support mapping more aesthetics to the attributes, like marker type, and easily 

mapping any calculated index values to plot aesthetics, to uncover more patterns in the data. 



 

29 

 

Conclusion 

In conclusion, PlantSpec offers a toolset in the form of an R package or online tool to easily 

load, process and analyze plant spectral data in relation to any traits. More work needs to be 

done, and a few crucial functions need to be added to the package and online tool, but until then 

the PlantSpec R package and web application are both capable of basic processing and 

exploration of hyperspectral data in relation to non-spectral attribute data. Users can visualize 

difference in reflectance in relation to non-spectral attribute data and spatial data, and process 

their spectral data using over 100 vegetation indices. Most crucially, the web application makes 

those functions accessible to users with minimal programming skills, making exploration of 

hyperspectral phenotyping more streamlined and accessible to the end user.  
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Appendix 

Vegetation indices added to PlantSpec 

Table I. List of additional vegetation indices included in PlantSpec 

Name/Code Equation Reference 

ARI (1/R550)/(1/R700) 

(Anatoly A. Gitelson, 

Mark N. Merzlyak, & 

Chivkunova, 2001) 

ARI2 R800*(1/R550)-(1/R700) 
(Anatoly A. Gitelson et 

al., 2001) 

BGI R450/R550 
(Zarco-Tejada et al., 

2005) 

BRI R450/R690 
(Zarco-Tejada et al., 

2005) 

CRI (1/R510)-(1/R550) 

(Gitelson, Zur, 

Chivkunova, & 

Merzlyak, 2002) 

LRDSI1 4.2*(R695/R455)-0.38 

(Ashourloo, 

Mobasheri, & Huete, 

2014) 

LRDSI2 
(R750-R705)/(R750+705-

2*R445) 

(Ashourloo et al., 

2014) 

MCARI1 
1.2*(2.5*(R790- R670) - 1.3 * 

(R790- R550)) 

(Haboudane, Miller, 

Tremblay, Zarco-

Tejada, & Dextraze, 

2002) 

mNDVI2 
(R800/(R670 - 1))/(R800/(R670 + 

1))^0.5 
(Sims & Gamon, 2002) 

mSR3 R723/R700 (Sims & Gamon, 2002) 

NPQI (R415-R435)/(R415+R435) 

(Barnes, Balaguer, 

Manrique, Elvira, & 

Davison, 1992) 



 

33 

 

PhRI (R550-R531)/(R550+R531) 
(Gamon, Peñuelas, & 

Field, 1992) 

PRI2 (R570-R539)/(R570+R539) 
(Filella, Amaro, Araus, 

& Peñuelas, 1996) 

RGI R690/R550 
(Zarco-Tejada et al., 

2005) 

SIPI2 (R800 - R440)/(R800 - R680) 

(Pen¯Uelas, Filella, 

Lloret, Mun¯Oz, & 

Vilajeliu, 1995) 

SIPI3 (R800 - R445)/(R800 - R650) 
(Penuelas, Baret, & 

Filella, 1995) 

SR9 R690/R655 

(Zarco-Tejada, 

Pushnik, Dobrowski, & 

Ustin, 2003) 

SR10 R685/R655 
(Zarco-Tejada et al., 

2003) 

SR705 R750/R705 

(Castro-Esau, Sánchez-

Azofeifa, & Rivard, 

2006) 

VS R725/R702 
(White, Williams, & 

Barr, 2008) 

WI R900/R970 
(Peñuelas, Filella, Biel, 

Serrano, & Savé, 1993) 
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