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Page 25 

Find the text:  First section from equation 7 

Existing text: 

Water requirement per food category [m3] [7] 

𝑊𝑅𝐹𝑜𝑜𝑑 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 =
𝑀𝑒𝑑𝑖𝑎𝑛 𝑊𝑃𝑓𝑜𝑜𝑑 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

𝐷𝑖𝑒𝑡𝑎𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑟𝑜𝑝 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

Dietary weight per food category was calculated from the 

median value of energy [kcal kg-1] of ingoing crops per food 

category and divided by energy consumption [kcal] per food 

category and diet (equation [8]). Energy content of ingoing 

crops and animal products were obtained from nutrition data 

from references in Table 10, section 3.6.. 

𝐷𝑖𝑒𝑡𝑎𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡𝑓𝑜𝑜𝑑 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 =
𝑀𝑒𝑑𝑖𝑎𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑓𝑜𝑜𝑑 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

 𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑡𝑎𝑘𝑒𝑓𝑜𝑜𝑑 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦
   [8] 

Should be: 

Water requirement per food category [m3]                   [7] 

𝑊𝑅𝐹𝑜𝑜𝑑 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 =
𝐷𝑖𝑒𝑡𝑎𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑟𝑜𝑝 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

𝑀𝑒𝑑𝑖𝑎𝑛 𝑊𝑃𝑓𝑜𝑜𝑑 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦



 

Dietary weight per food category was calculated by dividing 

energy consumption [kcal] per food category and diet with the 

median value of energy [kcal kg-1] of ingoing crops per food 

category (equation [8]). Energy content of ingoing crops and 

animal products were obtained from nutrition data from 

references in Table 10, section 3.6. 

𝐷𝑖𝑒𝑡𝑎𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡𝑓𝑜𝑜𝑑 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 =
𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑡𝑎𝑘𝑒𝑓𝑜𝑜𝑑 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

 𝑀𝑒𝑑𝑖𝑎𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑓𝑜𝑜𝑑 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦
                 [8] 

__________________________________________________________________________________________ 



Page 56: Table 14 

Existing text: 

Table 1. Calculated annual water requirements as a share of total annual precipitation and as shares of total renewable water resources (IRR). The values are 

summarized for the total populations per respective diet per socio-economic category: low-income- (LD), lower middle-income (LMD), upper middle-income- 

(UMD), and high-income (HD) population in Ethiopia, Tanzania, and Burkina Faso. 

Dietary and total water requirement of total annual precipitation 

calculated with inefficient WP and efficient WP 

Dietary and total water requirement of total renewable water 

resources (IRR) calculated with inefficient WP and efficient WP 

Country Total  

precipitation 

Total 

renewable 

water 

resources 

[%] [%] 

Inefficient WP Efficient WP1 Inefficient WP Efficient WP1 

[G m3 y-1] LID LMD UMD HID Total LID LMD UMD HID Total LID LMD UMD HID Total LID LMD UMD HID Total 

Ethiopia 936.4 122 1.3 16.3 23.6 41.2 0.3 1.9 1.7 3.9 10.3 124.8 181.0 316.0 2.3 14.5 12.9 29.7 

Tanzania 1015 96.27 0.7 9.9 4 6.3 21.3 0.2 0.9 0..4 0.4 1.9 7.6 104.3 46.3 66.8 225.0 1.8 9.4 4 3.6 19.6 

Burkina 

Faso 
205.1 13.5 1.3 16.9 10.2 28.5 0.2 1.4 0.8 2.4 19.7 257.3 155.6 432.5 3.7 21.2 12.1 37.0 

I 2014 FAO: AQUASTAT Available: http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en [2018-05-10] 



 

Should be: 

Table 14. Calculated annual water requirements as a share of total annual precipitation and as shares of total renewable water resources (IRR). The values are 

summarized for the total populations per respective diet per socio-economic category: low-income- (LD), lower middle-income (LMD), upper middle-income- 

(UMD), and high-income (HD) population in Ethiopia, Tanzania, and Burkina Faso. 

Dietary and total water requirement of total annual precipitation 

calculated with inefficient WP and efficient WP 

Dietary and total water requirement of total renewable water 

resources (IRR) calculated with inefficient WP and efficient WP 

Country Total  

precipitation 

Total renewable 

water resources 
[%] [%] 

Inefficient WP Efficient WP1 Inefficient WP Efficient WP1 

[G m3 y-1] LID LMD UMD HID Total LID LMD UMD HID Total LID LMD UMD HID Total LID LMD UMD HID Total 

Ethiopia 936.4 122 1.3 16.3 23.6 41.2 0.3 1.9 1.7 3.9 10.3 124.8 181.0 316.0 2.3 14.5 12.9 29.7 

Tanzania 1015 96.27 0.7 9.9 4.4 6.3 21.3 0.2 0.9 0.4 0.4 1.9 7.6 104.3 46.3 66.8 225.0 1.8 9.4 3,7 34,3 19.6 

Burkina 

Faso 
205.1 13.5 1.3 16.9 10.2 28.5 0.2 1.4 0.8 2.4 19.7 257.3 155.6 432.5 3.7 21.2 12.1 37.0 

I 2014 FAO: AQUASTAT Available: http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en [2018-05-10] 





The majority of agricultural croplands globally is rainfed. This calls for agricultural 

practices which promote as productive use of precipitation water as possible, to main-

tain sufficient crop growth for food production. Global population is estimated to 

increase to 9.3 billion by 2050 leading to a projected increase in food demand of 60 

% from today. This, together with climate change which is projected to entail uneven 

precipitation patterns, will put further pressure on water resources and demands more 

thoughtful water management to maintain and improve yields. 

Additionally, another global issue is malnutrition, a consequence of uneven food dis-

tribution, food availability and food accessibility. Nutritive deficiencies together with 

global population increase and changes in dietary patterns call for increased food 

production both in biomass yield and crop qualities considering nutrition. To meet 

these demands with limited water resources, food production requires systems with 

high water productivity (WP) to gain most quality output as possible in terms of yield, 

to water input. In this case the input is seen as evapotranspiration. 

The aim with this study was to elucidate the concept Dietary Water Productivity 

(WPdiet) in Sub-Saharan Africa (SSA) for diets differentiated by income levels in 

Ethiopia, Tanzania, and Burkina Faso. The study included a review of WP and cal-

culations of energy and nutritive output related to evapotranspiration in crop produc-

tion and diet composition. This was put in relation to national available water re-

sources in respective country. 

This study shows: 

1. A data gap of values of WP in SSA for main crops included in diets.

2. Country specific differences in water productivity of energy and nutrition out-

come depending on food composition and total food consumption.

3. Insecurities in estimated supplies of national precipitation and liquid water re-

sources to sustain future national food production in Ethiopia, Tanzania, and

Burkina Faso.

Keywords: Evapotranspiration, Nutrition, Water management, Water Scarcity, Yield 

gap, Water use efficiency, Sub-Saharan Africa 

Abstract 



 
 

 

Den största delen av växtproduktionen i världen får sitt vatten via nederbörd. För att 

upprätthålla så hög produktion som möjligt krävs det effektiva jordbruksmetoder för 

att ta tillvara på nederbörden i jordbrukslandskapet så den kommer till nytta i pro-

duktionen. Världens befolkning har uppskattats att öka till 9,3 miljarder till år 2050, 

vilket kommer att medföra en ökad efterfrågan på livsmedel, uppskattad till 60%. En 

ökad efterfrågan på livsmedel tillsammans med klimatförändringar, som är progno-

stiserade att medföra oregelbunden nederbörd, kommer att öka trycket på tillgängliga 

vattenresurser. Detta kräver matproduktion som hushållar med det vatten som finns 

tillgängligt.  

 

Ytterligare ett globalt problem är undernäring till följd av ojämn matförsörjning och 

livsmedelstillgångar. Undernäring tillsammans med den globala befolkningsförhöj-

ningen och förändringar i dietkomposition kräver ökad livsmedelsproduktion både 

som kvantitativ och kvalitativ skörd, vilket inkluderar nutritivt innehåll för human-

konsumtion i odlade grödor. För att uppfylla dessa produktionskrav med begränsade 

vattenkällor krävs effektiv livsmedelsproduktion med effektivt nyttjande av vatten 

för att erhålla hög vattenproduktivitet.  

 

Studiens syfte var att koppla växtproduktion med nutrition och vattentillförsel genom 

att belysa vattenproduktivitet (WP) kopplat till dietkomposition i Afrika söder om 

Sahara (SSA) för dieter i Etiopien, Tanzania och Burkina Faso differentierade av in-

komstnivåer. Studien har omfattat en referensgenomgång av WP och beräkningar av 

energi [kcal] och nutrition som utgående faktor, relaterad till evapotranspiration i 

växtproduktion. Dessa beräkningar har utvärderats i relation till nationella vattentill-

gångar för jordbruksproduktion. 

 

Denna studie visar:  

1.  Att det finns en avsaknad av värden för WP i SSA för huvudsakliga grödor som 

ingår i dieter i Etiopien, Tanzania och Burkina Faso.  

2.  Landspecifika skillnader i vattenproduktivitet med avseende på nutrition bero-

ende på dietkomposition och totalt intag av livsmedel.  

3  Osäkerheter i uppskattade tillgångar av nationell nederbörd och fria vattenresur-

ser för att upprätthålla framtida nationell livsmedelsproduktion i Etiopien, Tanza-

nia och Burkina Faso. 

 

Nyckelord: Evapotranspiration, Nutrition, Vattenbrist, Vattenhantering, Skördeför-

lust, vatteneffektivitet, Afrika söder om Sahara 

  

Sammanfattning 



 
 

Popular scientific summary- 
How to link water and nutrition in Sub-Saharan Africa 
 

 

This study addresses diets in Ethiopia, Tanzania, and Burkina Faso and how 

the diets’ accumulated nutritive content is related to water requirements in the 

production of food products included in the diets. Water is essential for sus-

taining crop growth. It is a component for plant uptake of essential crop nu-

trients from the soil, as building block in plant tissue, for transport of mole-

cules and for keeping vital processes within the plant. Increasing water scar-

city is a global problem which is further constrained by climate change, an 

increasing global population, and changes in diets due to variations in water 

requirements in production of different crops and food products. There is also 

an uneven distribution of available food at the global market. Food inacces-

sibility and unbalanced diets lead to problems as undernourishment with in-

sufficient intake of macronutrients (carbohydrates, protein, fat, and fibre), 

overweight and obesity due to excessive energy intake, and deficient intake 

of essential micronutrients (vitamins and minerals). Uneven food distribution 

and a global population increase calls for increased food production. How-

ever, with water resources being more limited with national variations, agri-

cultural production needs to use water resources wisely to produce as high 

output of yield, energy, and as nutritious crops as possible to the applied water 

in the cropping areas.  

 

This study shows that different amounts of nutritive output is possible to re-

ceive for the same water input depending on diet composition. They also in-

dicate that national available water resources theoretically might be suffi-

cient as input in cropping systems to support production of national food re-

quirements with present food compositions in Ethiopia, Tanzania, and 

Burkina Faso. However, there is an insecurity in whether it is possible to 

maintain sufficient food production within the countries with future popula-

tion increase and changes in food intake patterns. This study was based on 

previous studies done on water input in crop production in connection to 

crop yield. However, such studies are few and to do proper estimations of 

nutritive outputs, there are requirements of further studies of nutritive con-

tent and water requirement for crops included in diet composition.  



 
 

 



 
 

 

 

The content of this thesis is related to a project performed by Stockholm In-

ternational Water Institute (SIWI) in collaboration with Food and Agricul-

tural Organization (FAO). The aim of the project was to develop a methodol-

ogy for linking nutrition to production at farm level concerning choice of 

crop, farm and water management and how the inputs can be reduced to the 

highest possible output in terms of nutrition, income, and farmers livelihood.  
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BF Burkina Faso 

ETa Actual evapotranspiration 

ETc Crop evapotranspiration 

ETH Ethiopia 

ETo Reference evapotranspiration 

HID High-income diet 

LID Low-income diet 

LMD Lower middle-income diet 

MID Middle-income diet 

NWP Nutritional water productivity 

NWPdiet Dietary nutritional water productivity 

SDG Sustainable development goals 

SSA Sub-Saharan Africa 

TZ Tanzania 

UMD Upper middle-income diet 

WF Water footprint 

WP Water productivity 

WPdiet Dietary water productivity 

WR Water requirements 

WUE Water use efficiency 

Ya Average actual yield 

Yg Yield gap 

Yp Potential yield 

Yw Water limited yield 

 

  

Abbreviations 



12 
 

 



13 
 

Water is essential for sustaining life and a main input factor in crop production 

which determines yield potential (see van Ittersum & Rabbinge, 1997). Irrigated 

agriculture is responsible for 70 % of global surface and groundwater withdrawals 

(The World bank, 2017 a) which support 40 % of global food production while pos-

ing 20% of global cropland (The World Bank, 2017 a). The remaining cropland is 

thus rainfed. To meet a forecasted global population increase to 9.3 billion by year 

2050, it is estimated that an increased agricultural production by 60 % is required to 

meet an overall raised food demand (FAO, 2014). An increasing global population 

will lead to less water per capita and consequently higher risk of water scarcity, 

especially where rainfall is low (Rijsberman, 2006). Thus, it will put more pressure 

on available water sources as higher agricultural production will require more water.  

 

Food production is already today under constrains of land and water scarcity (with 

local variations) which is worsened by climate change (Sadras et al., 2010). 

Changed precipitation patterns, flooding, droughts, and higher temperatures are 

some consequences of climate change on agriculture (European Environment 

Agency, 2015). This affect potential accumulation in national water storages and 

thus potential water availability for crop water supply and evapotranspiration (Eu-

ropean Environment Agency, 2015). Increased temperatures might also change 

cropping patterns and cropping seasons (European Environment Agency, 2015).  

 

An additional problem to present and future food safety is uneven food availability 

which results in malnutrition (WHO, 2017 a). This is a term including inadequate, 

excessive and unbalanced food intake (WHO, 2017a). These three pillars of malnu-

trition are not isolated from each other but can occur within the same region 

(Keding, 2016). Of the global human population, 11 % suffer from chronic hunger 

and additionally 13 % are undernourished (The World Bank, 2017 b). Alarming is 

the disrupted trend of previous decreasing numbers of undernourished, which has 

1 Introduction 
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increased since the year of 2014 (FAO et al., 2017). Simultaneously to undernour-

ishment, are overeating and food losses two problems along the food chain. Of the 

global adult population were 13 % suffering from obesity in year 2016 (WHO, 2017 

b). Additionally, a substantial amount of produced food is lost or wasted throughout 

the value chain (Gustavsson et al., 2011). With losses, uneven distribution, and an 

increasing global population, one issue is to receive proper quantity of daily energy 

intake adapted to a global population increase, to improve distribution and reduce 

food waste.  

 

There is a complexity to malnutrition as it is a global issue with sufficient food 

quantity regarding energy but inequality in food quantities- and especially energy 

distribution. However, undernourishment and micronutrient deficiencies are yet an 

additional issue and will still be so with increased agricultural production, unless 

nutrition quality is linked to agricultural food production (FAO, n.d) as energy rich 

food might still be poor in nutrition (Chibarabada et al., 2017).  

 

Challenges of climate change effects, food accessibility, input availability in crop 

production and productivity of water input are comprised in the 2030 Agenda for 

Sustainable Development (SDG) (General Assembly, 2015). Of these 17 develop-

ment goals do number 2, 6 and 12 include food security and water availability, nu-

trient availability and sustainable agriculture, water management, -productivity and 

-consumption (General Assembly, 2015). These goals address sustainable use of 

water resources and requirements of increased food production (General Assembly, 

2015).Another requirement included in the SDGs is nutritive food content (General 

Assembly, 2015). Uneven distribution and infrastructure result in unequal food 

availability and food intake despite enough global food production today to supply 

the world’s population with sufficient energy per day (FAO, 2017).  

 

Nutrition connected to food production has, and will become, more important to 

include throughout the food production chain from producer to consumer, due to 

increased food requirements but with more limited resources. In the context of food 

quality does crop differentiation and diet composition become an important factor. 

Plants have varying composition of chemical compounds which fulfil different pur-

poses in human diets (Gerbens-Leenes & Nonhebel, 2004). Essential nutrition for 

humans includes the macronutrients proteins, fatty acids, carbohydrates and fibre 

and the micronutrient consisting of 13 vitamins (Livsmedelsverket, 2017 a) and 14 

minerals (Livsmedelsverket, 2017 b). Total nutrition intake and water use is a func-

tion of total dietary composition. This differ between location and income level with 

different clustered water requirements (WR) for production of primary crops (van 

Wart et al., 2013). 
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With an increased production where inputs as water are limited, considering quality 

of products produced with limited resources address the issue of sufficient nutritive 

intake and a nutrition balanced diet to overcome undernourishment and unbalanced 

food intake. The importance of nutritive content in crops has been addressed for 

more than two decennium (e.g.(Welch & Graham, 1999). Yet, to elucidate nutritive 

content of crops in the context of available water resources is still something which 

is required (Mabhaudhi et al., 2016). 

 

In the context of an increasing global population, limited agricultural inputs needs 

to be exploited cautiously to receive the highest achievable amount of output. Where 

water already is a limiting resource, changed water conditions demand crop species 

and/or -varieties which are more drought tolerant (European Environment Agency, 

2015) to achieve successful crop growth. Limiting water resources which affect sta-

bility in food production in both irrigated and rainfed systems, require food produc-

tion which uses water productively and adaptions of cropping systems to the new 

climate conditions (Turral et al., 2011; Bastiaanssen & Steduto, 2017) to assure suf-

ficient water access to support yields. The value of nutrition and water as production 

inputs is important to be able to rationalize crop production considering water re-

sources and nutrition content. This to deliver crops which are as nutrition dense as 

possible and to use site specific resources within agriculture effective, thus reduce 

global malnutrition and increase water productivity and nutrition content. In the end 

the request is to produce ‘more nutrition per drop’, that is producing more nutrition 

per unit water. 

 

Water productivity (WP) is one measure for obtained crop biomass per water vol-

ume used in crop production (Molden et al., 2007). This measure can include several 

dimensions of water use in agriculture but is overall a measure of water input versus 

beneficial output (Molden et al., 2007) . In the context of crop production and water 

scarcity, the aim is to receive as productive system as possible, with most output 

attributed to the water input. This is possible in agriculture where physical water 

scarcity is yet not too severe (Molden et al., 2007).The implementations are to in-

crease yields by sufficient agricultural inputs and reduce water requirements (WR) 

by increasing preservation of soil water, use supplemental irrigation in rainfed agri-

culture,or by using efficient water application techniques in irrigated cropping sys-

tems (Molden et al., 2007).WP can additionally to yield [kg] or energy [kcal] be put 

in relation to other outputs from crop production, resulting in the measure Nutri-

tional Water Productivity (NWP), to include the obtained nutritional portion from 

crop yield in relation to WR (Renault & Wallender, 2000). Accomplished studies of 

the concept of NWP are in its initial stage (e.g. Renault & Wallender, 2000; Nyathi 

et al, 2016; Chibarabada et al., 2017;) and these studies are mainly focused in one 
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location or on one specific diet. This demands more studies of NWP to distinguish 

crops and diets which are nutrition dense and water resource effective.  

 

SDGs in Agenda 2030 address food security and nutritious food with sustainable 

use of water resources, thus combining quantity and quality demands to fulfil nutri-

tious needs, with WR in crop production (General Assembly, 2015). There are sev-

eral studies performed on average country diets. However, national differences are 

addressed to a minor extent and thus are national WR so far overlooked. This 

knowledge-gap calls for a further step by including national dietary differentiation 

due to differences in nutrition food sources, WR and WP. 

1.1 Objective and research questions 

This thesis explored specified examples of Dietary Water Productivity (WPdiet) and 

Dietary Nutritional Water Productivity (NWPdiet) for income differentiated diets in 

three Sub-Saharan Africa (SSA) countries, Ethiopia, Tanzania and Burkina Faso. 

The values of WP were compared with national water resources as limiting factor 

for crop production. The purpose was to bring up a discussion of how diet compo-

sition relates to WR in agriculture in present and future cropping conditions.  

 

The aim of this thesis was to pilot a methodology where crops emanated from in-

come-dependent diets are compared to WR in the cropping systems and to compare 

with the crops nutritive content. In other words, nutrition per unit water. Questions 

which have been explored follow below: 

1. Which is the water productivity for the specified diets and the respective 

crops considering economic yield [kg m-3], energy [kcal m-3], and nutri-

tion [g m-3]?  

2. How do values of WPdiet and NWPdiet differ from each other for the spec-

ified crops and diet compositions? 

3. How do water requirements for the crops in the diets relate to present 

and estimated future water access at the example countries in SSA?  

 

Question 1 is explored in result section 4.1 Synthesis of Water Productivity data 

from empirical studies in SSA, question 2 in section 4.2 Estimates of water re-

quirements for diets per income level in Ethiopia, Tanzania, and Burkina Faso and 

question 3 in section 4.3 Comparison of water appropriation for diets with na-

tional water resources  
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2.1 Water resources for crop production 

A nation is considered water scarce when water access is below 1000 m3 cap-1 y-1 

and with a nearly constant volume of national available water (Rijsberman, 2006). 

As the main part of agriculture is rainfed (Falkenmark & Rockström, 2014), this 

brings in the importance of differentiating between rained and irrigated agriculture.  

 

Two main water resources are available for crop production. Either precipitation 

which is stored directly in the soil profile at the cropping site and available for tran-

spiration (Stroosnijder, 2009) or open water resources as streams and lakes (Rijs-

berman, 2006), available for crop irrigation (Rockström et al., 2009). Precipitation 

which ends in soil profiles is according to Rijsberman (2006) 60 % of the total pre-

cipitation volume, while the remaining 40 % on a global annual long-time basis ends 

in open water resources. 

 

Water in plants after harvest indirectly becomes a factor in import and export of 

food product as water is required elsewhere than where the food is consumed (Re-

nault, 2002; Allan, 2003). This is especially important for water scarce nations not 

able to support sufficient food production for national requirements (Renault, 2002). 

This also makes improvements of WP within crop production in these water scarce 

countries more critical (Renault, 2002). 

 

 

2 Background 
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2.2 Evapotranspiration and yield yap 

Water is essential for crop production where transpiration enables turgor (Campbell 

et al., 2015, p 847), gas exchange; nutrient uptake and as transport medium of dis-

solved compounds within the plant (Campbell et al., 2015, pp 851–851). Water is 

further essential for chemical reactions within the plant, in photosynthesis as elec-

tron donor and as a main building block in plant biomass as carbohydrates (Camp-

bell et al., 2015, p 265). Water consumption in cropping systems consist of two 

main components (Jägermeyr et al., 2015). Transpiration which contributes to crop 

growth, and evaporation which is depleted water which does not contribute to pro-

duction (Jägermeyr et al., 2015). Water possible to include more productively in 

crop production can be seen as the difference of precipitation and the volume used 

in transpiration (Rockström et al., 2009). 

 

Crop water uptake is a function of water movement towards lower water potential 

in the atmosphere (Grip & Rodhe, 1994). As transpiration is controlled by opening 

of stomata, transpiration reduction, and thus water saving for the crop, is a compet-

itive trait towards uptake of carbon dioxide for photosynthesis and thus crop growth 

- with increased transpiration follows increased photosynthesis (Grip & Rodhe, 

1994). Transpiration rate is determined by available energy from sun radiation and 

wind velocity, for transferring water from liquid to gas phase, as well as temperature 

which determine air humidity and thus is a factor for the water gradient between 

crop and atmosphere (Grip & Rodhe, 1994). The link between abiotic factors and 

evapotranspiration is further explained in section 3.2. 

 

The abiotic factors sun radiation (R), temperature (T), carbon dioxide levels (CO2) 

and additionally crop species and-crop variety are factors determining potential 

maximum yield (Yp) (equation [1]) (van Ittersum & Rabbinge, 1997). As these abi-

otic factors are location specific, Yp will consequently differ between cropping sites. 

 

Potential yield  𝑌𝑝 = 𝑅 + 𝑇 + 𝐶𝑂2 + 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 [1] 

          (van Ittersum & Rabbinge, 1997) 

 

Yp is the maximum yield level to strive towards by reducing limiting and reducing 

factors defining actual yield (Ya) (equation [2]) and thus reducing the yield gap 

(Yg) which is the difference between Yp and Ya. 

 

Average actual yield      𝑌𝑎 = 𝑌𝑝 − (𝑌𝑝 ∗ (𝑙𝑖𝑚𝑖𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 + 𝑟𝑒𝑑𝑢𝑐𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟𝑠) [2] 

(van Ittersum & Rabbinge, 1997) 
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Limiting factors are access to water and plant nutrients while elements of competi-

tion for water and nutrients are reducing factors (van Ittersum & Rabbinge, 1997). 

The reducing factors were excluded in the context of this thesis as the focus is on 

the yield limiting factors and especially water availability for crop production.  

 

Water application in rainfed systems can only partially be manipulated through 

farming practices which means that there might not be sufficient water to sustain 

the maximum potential yield (van Ittersum & Rabbinge, 1997). This affect Yp as 

water becomes a limiting factor for crop growth, resulting in water limited yield 

(Yw) (van Ittersum & Rabbinge, 1997).  

2.3 Limitations of water availability in crop production 

Three types of droughts affecting crop production and contribute to Yg can be rec-

ognized in cropping systems according to Stroosnijder (2009). Limited precipitation 

patterns, limitations in the soil profile hindering crop access to soil water, and lastly 

the scenario when plant nutrient availability in the soil is the limiting factor (Stroos-

nijder, 2009). These sorts of drought contribute to an additional dimension of the 

perspective of Yw, giving two reasons for water limitation as water might be availa-

ble at the location but limited by cultivation practices or spot soil properties (Figure 

1) 

 

This thesis has concentrated on the link between national water resources available 

for water application to sustain crop production for dietary food intake and limita-

tion in field. Crops will not benefit from applied water unless soil conditions enable 

Figure 1.  Factors determining levels of possible crop yield. Potential yield is the highest achievable 

yield without limitations and reducing factors and actual yield the yield obtained at field due to limit-

ing factors. Aggregated concept from van Ittersum & Rabbinge (1997) and Stroosnijder (2009). 
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water transport from soil to plant, enhancing evapotranspiration, crop growth and 

consequently crop yield. 

 

Several reasons affect plant accessibility of soil water, for example both by changes 

of land cover and by physical properties in the soil profile (Stroosnijder, 2009). In-

itially, soil texture and structure affect soil porosity and thus soil water holding ca-

pacity  (Eriksson et al., 2011, p 172). Porosity determines the volume available soil 

water and water holding capacity is a function of pore size (Eriksson et al., 2011, p 

172) which in turn affects the shares of drainable water and available water for tran-

spiration (Eriksson et al., 2011, p 181). Factors affecting soil structure and porosity 

and therefore the possibility for the soil to hold water are for example  decreasing 

organic matter content and soil compaction from above-ground pressure or com-

pacted layers in the soil profile (Stroosnijder, 2009). 

 

Improving  productivity of precipitation is of concern in all dryland agriculture and 

where majority of agricultural production is rainfed with little support by irrigation 

practises (Kristjanson et al., 2012). Several measures can improve WP of precipita-

tion by increasing soil moisture content, for example mulching and to improve ac-

tions from soil fauna which increase soil porosity, water infiltration and water hold-

ing capacity. Further examples are adding barriers in the cropping area either as 

terraces or crops which hinder soil erosion, and implement water-saving actions as 

rainwater harvesting techniques, with the most common in SSA being pitting, con-

touring, terracing and micro-basins (Biazin et al., 2012). Lastly, WP can be im-

proved by ensuring crop nutrient availability to receive synergetic effect of water 

application (Biazin et al., 2012) as water is essential for crops to take up nutrients 

(Campbell et al., 2015, p 864), but nutrients is also a driving force for transpiration 

and water use in plants. Examples are potassium which is required for stomata func-

tions, manganese for splitting water and acquire energy in photosynthesis, chlorine 

which is required in small amounts for water splitting and regulation of osmosis and 

thus water balance within plants (Chen et al., 2010; Campbell et al., 2015, p 869). 

 

Over all, increasing WP is to highest extent possible in areas with scarce or depleting 

water resources and high Yg,; where WP is low with existing poverty, or where ad-

ditional small extra water application will result in higher crop production (Molden 

et al., 2010). 
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This study is built on a review of values of water productivity (WP) for crops grown 

in- and included in diets in Sub-Saharan Africa (SSA). Values of WP were used to 

calculate dietary water requirements (WR) for income-based diets in Ethiopia 

(ETH), Tanzania (TZ) and Burkina Faso (BF). These values were compared to na-

tional available water resources to estimate possibilities to nationally sustain pro-

duction of the diets. Emanated from WR, the dietary water productivity (WPdiet) was 

calculated which enabled comparison with agricultural production systems between 

the locations as well as comparisons between qualitative production of energy per 

water volume [kcal m-3]. WPdiet was also put in relation to nutritive contents of the 

ingoing crops (nutritional water productivity, NWPdiet) in the diets according to for-

mulas in Molden (1997) and Renault & Wallender (2000) (elaborated in section 

3.3). To receive indications of nutritional output in relation to WR, ETH, TZ and 

BF were used as countries to specify diets in relation to national water availability, 

crop production systems and income levels (Figure 2). 

3 Study locations and methods 

Figure 2. Flow chart over the methodology for comparing how differences in diet composition affect water re-

quirement in national crop production, water productivity regarding energy and nutrient content and how die-

tary water requirement relate to national available water resources. The calculated measures in these studies 

are framed and required data for calculations is the text in grey. 
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Crop water productivity is related to results in section 4.1, dietary water productivity 

and dietary nutritional water productivity to section 4.2 and dietary water require-

ments to section 4.3. 

3.1 Measures of water appropriation in agriculture 

Several measures exist for efficiency and productivity of water use in agriculture. 

The water footprint (WF) approach considers the whole life cycle of a product. Fol-

lowing the European standard, ISO 14046:2016, WF is a measure of water-related 

environmental impacts from a product and can include the whole- or parts of the life 

cycle of the product depending on the set limits. WF does also include water quan-

tity and quality and additionally geographical differences and variations in water 

regimes from a time perspective (Swedish Standard Institute, 2016). Focus in this 

study was on water use in agriculture. Factors as water quality were excluded as 

well as a true environmental perspective, thus missing the main criteria for a WF 

assessment (Swedish Standard Institute, 2016).  

 

Another measure besides WP is Water Use Efficiency (WUE). Both WP and WUE 

have ratios between agricultural output and the water input which can be defined 

differently depending on the objectives with the measurements (Molden et al., 

2007). For example yield divided by precipitation (rainwater use efficiency), irriga-

tion (irrigation water use efficiency), total volume applied water, evapotranspiration 

or as a share between transpired- and applied water (Duivenbooden et al., 2000; 

Stroosnijder, 2009).  

 

In this study, WP was characterized as the ratio between actual economic yield (Ya) 

and actual evapotranspiration (ETa), which is adopted as crop water use in agricul-

ture, though it essentially is the water output in crop production (Renault & Wallen-

der, 2000). Productivity is usually a measure including applied water as precipita-

tion or irrigation (Renault & Wallender, 2000). However, water not evaporated or 

transpired is recycled through runoff or percolation through the soil profile. Thus, 

ETa is used as denominator as this is the water which is depleted from the local 

landscape during the cropping season from a field-perspective, neither recycled to 

other geographical locals in a short-term perspective (Renault & Wallender, 2000) 

nor through the crops as food- or fodder intake after harvest.  
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3.2 Equations to determine Water Productivity 

Initial calculations of evapotranspiration (ET) are often based on the FAO Penman-

Monteith equation (equation [3]). This equation is one of the most common methods 

to determine reference evapotranspiration (ETo). The equation is set to a reference 

crop with fixed height and surroundings with fixed albedo and surface resistance 

(Allen et al., 1998). ETo is determined by the factors net sun radiation (Rn), soil heat 

flux (G), daily temperature (T) and wind speed (u2) at the height of 2 m and the air’s 

vapor pressure deficit (es-ea) (Allen et al., 1998).   

 

FAO Penman-Monteith equation [mm] 𝐸𝑇𝑜 =
0.408∆(𝑅𝑛−𝐺)+𝛾

900

𝑇+273
u2(𝑒𝑠−𝑒𝑎)

∆+𝛾(1+0.34u2)
  [3] 

The FAO Penman-Monteith equation is a development of the original Penman-

Monteith equation, that include the factors mean air density (ρa), the air’s specific 

heat (cp), bulk surface (rs) and aerodynamic (ra) resistances and the slope for the 

curve of saturation vapour pressure (Δ) for a specific air temperature (Allen et al., 

1998). Further, the calculation also include the psychrometric constant (γ) and the 

energy required for changing the water’s state of aggregation (λ) (Allen et al., 1998) 

(equation [4]). 

Penman-Monteith equation [mm] 𝜆𝐸𝑇 =
∆(𝑅𝑛−𝐺)+𝜌𝑎𝑐𝑝

(𝑒𝑠−𝑒𝑎)

𝑟𝑎

∆+𝛾(1+
𝑟𝑠
𝑟𝑎

)
 [4] 

(Allen et al., 1998) 

Bulk surface resistance (rs) and bulk aerodynamic resistance (ra) vary with crop spe-

cies, crop variety and maturity (Allen et al, 1998). This makes the Penman-Monteith 

equation applicable to determine ET for any crop, compared to the FAO-Penman-

Monteith equation where ra and rs are set to the reference crop (Allen et al., 1998). 

The adoption of a reference evapotranspiration (ETo) eliminated the need of local 

calibration of calculations for specific crops and their growth stages (Allen et al., 

1998). 

 

The specific evapotranspiration of a certain crop stage (ETc) (equation [5]) is instead 

estimated by including a crop coefficient (Kc) which depends on crop maturity stage, 

crop height, wind velocity and air humidity (Allen et al., 1998).  

Crop evapotranspiration [mm] 𝐸𝑇𝑐 = 𝐾𝑐 ∗ 𝐸𝑇𝑜 [5] 

(Doorenbos et al., 1977) 
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Initially, evapotranspiration will be dominated by evaporation from the soil surface, 

while as the crop develops, transpiration will dominate (Allen et al., 1998).  

 

 

From these formulas it is stated that ETc is the potential evapotranspiration affected 

by crop characteristics, climatic factors and time factors. The actual evapotranspi-

ration (ETa) in field however is also affected by soil water availability and can in-

clude values of evapotranspiration when water is insufficient to meet the crops 

needs. This compared to calculated values of ETc where soil water content is con-

sidered to be sufficient. 

 

Water productivity (WP) [kg m-3] for specific crops of interest in this study is deter-

mined by the actual economic yield (Ya) [kg m-2] and actual evapotranspiration 

(ETa) [m] (equation [6]). The value of WP thus varies with seasonal fluctuations in 

climate, variations in crop characteristics as well as with soil water availability. 

 

Crop water productivity [kg m-3] 𝑊𝑃 =
𝑌𝑎

𝐸𝑇𝑎
  [6] 

(Molden, 1997; Molden et al., 2007) 

3.3 Calculations to determine Dietary Water Productivity 

The calculations in this study are based on values of field data and some modelled 

data of WP, from reviewed studies previously performed in Sub-Saharan Africa 

(SSA). The reviewed values of WP were included with the criteria of being calcu-

lated as in equation [6]. All reviewed references and values of WP included in the 

calculations below, are presented in Appendix D, Table 22. The limitations and 

search queries for the review are further described in section 3.6 Databases and 

search queries and Selection of references. The reviewed values of WP are from 

different parts of SSA due to limited findings of references with WP from solely 

Ethiopia, Tanzania or Burkina Faso. 

 

Values of WP were clustered in main food categories within diets in ETH, TZ and 

BF. WP for crops within food categories were calculated to quartiles (Q0 to Q5), 

where the median value (Q2) and quartiles Q1 (inefficient WP) and Q3 (efficient 

WP) represented the interval of the reviewed WP for the food categories. The me-

dian was used as guideline value as this value is less sensitive to outliers in a dataset 

compared to average values (Olsson et al., 2005). By including these three quartiles 

(Q1, Q2 and Q3), calculations resulted in a range of water requirements. This 
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indicated the sensitivity of the methodology (this is further described in Section 4). 

Values of WR were used to calculate required water volume for the share of food 

categories in the different diets (equation [7]).  

 

Water requirement per food category [m3]  [7] 

𝑊𝑅𝐹𝑜𝑜𝑑 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 =
𝑀𝑒𝑑𝑖𝑎𝑛 𝑊𝑃𝑓𝑜𝑜𝑑 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

𝐷𝑖𝑒𝑡𝑎𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑟𝑜𝑝 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦
   

Dietary weight per food category was calculated from the median value of energy 

[kcal kg-1] of ingoing crops per food category and divided by energy consumption 

[kcal] per food category and diet (equation [8]). Energy content of ingoing crops 

and animal products were obtained from nutrition data from references in Table 10, 

section 3.6. 

𝐷𝑖𝑒𝑡𝑎𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡𝑓𝑜𝑜𝑑 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 =
𝑀𝑒𝑑𝑖𝑎𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑓𝑜𝑜𝑑 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

 𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑡𝑎𝑘𝑒𝑓𝑜𝑜𝑑 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦
 [8] 

The main measure for this study, Dietary Water Productivity (WPdiet) is a further 

step from calculations of WP in equation [6]. To calculate WPdiet for the country 

specific diets under headline 3.4, values of WRfood category were summarized for each 

diet and used as denominator in equation [9] with the numerator being the summa-

rized energy consumption per food category. 

Dietary water productivity [kcal m-3]   [9] 

𝑊𝑃𝑑𝑖𝑒𝑡 =
∑ 𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑡𝑎𝑘𝑒𝑓𝑜𝑜𝑑 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

∑ 𝑊𝑅𝑓𝑜𝑜𝑑 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦
  

Moreover, WPdiet was put in relation to nutritive content of the crops and animal 

products within the diets, calculating the measure Dietary Nutritional Water Produc-

tivity (NWPdiet). This measure was calculated with the same equations as for WPdiet 

[kcal m-3] (equation [9]) but the numerator was varied with median values of macro- 

and micronutrients for the food categories.  

 

The concept of NWP is adopted from Renault & Wallender (2000) which calculates 

NWP for individual crop species by multiplying nutritive content with WP (equation 

[10]). 

Nutritional water productivity [weight unit m-3]  [10] 

 𝑁𝑊𝑃 =
𝑌𝑎 ∗ 𝑐𝑟𝑜𝑝 𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑐𝑜𝑛𝑡𝑒𝑛𝑡

𝐸𝑇𝑎
 

(Renault & Wallender, 2000) 
 

Weight unit is the weight of ingoing nutrition [g], [mg] or [μg]. Individual NWP 

could not be calculated in this study due to missing data of individual WP values for 
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all ingoing crops or animal products in the diets. Instead, NWP was calculated for 

the food categories which included crop or food product belongs to.  

For a discussion of uncertainties in the calculation method, se section 5.3 in Discus-

sion. 

3.4 Diets in Ethiopia, Tanzania, and Burkina Faso 

In a global context are specific examples of diet compositions important to increase 

food production and food quality per unit water input due to food demands, malnu-

trition, and water scarcity issues. This is especially a concern in Africa where stunt-

ing have shown an increasing trend the past years compared to globally where stunt-

ing is decreasing overall (The World Bank, 2017 b). Furthermore, Africa is the con-

tinent with highest proportion of individuals under the international poverty line of 

$ 1.90 per day (SEK 17.20) ( Economic Commission for Africa, 2017) and with 

least energy supply per capita per day according from numbers from 2013 years 

Food Balance Sheets (FAO). The analysis of van Ittersum et al. (2016) shows there 

is a production gap throughout Sub-Saharan Africa (SSA) with high needs on clos-

ing Yg. This to increase the self-sufficiency without expanding land under agricul-

ture, or to increase food import to compensate for the gap in national food produc-

tion (van Ittersum et al., 2016). 

 

Agricultural production in SSA is mainly rainfed with low mechanization rate 

(Sheahan & Barrett, 2017). However, inputs in other areas as fertilizer and pesti-

cides are used to higher extent throughout SSA than what might usually be brought 

forward (Sheahan & Barret, 2017). In their work did Sheahan & Barret, (2017) for 

example find that the use of inorganic fertilizers tended to decrease with increasing 

farm size. Though there is a variation of inputs between regions at national level 

and absence of differentiation at farm level, as well as practices missing of farmers 

using several inputs together and thus missing the positive synergetic effect (Shea-

han & Barrett, 2017). This requires changes in the cropping and input use to increase 

the cropping productivity over all in SSA.  

 

Locations 

 

Ethiopia (ETH), Tanzania (TZ) and Burkina Faso (BF) were chosen as specified 

countries as they lie in different regions of SSA and are vulnerable due to under-

nourishment. However, these countries also have different water regimes giving dif-

ferent agro-hydrological options for their national security of food and nutrition 

which accounts for both rainfed and irrigated agriculture (Rockström et al., 2009) 
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(Table 1). BF and ETH are predicted to the same water regime but have different 

agricultural conditions due to lying on different longitudes Furthermore, the diet 

composition of different food categories varies between the countries.  

 

 

Precipitation volumes are highest in TZ and lowest in BF. The volume of total re-

newable water resources is highest in ETH and lowest in BF, of which Ethiopia uses 

the highest share and BF the lowest (Table 2). Regard that the numbers are long 

time averages, not representing specific years. Total renewable water resources in-

clude surface water recharged trough run-off, groundwater recharged trough infil-

tration from precipitation, and transboundary water available through inflow via riv-

ers and canals (FAO, AQUASTAT ). 

 

 

Table 1. Undernourishment and predicted agricultural water management options in Ethiopia, Tanzania, and Burkina 

Faso 

Country No. of undernourished people [106]  

(% of total population)1 

Predicted water regime2 

Ethiopia 28.6 (28.8) Rainfed agriculture, scarcity of free water re-

sources 

Tanzania 17.3 (32.3) Available soil water- and free water resources 

Burkina Faso 3.7 (20.2) Rainfed agriculture, scarcity of free water re-

sources 

References:  
1 FAO, IFAD, UNICEF, WFP & WHO (2017). The state of food security and nutrition in the world 2017: building resil-

ience for peace and food security. Rome: FAO. ISBN 978-92-5-109888-2. 
2 Rockström, J., Falkenmark, M., Karlberg, L., Hoff, H., Rost, S. & Gerten, D. (2009). Future water availability for 

global food production: The potential of green water for increasing resilience to global change. Water Resources 

Research vol. 45(7). DOI: 10.1029/2007WR006767 

Table 2. Annual precipitation, total renewable water resources and water use in agriculture in 

Ethiopia, Tanzania, and Burkina Faso  

Country 

Annual 

Precipitation 

 [Gm3 y-1] 

Annual 

Precipitation 

 [mm y-1] 

Total renewable 

 water resources  

[Gm3 y-1] 

Part of total renewa-

ble water resources 

used in agriculture 

[%] 

EthiopiaI 936.4 848 122 7.94 II 

TanzaniaI 1015 1071 96.27 4.8III 

Burkina FasoI 205.1 748 13.5 3.12IV 

I year 2014, II year 2016, III year 2002, IV year 2005 

Adopted from AQUASTAT, FAO Available:  http://www.fao.org/nr/water/aquastat/data/query/in-

dex.html?lang=en 

http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en
http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en
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Site specific diets 

 

The diets were based on product categories in FAOs food balance sheets (FAO 

FBS). Ingoing categories in FBS constitute of cereals, root and tubers, oil crops, 

vegetables, pulses, tree nuts, fruits, animal products (these are divided into further 

categories but these subcategories were clustered as crops are the main focus in this 

thesis), sugar crops, sugar & sweeteners, stimulants, spices and alcoholic beverages 

(Grünberger, 2014). The categories sugar crops, sugar & sweeteners stimulants, 

spices, and alcoholic beverages were not included in the diets due to their non-nu-

tritional contribution. Tree nuts and oil crops and vegetable oils were clustered to 

the category oil crops as done in the Global Dietary Database (GDD)  

 

Income level and rural or urban households vary consumption patterns and the share 

of income put on food consumption decreases with increased income level 

(Kearney, 2010; Berhane et al., 2013) as well as dietary diversity and food security 

increases with higher income (Savy et al., 2008; Goshu et al., 2013; Workicho et 

al., 2016; Wilkinson et al., 2017) thus leading to differences in WR for the diets. 

Three socio-economic levels were included in the calculations: Low-income diet 

(LID), middle-income diet (MID) and high-income diet (HID) (Table 3, Table 4 and 

Table 5). For TZ the MID were further divided in lower middle-income diet (LMD) 

and upper middle-income diet (UMD). The additional diet category in TZ was due 

to different numbers of average food consumption in the country indicating differ-

ences in energy consumption. However, there was an absence of gathered numbers 

for differentiated diet compositions, thus was an assumption made that the compo-

sition might be similar but total energy consumption increases to start with, with an 

income increase (Cochrane & D’Souza, 2015). Diet composition does also vary be-

tween locations within the countries (e.g. Cochrane & D’Souza, 2015). However, 

this was not included as a differentiating factor in this study due to that no such 

numbers were found during the review for this study. 

 

No complete diet composition was found of dietary consumption for different in-

come levels in neither ETH, TZ nor BF during the review. Reviewed studies in-

cluded some of the food categories, but some categories were clustered differently, 

and most diet compositions were for average food consumption in the countries. To 

be able to perform calculations of WPdiet and NWPdiet
 the numbers of diet composi-

tion in reviewed references where used as total dietary values of dietary consump-

tion when they were available for specific diets. For food consumption of categories 

separated differently in reviewed references than the categories in this study, incom-

plete numbers in references were summed to match the content of the food catego-

ries for this study. For example, milk was often separated from meat in reviewed 

http://www.fao.org/faostat/en/#data/FBS
http://www.fao.org/faostat/en/#data/FBS
http://www.globaldietarydatabase.org/dietary-data-by-country.html
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studies, but has been clustered in the category animal products in this work. Where 

numbers were insufficient for this approach, values were estimated from references 

containing information of overall dietary patterns (e.g. Worku et al., 2015) saying 

that with a higher income, a higher share of income is put on animal products than 

on cereals and roots and tubers). Therefore, some values from rural food consump-

tion were interpreted to low-income diets.   

The shares of energy consumption for the food categories do not cover total daily 

consumption given in the tables as references also have included more food catego-

ries which are not considered in this study. Food composition within the food cate-

gories differs between the countries to some extent. The most common food prod-

ucts within the food categories for the countries are presented in Table 6, Table 7 

and Table 8. 

 

Most of the references have divided food consumption after income quintiles, thus 

these are the shares of populations used for the diets for ETH and BF (low-income 

diet, LID, middle-income diet (MID) and high-income diet, HD (see Kazianga & 

Udry, 2006; Berhane et al., 2013) . The share of individuals for the TZ diets are 

considered from the population within the intervals of daily income under the na-

tional poverty line (low-income diet, LID), between national poverty line and lower 

middle-income class (lower middle-income diet, LMD), between lower middle-in-

come class poverty line and upper middle-income class poverty line (upper middle-

income diet, UMD) and the number of people above the upper middle-income class 

poverty line (High-income diet, HID) (see The World Bank, 2017 b). 

 

Diet numbers from the references are insecure whether they address consumption 

or intake, as the terms are used inconsequently in the references. Consumption can 

be synonymous with actual food intake and thereby addressing the food goods 

which are beneficial from a nutritive perspective (Cambridge University Press, 

n.d.). However, consumption can also include the total quantity of food which is 

brought to the household (Cambridge University Press, n.d.). The diet compositions 

might therefore be overestimated from a nutritive perspective, as there might occur 

food waste before the food is served. Due to these insecurities the term consumption 

is used throughout this thesis. Preferably though, numbers of the actual food intake 

are what is important from a nutritive perspective. 
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Table 3. Income-dependent diets in Ethiopia. The diets are estimated for different socio-economic levels based 

on income quintiles and poverty data 

 
Low income diet Middle income diet High income diet 

Percentage of population1 20 60 20 

Total energy consumption 

[kcal]1 

1948 30012 3716 

Food category: % of total food 

consumption 

   

Cereals 653 63.5I 60I 

Roots and tubers 203 13.72 6.21 

Pulses & legumes 8.0II 7.12 5.01 

Oil crops 2.21 4.32 7.41 

Vegetables and fruit 1.5IV 2.12 3.11 

Animal products 0III 2.0III 10IV 

Food categories shares of daily 

consumption [%] 
96.7 92.7 91.7 

References:  
1 Berhane, G., McBride, L., Hirfrfot, K. T. & Tamiru Seneshaw (2013). Patterns in food grain consumption 

and calorie intake. In: Dorosh, P. & Rashid, S. (Eds) Food and agriculture in Ethiopia: Progress and pol-

icy challenges. pp 190–216. Philadelphia: University of Pennsylvania Press. ISBN; 9780812245295 

2  Worku, I. H., Dereje, M., Minten, B. & Hirvonen, K. (2015). Diet transformation in Africa: the case of 

Ethiopia. Agricultural Economics, vol. 48(S1), pp 73–86. DOI: 10.1111/agec.12387;  
3 Ethiopian Central Statistical Agency & World Food Programme (2014). Comprehensive Food Security and 

Vulnerability Analysis (CFSVA) – Ethiopia: ECSA/WFP. Available: https://documents.wfp.org/stel-

lent/groups/public/documents/ena/wfp265490.pdf?_ga=2.233501726.1231214005.1526372317-

523263838.1522766284 [Accessed 2018-05-15] 

 

I Estimated from average numbers of consumed cereals in Hirvonen, K., Taffese, A. S. & Worku, I. H. 

(2015). Seasonality and household diets in Ethiopia. Addis Ababa: EDRI, IFRI. (Working paper 74)  

II Average value of daily dietary consumption of pulses and legumes from Hirvonen, K., Taffese, A. S. & 

Worku, I. H. (2015). Seasonality and household diets in Ethiopia. Addis Ababa: EDRI, IFRI. (Working paper 

74).  

III Calculated from the average rural and urban energy consumption per capita of animal products in Berhane, 

G., Paulos, Z., Tafere, K. & Tamru, S. (2011). Foodgrain Consumption and Calorie Intake Patterns in Ethio-

pia. Addis Ababa: IFPRI, EDRI. (ESSP II Woking Paper 23). 

IV Estimation from an average meat consumption 2.1 times per week in richer households and a low con-

sumption of vegetables and fruits according to reference 3. 

http://ebrary.ifpri.org/cdm/search/collection/p15738coll2/field/isbn/searchterm/9780812245295
https://documents.wfp.org/stellent/groups/public/documents/ena/wfp265490.pdf?_ga=2.233501726.1231214005.1526372317-523263838.1522766284
https://documents.wfp.org/stellent/groups/public/documents/ena/wfp265490.pdf?_ga=2.233501726.1231214005.1526372317-523263838.1522766284
https://documents.wfp.org/stellent/groups/public/documents/ena/wfp265490.pdf?_ga=2.233501726.1231214005.1526372317-523263838.1522766284
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Table 4. Income-dependent diets in Tanzania. The diets are estimated for different socio-economic levels 

based on income quintiles and poverty data 

  
Low- 

income diet 

Lower middle- 

income diet 

Upper middle- 

 income 

High- income 

diet 

Percentage of population1 28.2 50.7 14.2 6.9 

Total energy consumption[kcal] 2 1414 21373 2270 3040 

Food category: % of total food con-

sumption 
    

Cereals 65.2 I 63.7 2 57.8 I 51.0 4 

Roots and tubers 18.0 4 13.4 4 11.4 4 2.0 II 

Pulses and legumes 7.3 III 6.0 IV 6.0IV 5.5 4 

Oil crops 1.2 III 4.3 IV 5.1 IV 8.5 III 

Vegetables 4.5 4 5.9 4 5.9 4 4.9 2 

Fruits 0.6 I 0.9 3 0.9 3 1.2 II 

Animal products 0.0V 5.1 VI 8.3 VI 20.0 VII 

Food categories shares of daily  

consumption [%] 
96.6 99.3 95.4 93.1 

References:  
1 The World bank (2017). Country Poverty Brief, Sub-Saharan Africa - Tanzania. HBS/SSAPOV/GMD (Fact 

sheet). Available:  http://databank.worldbank.org/data/download/poverty/33EF03BB-9722-4AE2-

ABC7-AA2972D68AFE/Global_POV_SP_CPB_TZA.pdf [2018-04-12].  
2Abdulai, A. & Aubert, D. (2004). Nonparametric and parametric analysis of calorie consumption in Tanza-

nia. Food Policy. Vol. 29. pp. 113-129. DOI:  10.1016/j.foodpol.2004.02.002 
3Cochrane, N. & D'Souza, A. (2015). Measuring Access to Food in Tanzania: A Food Basket Approach. Eco-

nomic Information Bulletin. No. 135. 27pp.  
4 Pauw, K. & Thurlow, J. (2011). Agricultural growth, poverty and nutrition in Tanzania. Food Policy. vol. 

36. pp. 795-804. DOI: 10.1016/j.foodpol.2011.09.002 

 

I Estimated from references 2 and 4 by subtracting calculated intake of roots & tubers for poor and non-poor in 

ref.4 from the total intake of cereals, roots and pulses in ref. 2. 
II Calculated from reference 3 assuming a higher share of high-income population in Dar es Salaam, thus 

summed consumption values from this city. 
III Calculated from numbers in reference 3 and 4 by dividing numbers of consumed pulses & oilseeds in ref. 4 

with total intake of the respective diet, then subtract from intake of beans from diets in the different regions in 

ref. 3. 

 IV Calculated from reference 4 from average intake of pulses and oilseeds compared to average total energy 

intake, then subtracted from average intake of beans. 
V Estimated from reference 3 and Ethiopian Central Statistical Agency & World Food Programme (2013). 

Comprehensive Food Security and Vulnerability Analysis Tanzania 2012. Rome: WFP, WHO, mentioning 

low intake calories from animal products 
VI Estimate from reference 2 and Ethiopian Central Statistical Agency & World Food Programme (2013), 

from average intake of animal products in different regions attributed to higher or lower income levels.  
VII Calculated from reference 2 and Ethiopian Central Statistical Agency & World Food Programme (2013). 

with a high intake of animal products compared to total estimated energy intake for HID and sum of intake of 

animal products, milk, and milk products in top 10% income takers in reference 2. 
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Table 5. Income-dependent diets in Burkina Faso. The diets are estimated for different socio-economic levels 

based on income quintiles and poverty data 

  

Low income diet Middle-income diet High-income diet 

Percentage of population1 20 60 20 

Total energy consumption [kcal]1 1659 1 2017 1 2647 2 

Food category: % of total food  

consumption 
   

Cereals 80.0 I 75.6 3 57.6 II 

Roots and tubers 0.2 III 0.7 3 0.7 3 

Pulses and legumes 2.0 I 3.0 3 9.8 IV 

Oilseeds 10.0 I 11.0 3 2.1 IV 

Vegetables 6.0 I 0.6 3 2.5 IV 

Fruit 0.03 0.3 3 3.6 IV 

Animal products 0.3 I 4.7 3 7.0 IV 

Food categories shares of daily con-

sumption [%] 
98.5 95.9 83.3 

References:  
1 Kazianga, H. & Udry, C. (2006). Consumption smoothing? Livestock, insurance and drought in rural 

Burkina Faso. Journal of Development Economics. Vol. 79(2). pp. 413-446. DOI:  
10.1016/j.jdeveco.2006.01.011 

2 FAO (2014). Burkina Faso - Socio-economic context and role of agriculture. Rome: FAO. (Country Fact 

Sheet on Food and Agriculture Policy Trends). Available: 

http://www.fao.org/docrep/field/009/i3760e/i3760e.pdf [2018-05-02] 

3 Permanent Interstate Committee for Drought Control in the Sahel (2004). Normes de consommation des 

principaux produits alimentaires dans les pays du CILLS. Burkina Faso: CILLS. Available: 

http://www.hubrural.org/IMG/pdf/cilss_rapport_normes_conso_alimentaires.pdf [Accessed 2018-05-22] 

. 

I Average numbers taken from diets in Central West Africa from reference 3 due to no other accurate number 

of dietary consumption for low-income diet was found. 

II. Calculated from Reference 3 by estimating the same consumption of cereals in kcal for middle-income diet, 

thus resulting in a lower share of the total energy consumption for HID. 

III Calculated from Savadogo, K. & Kazianga, H. (1999). Substitution between domestic and imported food in 

urban consumption in Burkina Faso: assessing the impact of devaluation. Food Policy. Vol. 24(5). pp. 535-

551. and median values for energy consumption for the consumed food categories by multiplying average 

consumption weight for respective food category and multiplied by median energy content [kcal1 kg-1] and 

divided with the total daily energy consumption for the diet 

IV Calculated from Global Dietary Database (n.d.) Dietary Intake of Foods and Nutrients by Country. Availa-

ble: http://www.globaldietarydatabase.org/dietary-data-by-country.html [2018-04-29], by multiplying average 

consumed weight for respective food category and multiplied by median energy content [kcal kg-1] and di-

vided with the total daily energy consumption for the diet 

http://www.hubrural.org/IMG/pdf/cilss_rapport_normes_conso_alimentaires.pdf
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Table 6 Food crops and animal products commonly consumed in Ethiopia within main food categories 

Food category Cereals Root and tubers Pulses Oil crops Vegetables Fruits Animal products 

Product Maize Enset Chickpeas Linseed Cabbage Apple Bovine 

 Millet Potato Haricot verts Niger seed Carrots Avocado Mutton & sheep 

 Rice Sweet potato Horse bean Oil palm Leek Banana Pig 

 Sorghum  Lentils Safflower Onion Grapes Poultry 

 Teff  Peas Sesame seed Peppers Mango Milk 

 Wheat    Shallot Orange  

     Squash/pumpkin Papaya  

     Spinach Pear  

     Tomato Pineapple  

      Plantain  

Data of food products are collected from:  

• FAO Food Balance Sheet. http://www.fao.org/faostat/en/#data/FBS Available: [2018-02-10],  

• FAO (n.d.) Ethiopia at a glance. Available: http://www.fao.org/ethiopia/fao-in-ethiopia/ethiopia-at-a-glance/en/ [2018-02-06],  

• Taffese, A.S., Dorosh, P. & Gemessa, S.A. (2012). Crop production in Ethiopia, Regional patterns and trends. In: Dorosh, P. & Rashid, S. (Eds) Food and agricul-

ture in Ethiopia: Progress and policy challenges. pp 53–83. Philadelphia: University of Pennsylvania Press. ISBN; 9780812245295 

• Ethiopian Pulses, oilseed & spices processors - Exporters Association (n.d.) Pulses. Available: http://www.epospeaeth.org/index.php/products/pulses [2018-02-13].  

• Mariame, F. & Gelmesa, D. (2006). Review of the status of vegetable crop production and marketing in Ethiopia. Uganda Journal of Agricultural Sciences. vol. 

12(2). pp. 26-30. ISSN: 1026-0919  

• Demissie, T. & Zerfu, D. (2009). Availability and consumption of fruits and vegetables in nine regions of Ethiopia with special emphasis to vitamin A deficiency. 

Ethiopian Journal of Health Development. vol. 23(3). pp. 216-222. DOI: http://dx.doi.org/10.4314/ejhd.v23i3.53242 

http://ebrary.ifpri.org/cdm/search/collection/p15738coll2/field/isbn/searchterm/9780812245295
http://dx.doi.org/10.4314/ejhd.v23i3.53242
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Table 7. Food products commonly consumed in Tanzania within main food categories 

Food category Cereals Root and tubers Pulses Oil crops Vegetables Fruits Animal products 

Product Maize Cassava Chickpeas Almond African eggplant Banana Bovine 

 Millet Potato Cowpeas 
Bambara ground-

nut 
Amaranth (leaves & grain) Guava Fish 

 Rice Sweet potato Haricot verts Cashew Avocado Jackfruit Egg 

 Sorghum Yams Kidney beans Coconut Cabbage Lemon Mutton & sheep 

 Wheat  Lentils Cotton seed Carrots Mango Pig 

   Mung bean Groundnuts Okra Orange Poultry 

   Peas Oil palm Pumpkin/pumpkin leaves Pawpaw Milk 

   Pigeon pea Soybean Peppers Pear  

    Sunflower seed Mushroom Pineapple  

     Jute mallow Plantain  

     Spinach Watermelon  

     Squash   

     Swiss chard   

     Sweet potato leaves   

     Tomato   

Data of products are collected from:  

• FAO Food Balance Sheet. Available: http://www.fao.org/faostat/en/#data/FBS.  

• Keding, G.B., Msuya, J.M., Maass, B.L. & Krawinkle, M.B. (2011). Dietary patterns and nutritional health of women: The nutrition transition in rural Tanzania. Food and 

Nutrition Bulletin. vol. 32(3). pp. 218-226. DOI: http://dx.doi.org/10.18697/ajfand.76.16045 

• Kinabo, J., Mamiro, P., Dawkins, N., Bundala, N., Mwanri, A., Majili, Z., Jumbe, T., Kulwa, K., Mamiro, D., Amuri, N., Ngowi, M. & Msuya, J. (2016). Food Intake and 

Dietary Diversity of Farming Households in Morogoro Region, Tanzania. African journal of food, agriculture, nutrition and development. vol. 16(4). pp. 11295 - 11309. 

ISSN: 1684-5358 

• Lukmanji, Z. & Hertzmark, E. (2008). Tanzania Food Composition Tables. 1st ed. Dar es Salaam: MUHAS, TFNC & HSPH. ISBN: 978 - 9987- 9071-1-3  

http://www.fao.org/faostat/en/#data/FBS
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Table 8. Food products commonly consumed in Burkina Faso within main food categories. 

Food category Cereals Root and tubers Pulses Oil crops Vegetables Fruits Animal products 

Product Maize Potato Beans Bambara groundnuts Amaranth Bananas Bovine 
 Millet Sweet potato Cowpeas  Baobab fruit Mango Eggs 
 Rice Yams  Peanuts Cabbage Papaya Fish 

 Sorghum    Chillies  Goat 

 Wheat    Jute leaves  Milk 

     Okra  Poultry 

     Onion  Sheep 

     Tomato   

Data of food products are collected from:  

• FAO, Food Balance Sheet. Available: http://www.fao.org/faostat/en/#data/FBS.  

• Becquey, E. & Marton-Prevel, Y. (2010). Micronutrient Adequacy of Women’s Diet in Urban Burkina Faso Is Low. The Journal of Nutrition. Vol. 140(11). pp. 2079-2085. 

DOI: 10.3945/jn.110.123356 

• Savy, M., Martin-Préveö, Y., Traissac, P. & Delpeuch, F. (2007). Measuring dietary diversity in rural Burkina Faso: comparison of a 1-day and a 3-day dietary call. Public 

Health Nutrition. Vol. 10(1). pp. 71-78. 

• Savy, M., Marint-Prével, Y., Traissac, P., Eymard-Duvernay, S. & Delpeuch, F. (2006). Dietary Diversity Scores and Nutritional Status of Women Change during the Sea-

sonal Food Shortage in Rural Burkina Faso. The Journal of Nutrition. Vol. 136(10). pp.2625-2632. DOI: 10.1093/jn/136.10.2625 

• Lykke, A. M., Mertz, O.& Ganaba, S. (2002). Food consumption in rural Burkina Faso. Ecology of Food and Nutrition. Vol. 41.pp. 119-153. DOI: 10.1080/03670240214492 

• SOS Children (n.d.) Food and Daily Life. Available: http://www.our-africa.org/burkina-faso/food-daily-life [2018-04-29] 

http://www.fao.org/faostat/en/#data/FBS
http://www.our-africa.org/burkina-faso/food-daily-life
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3.5 Nutritional composition of main food categories  

The calculations of WPdiet and NWPdiet presented under Section 3.3 were per-

formed with the median numbers of nutritive contents for each food category: cere-

als 3453 kcal kg-1, roots and tubers 1155 kcal kg-1, pulses and legumes 3530 kcal 

kg-1, oil crops 5850 kcal kg-1, vegetables 550 kcal kg-1, fruits 1500 kcal kg-1 and 

animal products 1390 kcal kg-1 (Figure 3). Median values were used as they are 

more stable against extreme values in a dataset (Olsson et al., 2005).The values for 

the quartiles in Figure 3 are presented in Table 19 and the ingoing crops in Table 21 

in Appendix C.  
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Figure 3. Distribution of energy content per kg crop of main food crops and animal products con-

sumed in Ethiopia, Tanzania, and Burkina Faso, divided in main food categories.  

References:  

• Swedish National Food Administration – Food database  

• FAO/INFOODS Food Composition Database: 

• Global food composition database for pulses 

• West African food composition table 

• United States Department of Agriculture – USDA Food Composition Databases 

• Montagnac, J., Davis, C.R. & Tanumihardjo, S.A. (2009). Nutritional Value of Cassava for 

Use as a Staple Food and Recent Advances for Improvement. Comprehensive Reviews in Food 

Science and Food Safety. Vol. 8(3). pp. 181-194. DOI: 10.1111/j.1541-4337.2009.00077. 

http://www7.slv.se/SokNaringsinnehall/Home/ToggleLanguage
http://www.fao.org/infoods/infoods/tables-and-databases/faoinfoods-databases/en/
http://www.fao.org/fileadmin/templates/food_composition/documents/uPulses1.0.xlsx
http://www.fao.org/fileadmin/templates/food_composition/documents/upload/WestAfricanFCT_Userdatabase_2012_xls.xls
https://ndb.nal.usda.gov/ndb/search/list
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Included products in the food categories were limited to crops and food products 

most commonly consumed and eaten according to information obtained from refer-

ences of food intake and food consumption in ETH, TZ and BF (Table 3Table 6, 

Table 7, and Table 8 in section 3.4). The category vegetables had the highest number 

of included crops (7) and root and tubers the lowest number (4) (Table 9).  

In calculations of NWPdiet the macronutrients carbohydrates, protein, fat, and fibre 

were included, as well as the micronutrient calcium, magnesium, iron, zinc, vitamin 

C, vitamin A and folate. Especially deficiencies of vitamin A, zinc and iron are of 

concern in SSA ((WHO et al., 2017 b). The additional nutrients are adopted from 

Charrodière (2017) in connection to food and nutrition in SSA. Further, they are 

also addressed in Renault & Wallender, (2000); DeFries et al., (2015); and Herrero 

et al., (2017), which studied different measures of nutrition and productivity. This 

study thus becomes a complement to these other studies, even though in the end all 

essential micronutrients should be of interest to put in relation to productivity. The 

values for individual nutrients used in calculation of NWPdiet are summarized in Ta-

ble 18 in Appendix C. 

 

  

Table 9. Number of crops and animal products included for calculating median values of nutrition content 

for food categories in diets in Ethiopia, Tanzania, and Burkina Faso 

Cereals Roots and 

tubers 

Pulses and 

legumes 

Oil crops Vegetables Fruits Animal 

products 

8 4 7 7 16 16 8 
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3.6 Data 

Data were collected from the databases and main references in Table 10. This table 

summarises the variables of which data have been used in the calculations of WPdiet, 

and which references that were used to find required information. 

 

 

Databases and search queries 

Information was searched for in the databases Food Science and Technology Ab-

stracts (FSTA), Google, Google Scholar, Primo, Scopus and Web of Science. Table 

11 contains main search queries used for different aimed information search. Infor-

mation of diets and consumed food products where required to gain knowledge of 

diet composition for different income levels within ETH, TZ and BF. WP as cate-

gory was necessary for gaining values of WP for specific crops within the countries. 

Information of water availability was required to draw conclusions from calculated 

data of WPdiet and NWPdiet. The words in the queries were used in different combi-

nations and encapsulations for maximizing finding of relevant references (Table 

11). 

  

Table 10. Databases and references used for collecting data for calculations of Dietary Water Productivity in Ethiopia, Tan-

zania, and Burkina Faso.  

Variables Reference 

Yield, consumption, production, export and  

import  

FAO FAOSTAT (FBS)  

Water resources and access FAO AQUASTAT 

Nutritive content and -composition of crops and 

food products 

Swedish National Food Administration – Food database  

FAO/INFOODS Food Composition Database: 

• Global food composition database for pulses 

• West African food composition table 

United States Department of Agriculture – USDA Food Composition 

Databases 

Montagnac, J., Davis, C.R. & Tanumihardjo, S.A. (2009). Nutritional 

Value of Cassava for Use as a Staple Food and Recent Advances for 

Improvement. Comprehensive Reviews in Food Science and Food 

Safety. Vol. 8(3). pp. 181-194. DOI: 10.1111/j.1541-4337.2009.00077.x 

Population and poverty data The World Bank - Open Data. 

http://www.fao.org/faostat/en/#data/FBS
http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en
http://www7.slv.se/SokNaringsinnehall/Home/ToggleLanguage
http://www.fao.org/infoods/infoods/tables-and-databases/faoinfoods-databases/en/
http://www.fao.org/fileadmin/templates/food_composition/documents/uPulses1.0.xlsx
http://www.fao.org/fileadmin/templates/food_composition/documents/upload/WestAfricanFCT_Userdatabase_2012_xls.xls
https://ndb.nal.usda.gov/ndb/search/list
https://ndb.nal.usda.gov/ndb/search/list
https://data.worldbank.org/
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Table 11. Search queries used in databases for information of diet composition, water productivity 

and water availability in Ethiopia, Tanzania, and Burkina Faso 

Search category Words included in search queries 

Diets and consumed food 

products 

Dietary diversity, food intake, food consumption, food composi-

tion, eating habits, diet, Dietary Diversity Scores, food balance 

sheets, consumption  

 

in combination with the specified food categories, Food composi-

tion tables, Calorie intake, calorie consumption, income  

and 

 

Ethiopia, Tanzania, Burkina Faso 

 

Water productivity Water productivity, water use efficiency, Crop water requirement,  

 

In combination with: 

 

SSA, Sub Saharan Africa, Sub-Saharan Africa, West Africa, East 

Africa, Africa, Ethiopia, Tanzania, Burkina Faso 

Water availability Water access, water availability, green water, agriculture, crop pro-

duction, farming 

 

In combination with Ethiopia OR Burkina Faso OR Tanzania 

The ending *, encapsulations () “…”, and the conjunctions AND and OR, have been used in differ-

ent combinations with the search queries to widen the number of potential references. 

 

 

Selection of references 
 

Data was limited to rainfed agriculture in SSA with ET as denominator for water 

use and not older than from year 2000. References included in the calculations of 

WPdiet and NWPdiet where selected with the criteria of being calculated as Ya ETa 
-1 

(see other variations under Section 3.1 and equation [6]). In the references this equa-

tion was ascribed both WP and WUE, still calculating the same values and thus 

being comparable.  

 

The review of studies of WP in SSA gave less results than expected. Using the 

search query in Table 11 ((“Water productivity” OR “Water use efficiency”) AND 

Ethiopia; as topics, only gave 173 results in Web of Science. Using “Tanzania” as 

search topic gave 60 search results and Burkina Faso gave 41 results.  
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To put together values for the average WP, a total of 650 reports in Web of Science 

were considered with the search query (“Water productivity” OR “Water use effi-

ciency”) AND (Africa OR SSA OR sub-Saharan Africa OR "sub Saharan Africa" 

OR "west Africa" OR "east Africa").  

 

The query was refined to the years 2000-2018 and set to sort the search results by 

“relevance”. This resulted in 1,712 reports. By report number 600, the results be-

came irrelevant for the scope of this study, thus the remaining reports were rejected. 

Ingoing crops from the diets were used as additional initial search criteria but re-

sulted in too few search results. Therefore, the wider query only including WP and 

WUE were used, not selecting for ETH, TZ or BF. 
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Water productivity (WP) shows large variation in agricultural production in SSA. 

Though, few references of WP are available in the area done in rainfed agriculture 

with evapotranspiration as denominator. Calculations of dietary water requirements 

(WR) resulted in an overall trend of highest WR for producing high-income diets 

(HID) and lowest for LID. Dietary water productivity (WPdiet) and Dietary nutri-

tional water productivity (NWPdiet) were overall highest for low-income diets (LID) 

and lowest for HID with exception from Burkina Faso (BF), where values of 

NWPdiet were higher for vitamin C and vitamin A for HID than middle income-diet 

(MID). Of total annual WR for the total share of population per diet, did Ethiopia 

(ETH) have the highest requirements for HID calculated with inefficient WP and 

for MID calculated with efficient WP. Tanzania (TZ) had highest requirement for 

population with lower middle-income diet (LMD) and BF for MID. All three coun-

tries had lowest requirements for LID population. Of the total share of available 

national water resources did Ethiopia (ETH) require the highest share of precipita-

tion. BF required the highest share of total renewable water resources. TZ required 

the least share for both water resources. Precipitation water seem to be able to sup-

port the annual dietary WR. Only using IRR-water resources, the water resources 

would only support dietary requirements when calculated with efficient WP for 

ETH, TZ and BF. However, there are several factors in the food production which 

necessitate additional water input in than the total WR calculated for the diets. 

4.1 Synthesis of Water Productivity data from empirical 

studies in SSA 

There is a large variation in WP within food categories affected by crops, cropping 

system and location. Distribution of values for WP identified in the review (section 

4.1) are varied, with a range for cereals between 0.3–2.3 kg m-3 , roots and tubers 

2.2-3.7 kg m-3, pulses and legumes 0.2-0.5 kg m-3, oil crops 0.4-0.5 kg m-3,  

4 Results 
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vegetables 0.9-1.8 kg m-3, fruits 0.9-1.6 kg m-3 and animal products 0.01-0.2 kg m-3, 

thus oil crops having the least, and cereals the largest variation in WP (Figure 4. 

Distribution of Water Productivity (= Ya ETa
-1) from rainfed production within food 

categories in diets in Ethiopia, Tanzania, and Burkina Faso. ). Though, findings of 

studies of WP in SSA from rainfed agricultural systems calculated as the ratio be-

tween actual yield (Ya) and actual evapotranspiration (ETa) were few (See Table 12 

in next paragraph) and not possible to find for all food categories in neither ETH 

(see Appendix A, Figure 14 for WP values specific from ETH) nor TZ or BF. The 

reviewed studies in Figure 4. Distribution of Water Productivity (= Ya ETa
-1) from 

rainfed production within food categories in diets in Ethiopia, Tanzania, and 

Burkina Faso.  are from West Africa (Burkina Faso, Togo, Niger and Nigeria, Volta 

delta, Niger delta, around the Niger River basin), East Africa (Ethiopia, Kenya, Tan-

zania, Uganda, and the Nile Basin) and Southern Africa (Botswana, Malawi, Zim-

babwe, and South Africa) thus representing different parts of SSA except central 

Africa.  

 

Most references where found for the category cereals (25) and the least amount for 

fruits (one (1) reference from SSA). For the category fruits, two global values of 

rainfed WP where included from Siebert & Döll (2010). In total 47 references for 
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Figure 4. Distribution of Water Productivity (= Ya ETa
-1) from rainfed production 

within food categories in diets in Ethiopia, Tanzania, and Burkina Faso.  



43 
 

WP calculated as Ya ETa
-1 where found and included in the food categories in Figure 

4 (Appendix D, Table 22). The total number of values for WP within the categories 

varied with most included for cereals (172) and least numbers or fruits (4) (Table 

12).  

 
Table 12. Number of references and values of Water Productivity (WP) included in the review of WP in 

Sub-Saharan Africa. 

 
Cereals Roots and 

tubers 

Pulses and 

legumes 

Oil crops Vegetables  Fruits Animal 

products 

Number of references 

within food categories 25 4 13 4 6 2 5 

Number of values of WP 

within food categories 172 23 33 8 8 4 80 

 

Calculations of WPdiet and for WR were done with the lower quartiles (inefficient 

WP), median and upper quartiles (efficient WP) from Figure 4. Distribution of Wa-

ter Productivity (= Ya ETa
-1) from rainfed production within food categories in diets 

in Ethiopia, Tanzania, and Burkina Faso.  The variation in WP within food catego-

ries indicate the importance of having representative values of WP in calculations 

of WPdiet in general. Values of WP were also relatively high, especially for water 

consuming food categories compared to other measures from SSA (see section 5.2 

for further elaboration).  

4.2 Estimates of water requirements for diets per income 

level in Ethiopia, Tanzania, and Burkina Faso 

The WPdiet and NWPdiet for the socio-economic diets are changing due to varying 

total energy content and differences in composition between the food categories 

over all for ETH, TZ and BF. HID had an overall higher consumption of animal 

products and oil crops with lower WP-values, resulting in a larger WR for the total 

diet. The LID had overall high values for WPdiet and NWPdiet due to a lower con-

sumption of total energy, and a higher share of cereals, pulses and legumes and 

vegetables. The share of these products and the total amount [kg] of each food cat-

egory affect the overall WR for the diets. The food categories have different nutri-

tional composition, affecting the total consumption for the diets and amount of nu-

trition obtained per unit of water.  

 
Ethiopia 

 

Total required dietary water volume per capita was calculated to be the highest for 

HID (2.1-29.5 m3 cap-1 d-1) and lowest for the LID (0.4-1.7 m3 cap-1 d-1) despite the 
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value of WP used per food category (inefficient, median or efficient WP, see section 

4.1) (Figure 5. Water requirement (WR) for producing three diets for the socio-eco-

nomic levels low-income, middle-income, and high-income population in Ethiopia. 

The lower WR is calculated with efficient WP-values and the higher water output is 

calculated with inefficient WP-values for ingoing food groups (cereals, roots and 

tubers, pulses and legumes, oil crops, vegetables, fruits, and animal products) in the 

diets. The point in the middle is calculated with a median value of WP.). Differences 

in WR where highest between diets calculated with the least efficient WP. This re-

fers to the higher share of animal products (10 % of the diet’s total energy content) 

in the HID which had the most inefficient WP range (0.01-0.2 kg m-3) of all ingoing 

food categories (Figure 4, section 4.1). The second largest contributor to the WR 

were the category cereals, contributing to the highest share of energy consumption 

for the three diets (Table 3, section 3.4). The high difference within HID shows the 

large uncertainty in WP-values for the food groups and the requirement to have ac-

curate input data in the calculations. The differences between food groups are due 
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Figure 5. Water requirement (WR) for producing three diets for the socio-economic levels low-

income, middle-income, and high-income population in Ethiopia. The lower WR is calculated 

with efficient WP-values and the higher water output is calculated with inefficient WP-values for 

ingoing food groups (cereals, roots and tubers, pulses and legumes, oil crops, vegetables, fruits, 

and animal products) in the diets. The point in the middle is calculated with a median value of 

WP. 

Efficient WP  Median WP  Inefficient WP 
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to the differences in total energy consumption and shares of energy from different 

food categories (Table 3, section 3.4) These numbers are further compared to other 

studies in section 5.2. 

 

For WPdiet the LID showed higher values for energy (1126-5027 kcal m-3) compared 

to MID (410-3532 kcal m-3) and HID (115-1617 kcal m-3) (Figure 6). WPdiet was 

higher than the total daily dietary energy consumption for LID when calculated with 

median WP and higher than total dietary energy consumption for LID and MID 

when calculated with efficient values of WP. Compared to recommended daily en-

ergy intake (1550-4500 kcal cap-1 d-1) (grey area in Figure 6) calculations with effi-

cient WP resulted in values of WPdiet within the range of recommended daily energy 

intake according to ( FAO et al, 2001) (grey area in Figure 6) for all three diets. All 

diets calculated with inefficient WP required more than 1 m3 for producing energy 

according to the recommended energy intake range, and only the LID reached above 

the lower value of recommended daily energy intake when calculated with the me-

dian WP 
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LID showed higher productivity values for all included nutrients except from fat in 

NWPdiet macronutrients: carbohydrates (205.8-918.5 g m-3), protein (36.2-161.6 g 

m-3), fibre (27.5-122.7 g m-3), fat (9.5-42.5 g m-3) (Figure 7) and the micronutrients 

(Table B17, Appendix B. See calculations in section 3.3). NWPdiet for fat was equal 

for LID and MID calculated with efficient WP, but lower for MID calculated with 

inefficient WP. The more efficient NWPdiet for the LID is explained by an overall 

lower consumption of all food categories with exception from roots and tubers, 

where the HID had a lower consumption (0.3 kg cap-1 d-1 for the LID compared to 

0.2 kg cap-1 d-1 for HID). 
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Figure 6. Dietary Water Productivity (WPdiet) for socio-economic diets in Ethiopia.  Values repre-

sents lower-, median- and upper values of WPdiet calculated with different efficient values of Water 

Productivity (WP) for ingoing food categories in the three diets. The lowest value for each diet is 

calculated with inefficient WP per food category. The dashed lines show total energy intake of the 

diets. Shaded area is the range of recommended daily energy intake [kcal cap -1d-1] for adults. The 

continuous line indicates the average recommended dietary energy intake for adults (2708 kcal 

cap-1 d-1), calculated from Table 5.4 – 5.9 in FAO, WHO, UNU (2001). Human energy require-

ments. Rome: FAO. (Food and nutrition technical report series 1). ISSN 1813-3932 
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Of total nutritional consumption, HID showed the highest consumption for all nu-

trients except from vitamin C. The highest consumption of vitamin C was seen in 

the MID (95 mg day-1) followed by LID (82 mg day-1) compared to the HID (73 mg1 

day-1). This is explained by a higher share of roots and tubers included in the LID 

(20 %, 0,3 kg d-1) and MID (13.7 %, 0.4 kg d-1) than in the HID (6,2 %, 0.2 kg d-1). 

Roots and tubers is the food category which contains a higher share of vitamin C 

compared to the other food categories except from fruits (complete median values 

of nutritive content for the main food categories are presented in Table 18, Appendix 
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Figure 7. Dietary Nutritional Water Productivity (NWPdiet) for diets attributed to low-income-, middle-income and high-income population in 

Ethiopia. The productivity is presented for the macronutrients carbohydrates, proteins, fibre, and fat with the low-income diet having the 

highest values of NWPdiet for all the nutrients and the high-income diet having the lowest NWPdiet -values. The dashed lines indicate the sum 

of respective diet’s dietary consumption of respective macro nutrient as the sum of consumption from the food groups cereals, roots and tu-

bers, oil crops, vegetables, fruits, and animal products. The lower dashed line is the consumption of the low-income diet, the middle line 

shows consumption of the middle-income diet and the upper line for high-income diet. The continuous lines are the average recommended 

dietary energy intake for adults for respective macronutrient: carbohydrates: 372 g cap-1 d-1 (FAO, WHO., 1998), protein: 50g cap-1 d-1 

(WHO, FAO, UNU, 2007), fats: 83 cap-1 d-1 (FAO, WHO, 2009). These values are calculated from the average recommended intake of en-

ergy and the recommended energy percent of respective nutrient.  

Note that the axis for carbohydrates has higher values compared to the axis for protein, fibre, and fat.  
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C). However, due to the low consumption of fruits in the diets, this food category 

does not have a high contribution to the overall consumption of vitamin C. 

 

 

Tanzania 

 

WR [m3 cap-1 d-1] was calculated to be highest for the HID (3.0-45.9 m3 cap-1 d-1) 

with decreasing WR with lower income (UMD 1.2-15.5 m3 cap-1 d-1, LMD 0.9-9.8 

m3 cap-1 d-1 and LID 0.3-1.3 m3 cap-1 d-1) Figure 8). This is due to the higher share 

of animal products (20 % HID, 8.3 % UMD, 5.1. % LMD and 0 %f for LID) for the 

diets attributed to higher income levels (see Table 4 and Table 5 under Section 3.4). 

The high difference within HID shows the large uncertainty in WP-values for the 

food groups differences between diets are due to the differences in total energy con-

sumption and shares of energy from different food categories (Table 4, section 3.4). 

These numbers are further compared to other studies in section 5.2. 

 

Values of WPdiet were highest for the LID (1064-4467 kcal m-3) and decreased with 

diet and increased economic level for calories, being lowest for the HID (62-950 
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Figure 8. Water requirement for producing four diets for the socio-economic levels low-in-

come, lower middle-income, upper middle-income and high-income population in Tanzania. 

The intervals show water output calculated with a range of values for Water Productivity 

(WP) (low-income diet 0.3-1.3 m3 cap-1 d-1; lower middle-income diet 0.9-9.8 m3 cap-1 d-1; 

upper middle-income diet 1.2 -15.5 m3 cap-1 d-1 and high-income diet 3.0-45.9 m3 cap-1 d-1) 

The lower water output is calculated with efficient WP-values and the higher water output is 

calculated with inefficient WP-values for ingoing food groups  

Efficient WP  Median WP  Inefficient WP 
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kcal m-3) (Figure 9). Total daily energy consumption was calculated to only be met 

with less than one square meter (1 m3) for LID and LMD diet calculated with high 

WP and only met with less than 1 m3 for the LID when calculated with the median 

WP. LID, LMD, and UMD values of WPdiet fulfilled the recommended daily energy 

intake (1550-4500 kcal cap-1d-1) (grey area in Figure 9) with less than 1 m3 calcu-

lated with efficient WP. Only LID fulfilled the lower range of recommended dietary 

daily intake with less than one square meter calculated with the median value of 

WP. However, one notation is that average daily energy consumption is not suffi-

cient to be within the range of recommended daily energy intake. 
 

 

NWPdiet were highest for the LID for all macronutrients and decreased with in-

creased economic levelled diet with the same tendency for values of micronutri-

ents (Figure 10 and Table B17 in Appendix B).  
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Figure 9. Dietary Water Productivity (WPdiet) for socio-economic diets in Tanzania. Marked values for 

each diet represent lower-, median- and upper values of WPdiet calculated with different values of Wa-

ter Productivity (WP) for ingoing food groups. The lowest value for each diet is calculated with the 

lower value for WP per food group and vice versa. The dashed lines show total energy intake of the di-

ets including the food groups cereals, roots and tubers, oil crops, vegetables, fruits, and animal prod-

ucts. The shaded area represents the range of recommended daily energy intake (2708 kcal cap-1 d-1) 

for adults calculated from Table 5.4 – 5.9 in FAO, WHO, UNU (2001). Human energy requirements. 

Rome: FAO. (Food and nutrition technical report series 1). ISSN 1813-3932 
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Of total nutritive consumption had LMD a marginally higher consumption of vita-

min C (92 mg cap-1 d-1) compared to UMD (89 mg cap-1 d-1), LID (67 mg cap-1 d-1) 

with the least consumption for the HID (60 mg cap-1 d-1). These values depend on 

the consumption of roots and tubers, vegetables and fruits in the diets which have 

the highest C-vitamin content of the food categories. (Table B17 Appendix C). 

 

There was also a difference in total carbohydrate consumption with the being mar-

ginal difference for LMD (346 g cap-1 d-1), HID (341 g cap-1d-1) and UMD (332 g 

cap-1d-1) with the lowest value for LID (247 g cap-1 d) (and Table B17, Appendix 

C) 

 

Burkina Faso 
 

Figure 10. Dietary Nutritional Water Productivity (NWPdiet) for diets attributed to low-income-, lower middle-income, upper middle-income and 

high-income population in Tanzania. The productivity is presented for the macronutrients carbohydrates, proteins, fibre, and fat with the low-

income diet having the highest values of NWPdiet for all the nutrients and high-income diet having the lowest NWPdiet -values. The dashed lines 

indicate the sum of respective diet’s dietary consumption of respective macro nutrient and the lower dashed line is the consumption of the low-

income diet, the middle line shows the consumption of the middle-income diet and the upper line is the consumption of the high-income diet with 

exception for carbohydrates where middle-income diet had the highest carbohydrate consumption (346 g cap-1 d-1), followed by high-income diet 

(341 g cap-1 d-1), upper middle-income diet (332 g cap-1 d-1) and low-income diet (247 g cap-1d-1). The continuous lines are the average recom-

mended dietary energy intake for adults for respective macronutrient: carbohydrates: 372 g cap-1 d-1 (FAO, WHO., 1998), protein: 50g cap-1 d-1 

(WHO, FAO, UNU., (2007), fats: 83 cap-1 d-1 (FAO, WHO (2009). These values are calculated from the average recommended intake of energy 

and the recommended energy percent of respective nutrient.  Note that the axis for carbohydrates has higher values compared to the graph for 

protein, fibre, and fat. 
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Highest WR were calculated for the HID (1.2-15.4 m3 cap-1 d-1) and the lowest for 

the LID (0.4-2.6 m3 cap-1 d-1) with the range for MID being 0.7-8.5 m3 cap-1 d-1 

(Figure 11). The higher WR for the HID is due to higher consumption of the groups 

pulses and legumes (10%, 0.4 kg cap-1 d-1) and animal products (7 %, 13 kg cap-1 d-

1). 

 

 

The values for WPdiet where highest for the LID (4486-838 kcal m-3) and lowest for 

the HID (143-1832 kcal m-3) with all values of WPdiet calculated with efficient WP 

being in the range of recommended daily energy intake (grey area in Figure 12). 

Values of WPdiet calculated with inefficient WP were out of the range indicating that 

even to support the lowest range value of recommended daily energy intake it would 

require more than 1 m3 of water (Figure 12). 
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Figure 11. Water requirement for producing three diets for the socio-economic levels low-

income, middle-income, and high-income population in Burkina Faso. Intervals show water 

output calculated with a range of values for Water Productivity (WP). The lower water out-

put is calculated with efficient WP-values and the higher water output with inefficient WP-

values for ingoing food categories. 
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The values of NWPdiet for macro- and micronutrients were over all highest for the 

LID and lowest for the HID (Figure 13 and Table B17, Appendix B) except from 

vitamin C and vitamin A with all values highest for LID (Vitamin C: 14-73 mg m-3 

and vitamin A: 38-201 μg m-3 ), the NWPdiet values were higher for HID (Vitamin 

C: 3-37 mg m-3 and vitamin A: 5-60 μg m-3) than for the MID (Vitamin C: 1-12 mg 

m-3 and vitamin A 2-25 μg m-3) (see Appendix B Table B17 for full values of the 

NWPdiet). These differences are due to higher food consumption for HID of pulses 

and legumes, vegetables, and animal products than for MID and in relation to the 

total WR in production of the diets (see Table 8, section 3.4). 

 

 

 

 

Figure 12. Dietary Water Productivity (WPdiet) for socio-economic diets in Burkina Faso. The 

marked values within each range for the different diets represents lower-, median- and upper 

values of WPdiet calculated with different values of Water Productivity (WP) for ingoing food 

groups in the three diets. The lowest value for each diet is calculated with the lower value for 

WP per food group. The dashed lines show the total energy intake of the diets. The shaded area 

represents the range of recommended daily energy intake (2708 kcal cap-1 d-1) for adults calcu-

lated from Table 5.4 – 5.9 in FAO, WHO, UNU (2001). Human energy requirements. Rome: 

FAO. (Food and nutrition technical report series 1). ISSN 1813-3932 
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Of the total nutritive consumption vitamin C, and vitamin A were higher for the LID 

(vitamin C: 27 mg cap-1 d-1; vitamin A: 73 μg cap-1 d-1) than for the MID (vitamin 

C: 8 mg cap-1 d-1; vitamin A: 18 μg cap-1 d-1) with the highest consumption for HID 

(Vitamin C: 44 mg cap-1 d-1; vitamin A: 71 μg cap-1 d-1). 

  

Figure 13. Dietary Nutritional Water Productivity (NWPdiet) for diets attributed to low-income-, middle-income and high-income population in 

Burkina Faso. The productivity is presented for the macronutrients carbohydrates, proteins, fibre, and fat with the low-income diet having the 

highest values of NWPdiet for all the nutrients and the high-income diet having the lowest NWPdiet -values. The dashed lines indicate the sum of 

respective diet’s dietary consumption of respective macro nutrient. The lower dashed line is the consumption of the low-income diet, the middle 

line shows for middle-income diet and the upper line for high-income diet. The continuous lines are the average recommended dietary energy 

intake for adults for respective macronutrient: carbohydrates: 372 g cap-1 d-1 (FAO, WHO., 1998), protein: 50g cap-1 d-1 (WHO, FAO, UNU., 

(2007), fats: 83 cap-1 d-1 (FAO, WHO (2009). These values are calculated from the average recommended intake of energy and the recommended 

energy percent of respective nutrient. Note that the axis for carbohydrates has higher values compared to the axis for protein, fibre, and fat 
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4.3 Comparison of water appropriation for diets with 

national water resources 

The LID population was calculated to require the lowest volume ((2.8-12.5 Gm3 y-

1) of the annual WR in ETH. The highest volume was different depending on calcu-

lated with efficient or inefficient values of WP. With inefficient WP the highest WR 

were calculated for the high-income population (15.7-220.8 m3 y-1). Calculated with 

an efficient WP, WR was higher for the middle-income population (17.7 -152.3 Gm3 

y-1). This is due to the difference in WR per capita where the ratio between HID and 

MID depends on if it is calculated with efficient WP (ratio 2.7) or inefficient WP 

(ratio 4.4). The higher WR with inefficient WP for HID overcomes the higher share 

of population attributed to the MID, thus resulting in a larger total WR.  

 

For Tanzania (TZ) the low-income population was attributed with the lowest WR 

(1.8-7.4 m3 y-1) and the LMD population the highest (9.4-100.4 m3 y-1). The UMD 

population had the second lowest WR (4.2-44.5 m3 y-1) after the low-income popu-

lation.  

 

The WR followed the same pattern in BF (population with LID (0.5-3.5 m3 y-1 and 

MID 2.8-34.7 m3 y-1). This is due to the high number of population attributed to the 

middle-income diets compared to the share of population with HID (Table 13, note 

that in in the table MID is put to the abbreviation LMD to compare with the diets 

for TZ).  

 

 

Table 13. Calculated total annual water requirements for food production to meet the estimated total amount of 

food required for diets for low-income- (LID), lower middle-income (LMD), upper middle-income- (UMD), and 

high-income (HID) population in Ethiopia, Tanzania, and Burkina Faso 

Country PopulationI 

 
Annual required water volume to fulfil estimated need of the total popula-

tion per socio-economic diet and WP effectiveness 

 [Gm3 y-1]  

Inefficient WP Efficient WP1 

LID LMD UMD HID Total LID LMD UMD HID Total 

Ethiopia 102,403,196 12.5 152.3  220.8 385.6 2.3 17.7  15.7 36.2 

Tanzania 55,572,201 7.4 100.4 44.5 64.3 216.6 1.8 9.4 3.6 4.2 18.9 

Burkina Faso 18,646,433 2.7 34.7  21.0 59.2 0.5 2.9  1.6 5.0 

I 2016 WHO: World Bank Open Data. Available: https://data.worldbank.org/ [2018-05-10]  

https://data.worldbank.org/
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With these diets, the total population in ETH requires the highest share of annual 

precipitation (4 - 41 %) and TZ the least share (2 - 21 %). BF has the lowest annual 

precipitation but due to the lower population and diets requiring the least volume of 

water compared to ETH and TZ, the overall use of the precipitation becomes lower. 

 

Total annual required water volume for the diets in relation to the national total 

renewable resources (IRR) show that BF would require the highest share and TZ the 

lowest share (BF: 37-433 %; TZ: 20-225 %; ETH: 30-316 %) (Table 14). These 

numbers show that with inefficient WP the renewable water resources are not suffi-

cient to support production to supply the requirement for the national food intake 

with these diets. If precipitation is considered, the total WR for supporting produc-

tion of food in the diets would still be sufficient even with inefficient values of WP 

for the food categories. Note that this is a theoretical comparison which shows pro-

portions of water availability from the two water resources, for food production. 

Realistically none of ET, TZ of BF will likely not develop their agriculture to be 

dependent on irrigation to largest extent, thus precipitation will play the largest role 

in supporting the agriculture. 
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Table 14. Calculated annual water requirements as a share of total annual precipitation and as shares of total renewable water resources (IRR). The values are summarized for the total 

populations per respective diet per socio-economic category: low-income- (LD), lower middle-income (LMD), upper middle-income- (UMD), and high-income (HD) population in Ethio-

pia, Tanzania, and Burkina Faso. 
 

 

Dietary and total water requirement of total annual precipitation calcu-

lated with inefficient WP and efficient WP 

Dietary and total water requirement of total renewable water re-

sources (IRR) calculated with inefficient WP and efficient WP 

Country Total  

precipitation 
Total renewable 

water resources 
[%] [%] 

Inefficient WP Efficient WP1 Inefficient WP Efficient WP1 

 [G m3 y-1] LID LMD UMD HID Total LID LMD UMD HID Total LID LMD UMD HID Total LID LMD UMD HID Total 

Ethiopia 936.4 122 1.3 16.3  23.6 41.2 0.3 1.9  1.7 3.9 10.3 124.8  181.0 316.0 2.3 14.5  12.9 29.7 

Tanzania 1015 96.27 0.7 9.9 4 6.3 21.3 0.2 0.9 0..4 0.4 1.9 7.6 104.3 46.3 66.8 225.0 1.8 9.4 4 3.6 19.6 

Burkina 

Faso 
205.1 13.5 1.3 16.9  10.2 28.5 0.2 1.4  0.8 2.4 19.7 257.3  155.6 432.5 3.7 21.2  12.1 37.0 

I 2014 FAO: AQUASTAT Available: http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en [2018-05-10] 



57 
 

 

5.1 Water Productivity and dietary water requirements  

It is not possible to draw conclusions for specific cropping systems and inputs in the 

countries. This is due to the data gap of water productivity (WP) for individual crops 

species within the food categories. However, it is possible to conclude a requirement 

to increase inputs in the cropping systems which increase WP overall in SSA. Ex-

amples are soil management practices to sustain soil moisture, nutrient availability 

to reduce limiting factors as well as inputs as pesticides to decrease yield reducing 

factors in accordance with Biazin et al. (2012). This can improve yields and bene-

ficial water use consistent with Jägermeyr et al. (2015). Connecting the crops in 

food categories to nutritional values indicate higher overall nutritive content for oil 

crops and pulses and legumes. The highest content of carbohydrates for cereals; 

vitamin A for vegetables and vitamin C for fruits. With the goal to achieve more 

“nutrition per drop” it is suggested to implement further studies of WP on crops in 

other food categories which have higher general nutritive values than cereals. 

 

Overall higher WR and lower water productivity (WPdiet) were modelled for high-

income diets (HID) and vice versa for the low-income diets (LID) in Ethiopia 

(ETH), Tanzania (TZ) and Burkina Faso (BF). These results were expected due to 

higher energy consumption and consumption of more water demanding food cate-

gories in high-income diets (HID) compared to low-income diets (LID). However, 

due to insecurities in food intake in the diets and few WP values, the calculated 

numbers should only be considered in the terms of magnitude and not as absolute 

numbers. 

 

5 Discussion 
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Higher dietary nutritional water productivity (NWPdiet
) for LID than middle-income 

diets (MID) and HID could be interpreted as that WR might be less to support the 

same nutritive content for the three diets. However, this conclusion should be taken 

cautiously, as this highly depends on ingoing crops and animal products in the diets 

and food categories, due to a large variation of WPcrop and crop nutritive content 

(section 3.5 and section 4.1). This strongly affect total required water volumes, val-

ues of WPdiet and how accurate they are to the specific site for the evaluated agricul-

tural system. 

 

Water is calculated to be sufficient to meet dietary WR in ETH, TZ and BF in rain-

fed agriculture in theory. This, even when WPdiet was calculated with inefficient 

WP. Renewable water resources (IRR) also seemed sufficient to sustain dietary WR 

if efficient WP was considered. This partly agrees with Rockström et al. (2009) who 

modelled sufficient resources of clustered soil water and internal renewable water 

resources (IRR) to meet food demand in Ethiopia and Tanzania, while Burkina Faso 

was modelled to reach water scarcity and rely more on land expansion and/or food 

import. The importance of precipitation as water resource in ETH, TZ and BF is 

confirmed when comparing calculated dietary WR with numbers from FAO AQ-

UASTAT (Table 2 in section 3.4) where calculated requirements of total renewable 

water resources clearly exceed the annual use of IRR in agriculture in the three 

countries. 

 

In practice, several factors influence national WR: 

• Yield gaps (Yg) are a result of farmers not producing highest possible yield with 

system inputs. Closing Yg require additional inputs than sufficient water supply, 

as nutrients and plant protectants, thus seeing to which factor which is limiting 

production as water supply might me sufficient, thus other factors being limiting 

(see section 2.2).  

• Food import and -export move water requirements outside nation borders. Of the 

most common crops in diets in ETH, TZ and BF, there is net-import of roots and 

tubers, vegetables and animal products in BF, oil crops in ETH and TZ and cereals 

and fruits in all three countries according to FAO FBS. Only clustered products in 

the category pulses and legumes are net-exported from all three countries (Table 

20, Appendix C). Food import is one way to bypass national water unproductivity 

and water limitations as energy and nutrition becomes available without national 

water depletion. However, this should only be a long-term solution for countries 

where neither IRR nor precipitation are sufficient to meet future production de-

mands and for the food requirement which cannot be supplied by reduction of Yg 

through increasing crop productivity. van (van Ittersum et al., 2016) showed that 

to meet future cereal demands in ETH and BF the yield gaps (Yg) needs to be 

http://www.fao.org/nr/water/aquastat/data/query/results.html
http://www.fao.org/nr/water/aquastat/data/query/results.html
http://www.fao.org/faostat/en/#data/FBS
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reduced to 80 % of water limited yield (Yw). This call for improvements in WP 

which in accordance to above numbers of WP, are established to be low to a global 

standard. In contrast to ETH and BF was TZ estimated not being able to reach self-

sufficiency by just closing Yg but would require additional cropping land (van It-

tersum et al., 2016).  

• Counting on all precipitation being available for agriculture is an overestimate. 

Other ecological functions also require water, as supporting habitats and total crop 

biomass as not all water contributes to economic yield. Further, irregular precipi-

tation patterns contribute to variety in water availability for crops – not being con-

tinuously sufficient to sustain crop growth as these precipitation patterns affect 

recharge of soil water by e.g. droughts of flooding.  

• In a shorter perspective, available water for total application needs to be consid-

ered. This study has only included depleted water through evapotranspiration 

(ET). However, the true WR per season to sustain crop growth is higher as more 

water is required for the production than just the volumes transpired and evapo-

rated. The importance is that ET is depleted water, while additional applied water 

is recycled to the system in a long-term perspective. 

 

Projected precipitation patterns for the period 2040 to 2059 from the Climate 

Change Knowledge Portal (The World Bank c,  d,  e) compared to average precipi-

tation for the period 1991 to 201,5 indicate a precipitation increase by 30 % in TZ 

and a decrease in ETH (-1 %) and BF (-3 %). This signal that available water re-

sources might still be sufficient to cover dietary requirements with forthcoming pre-

cipitation if the diets stay the same. However – these numbers should also consider 

the dietary change connected to changed income levels (see section 3.4) and popu-

lation increase (e.g. the population increase between 2015 and 2016 were in ETH + 

2.5 %, TZ + 6.4 % and BF + 3 % (calculated from population data from The World 

Bank – Open data). van Ittersum et al. (2016) conclude though that increased WR 

are mainly due to population increase rather than diet changes. Despite driving 

force, there is a need for further inclusion of estimated dietary changes and popula-

tion increase in predicted water availability, to foresee probable scenarios of food 

intake which will affect water availability and thus possible national food produc-

tion.  

5.2 Comparison of the results to other studies 

National WR were calculated to 36-386 Gm3 y-1 for ETH, 19-217 Gm3 y-1 for TZ 

and 5-58 Gm3 y-1 for BF. These ranges show the uncertainty if not accurate values 

of WP are used in the calculations. Calculations with median dietary WP (ETH: 100 

http://sdwebx.worldbank.org/climateportal/
http://sdwebx.worldbank.org/climateportal/
https://data.worldbank.org/
https://data.worldbank.org/
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Gm3 y-1; TZ: 52 Gm3 y-1 and BF: 15 Gm3 y-1) were more like earlier estimates of 

present WR. Rockström et al. (2009) presented that somewhat over 50 % of availa-

ble water was used for rainfed agriculture in ETH, compared to the range of 4-41 % 

in this study. The numbers differ due to differentiations in calculation. Noteworthy 

is that values from this study exclude total dietary consumption, as more food prod-

ucts are included in the total diets than the main food products (see dietary tables in 

section 3.4). The difference in use of available soil water of 9-46% compared to 

Rockström’s results (2009) implies that actual WR for the total diets are higher.  

 

A comparison with Chapagain & Hoekstra (2004) indicates a higher similarity to 

the calculated values with efficient WP for ETH and median WP for TZ and BF. 

Total national water footprint (WF) in Chapagain & Hoekstra (2004) were 42.88 

Gm3 y-1 for ETH, TZ 37.51 Gm3 y-1 and BF 17.03 Gm3 y-1. These numbers include 

- except from agricultural water use – also domestic and industrial water withdraw-

als. Total dietary WR in this study seems to be overestimated compared to Chapa-

gain & Hoekstra (2004) as they also included the agricultural water use being equal 

to Ya ETa
-1, indicating that dietary WR should be lower than calculated here.  

 

This study shows a wide range of WP-values for specified diets. from inefficient 

(HID) to values higher than the other studies of diets in SSA (see Figure 6, Figure 

9 and Figure 12 for values of WPdiet). The lower range of WPdiet were of the same 

magnitude, while median values for at least MID and LID where high compared to 

other studies done in SSA This indicates similar productivity as European or North 

American agro-systems, which Jägermeyr et al. (2015) presented as 4000-5000 kcal 

m-3. The difference from previous studies (Table 15) is that this study includes var-

iations in diet composition, indicating a range in productivity between diets not 

shown with national average diets.  

  
Table 15. Values of Water Productivity from Sub-Saharan Africa and North America 

Country/Location Reference Measure Unit Value 

SSA 
Jägermeyr et al., 2015 

WPdiet kcal m-3 < 2000 

North America   4000-5000 

Ethiopia Molden et al., 2007 WPdiet kcal m-3 585 

Ethiopia 

Gerten et al., 2011 WPdiet kcal m-3 

500-1000 

Tanzania 

Burkina Faso 
588-1000 

 

 

WP for individual crops determine the wide range of water demanding values for 

WPdiet. Adaption of values of WP from SSA over all to ETH, TZ and BF can though 
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be questioned. Some values of WP per food category (see section 4.1 and Table 19 

in Appendix C) were in the same magnitude (cereals, roots & tubers, pulses & leg-

umes and fruits), as global averages. (oil crops, vegetables and animal products 

were lower). Mekonnen & Hoekstra (2010), presents global WP values of cereals 

to 0.8 kg m-3; starchy roots 3.1 kg m-3; pulses 0.3 kg m-3; oil crops 0.6 kg m-3; veg-

etables 5.2 kg m-3; fruits 1.4 kg m-3 and animal products 0.4 kg m-3. The cause for 

these similarities is probably that many studies from SSA are not performed at lo-

cations representative for overall low WP. The wide ranges of values of WP per 

category are also doubtless a matter of differences in agricultural properties between 

cropping areas of where the reviewed studies have been accomplished as shown in 

formulas for Yp and ET (see section 2.2). The lower values of oil crops and vegeta-

bles might be due to the low number of values reviewed of WP. Animal products 

showed lower values probably due to overall more extensive production system. 

5.3 Strengths and weaknesses in data and method 

Large variation of WPcrop in the food categories (Figure 4, section 4.1) gave large 

effect on WPdiet and thus WR for the diets. The issue was a low number of values 

for WP for individual crops. Thus, the robustness of using median values of WP per 

food category was exposed to being affected by potential outliers, therefore result-

ing in a higher or lower value than what might have been the true value. This was 

the concern for all food categories except cereals and roots and tubers (see Figure 

4 under headline 4.1). The low number of WP-values and numbers of crops were 

partly covered by calculations with the range of inefficient and efficient WP. Thus, 

variation of WPdiet and thus in total WR were considered. To improve accuracy of 

WPdiet the best would of course be if values were available for the total food intake 

and WP of all ingoing crops in the diets, as there are large variations in WP within 

the food categories (Figure 3, section 3.5). However, this would require a large ef-

fort of gathering dietary data from a large pool of household dietary intake on an 

annual basis which is rather unrealistic.  

 

The review of WP further showed an insufficient number of studies in other food 

categories than cereals. The low number of values reduces the reliability of how 

representative the WP values for food categories were for the diets. A higher number 

of values is also of extra relevance to be able to connect WP to nutrition intake, as 

especially much of the micronutrients is gained from the food categories pulses and 

legumes, vegetables, and fruits. The same approach is valid for the use of median 

values of nutrient content for the food categories (Figure 3). To refine the NWPdiet 
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calculations, nutrition values of several crop varieties could be included, as the nu-

trition values varies within the same crop species (e.g. Sarker & Oba, 2018). 

The calculations were performed with continental values from SSA instead of spe-

cific values form ETH, TZ and BF due to the absence of studies done on WPcrop in 

rainfed systems in SSA with WP calculated as Ya Eta
-1not giving numbers which are 

specific for the countries. However, this continental approach was more reliable 

than calculations done with global values as discussed in section 5.2 above.  

 

Calculated values of daily protein consumption were higher than average recom-

mended intake for HID, upper middle-income (UMD) and lower middle-income 

(LMD) in ETH, TZ and BF. LID also had a calculated higher consumption of pro-

tein in ETH and BF. Carbohydrate consumption was calculated to be higher than 

the daily recommendation in ETH for HID and MID (Figure 7, Figure 10 and Figure 

13 in section 4.2). These values indicate possible overestimations of protein con-

sumption as protein intake from animal products in SSA is overall low (Fanzo, 

2012) in addition to problems with deficient protein intake in SSA (Fanzo, 2012; 

Schonfeldt & Hall, 2012). However, pulses are a staple food in ETH, TZ and BF a 

main source of protein (e.g. Becquey et al., 2010; Ngassapa et al., 2010; Cochrane 

& D’Souza, 2015). With a higher protein content in pulses than animal products 

used in the calculations for the macronutrient contents (Table B17, Appendix B) 

together with total daily food intake including protein from other food categories, 

e.g. cereals and oil crops, this have contributed to an overall higher value of protein 

consumption than what is recommended and what might be the realistic picture of 

food intake in SSA. However, important in this context is not just protein quantity 

but also protein quality (amino acid composition) and bioavailability (Fanzo, 2012; 

Schonfeldt & Hall, 2012), though this is not included in the scope of this study.  

 

As stated, consumption of animal products in low-income households is low in 

ETH, TZ and BF (e.g.  Ethiopian Central Statistical Agency & World Food Pro-

gramme, 2014; Cochrane & D’Souza, 2015). A diet with zero intake of animal prod-

ucts as in LID for ETH and TZ (Table 3, Table 4 and Table 5, section 3.4) might be 

realistic from a daily perspective. However, on an annual basis, some animal prod-

ucts should be included also in LID. The same approach was used for estimation 

fruit consumption for BF. The overall consumption of fruit is low within the country 

(Permanent Interstate Committee for Drought Control in the Sahel, 2004). However, 

on annual basis the intake will contribute to energy and nutritive intake.  

 

Several assumptions were done for the calculations of WPdiet and NWPdiet. The as-

sumption likely to mostly affect the results is the diet composition for the income 

levels. As these numbers were put together from different references from different 
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years of publication, there is a large uncertainty in reliability of how well the diets 

correspond to actual food intake in the countries and for the income levels. Probably 

more diet compositions should be considered, for example due to location and sea-

son (e.g. Ethiopian Central Statistical Agency & World Food Programme, 2014, 

Cochrane & D’Souza, 2015; Worku et al., 2015; Keding, 2016; Ntwenya et al., 

2017) which affect the countries total WR.  

 

Preferably, numbers of dietary compositions from the same reference should have 

been used. However, absence of aggregated dietary data made including data from 

several references for the different socio-economic levels to the best option. Despite 

these uncertainties, the strength of this study is that diets in this study represents a 

pattern of dietary food consumption for income levels, compared to other studies 

which mostly are done on WPdiet for average diets for total nations. Thus, they miss 

national differences in WR. Despite the insecurity in these clustered values, there is 

an overall data gap of dietary composition and food intake. For example, FAO FBS 

supply information of average per capita food supply. However there is a difference 

between the food supply and actual dietary food intake which is indicated in (Del 

Gobbo et al., 2015) which compares FAO FBS with Global dietary Database 

(GDD), showing an overestimation between supply and food intake and a gap of 

data for actual national food intake.   

 

To supplement numbers of total WR to sustain the diets, values of total agricultural 

production in the ETH, TZ and BF and export and import numbers of food products 

can be included. The actual WR in agriculture are affected by production of food 

crops in other food categories, other crops as cash crops as well as crops for export 

and imported products. Additionally, the calculations do not consider non-edible 

parts or food losses along the food processing chain which will require additional 

production and thus WR to produce the amount of food included in the diets. 

  

5.4 Future next steps 

The diets determine the total energy and nutritive food intake. The methodology in 

this study is a first attempt to link human nutritive intake to water appropriation in 

the crop systems. However, there are many factors missing: 

 

• To perform accurate calculations of WPdiet and NWPdiet, more studies are re-

quired of WP for specific crops and their nutritive content from the site of interest 

and from representative production systems. Preferably nutritive content of 
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varieties should be included in further studies as this also varies within species 

(Chibarabada et al. 2017).  

• To draw conclusions of recommendable food products from a productivity per-

spective, there is a call for mapping trade-offs in the production system between 

water requirements, energy output, nutritive output, fertilizer inputs, plant pro-

tectant inputs, as well as extern factors as labour requirements and farmer’s in-

come. This mapping can open a discussion between the three pillars of sustaina-

bility and connect to the sustainable development goals. 

 

• Separating water availability from precipitation and water accessibility in the 

field, further initiatives are necessary to initiate measures of improving soil phys-

ical properties for maintaining soil water. This can be a way to improve water 

limited yields and the usefulness of other inputs in the system, in accordance 

with Sheahan & Barrett (2017) who take up that inputs in cropping systems in 

SSA are often not used synergistically. In the end these measures together are 

the way to reduce Yg and thus also improve WP. 
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1. To state values of water productivity (WP) for individual crops or for food 

categories was not possible due to data gaps of WP in rainfed agriculture in 

Sub-Saharan Africa (SSA).  

2. Dietary Water productivity (WPdiet) and Dietary Nutritional Water produc-

tivity (WPdiet) was overall higher for low-income diets. However, this pat-

tern needs further inquiries connected to improved data of WP, diet compo-

sition and nutrient content of the actual crops included in type diets. 

3. Dietary water requirements indicate that national water resources with pre-

cipitation included might be sufficient to meet dietary requirements with 

increased WP in the cropping systems in theory. Practically, these numbers 

are insecure due to missing water requirements in the diets as well as due to 

estimated changes in precipitation patterns and population increase. This 

leads to changes in diet composition and thus national food production re-

quirements. 

 

Further, this study has confirmed that: 

• There are large variations of water productivity within food categories and 

between ingoing crops/products which affect the overall water requirement 

to produce diets with different composition 

• There is a data gap of studies of water productivity of main crops in Sub-

Saharan Africa. Especially for crops which might be more valuable from a 

“nutrition per drop” perspective, to be able to lift the numbers of undernour-

ishment in the continent whilst contributing to reach SDG 6 on water effi-

ciencies. 

• Improving rainfed crop production in SSA is of large importance to econo-

mize with the national water resources in order to sustain crop production 

and meet demand from increased population and diet change.  

6 Conclusions 
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Few studies were found of Water Productivity (WP) in rainfed cropping systems 

from SSA calculated as actual yield divided by evapotranspiration over all. Thus, 

only a limited number were found from Ethiopia, Tanzania, and Burkina Faso. 

These references were too few to use on their own when calculating Dietary Water 

Productivity in respective country. Ethiopia was the country of these three with most 

found references (Figure 14). 

 

The highest number of references for Ethiopia were found for cereals, none for oil 

crops or fruits and only a limited number for vegetables (1 reference, 1 value) and 

animal products (2 references, 6 values) (Table 16). 

 

Appendix A: Data from review of Water Productivity 
in Ethiopia 

Figure 14. Distribution of water productivity (WP) [kg m-3] within main food categories. The distribu-

tion is made of numbers of WP found in previous studies performed in Ethiopia of rainfed cropping 

systems. No studies of WP for rainfed crops were found for oil crops or fruits and only a limited num-

ber within the groups” vegetables” (1 reference, 1 value for WP) and “animal products” (2 refer-

ences, 6 values of WP). The included numbers of WP do only contain numbers calculated as the ratio 

of actual yield and evapotranspiration. 
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Table 16. References used to calculate Water Productivity for food categories in Ethiopia under rainfed condi-

tions 

Food category References 

Cereals Adgo, E., Teshome, A. & Mati, B. (2013). Impacts of long-term soil and water conservation 

on agricultural productivity: The case of Anjeie watershed, Ethiopia. Agricultural Water 

Management. Vol. 117. pp. 55-61. DOI:  10.1016/j.agwat.2012.10.026 

 Araya, A., Keesstra, S.D. & Stroosnijder, L. (2010). Simulating yield response to water of 

Teff (Eragrostis tef) with FAO's AquaCrop model. Field Crop Research. Vol. 116. pp. 196-

204. DOI:  10.1016/j.fcr.2009.12.010 

 Araya, A., Habtu, S., Hadgu, K.M., Bebede, A. & Dejene, T. (2010). Test of AquaCrop 

model in simulating biomas and yield of water deficient and irrigated barley (Hordeum vul-

gare). Agricultural Water Management. Vol. 97. pp. 1838-1846.: DOI:  10.1016/j.ag-

wat.2010.06.021 

 Temesgen, M., Savenije, H.H., Rockström, J. & Hoogmoed, W.B. (2012). Assesment of strip 

tillage systems for maize production in semi-arid Ethiopia: Effects on grain yield, water bal-

ance and water productivity. Physics and Chemistry of the Earth. Vol. 47-48. pp. 156-165. 

DOI:  10.1016/j.still.2008.09.013 

* Mekonnen, S., Descheemaeker, K., Tolera, A. & Amede, T. (2010). Livestock Water 

Productivity in a Water Stressed Environment in Northern Ethiopia.  Experimental Agricul-

ture. Vol. 47(S1). pp.85-98. DOI:  10.1017/S0014479710000852 

 Mesfine, M., Abede, G. & Al-Tawaha, A-R.M. (2005). Effect of Reduced Tillage and Crop 

Residue Ground Cover on Yield and Water Use Efficiency of Sorghum (Sorghum bicolor (L.) 

Moench) Under Semi-Arid Conditions of Ethiopia. World Journal of Agricultural Science. 

vol. 1(2). pp. 152-160. ISSN 1817-3047 

** Haileslassie, A., Peden, D., Gebreselassie, S., Amede, T. & Descheemaeker, K. (2009). 

Livestock water productivity in mixed crop-livestock farming systems of the Blue Nile ba-

sin: Assessing variability and prospects for improvement. Agricultural Systems. vol. 102. pp. 

33-40. DOI: 10.1071/RJ09006 

 Temesgen, M., Rockström, J., Savenije, H.H.G., & Hoogmoed, W.B. (2007). Assessment of 

strip tillage systems for maize production in semi-arid Ethiopia: effects on grain yield and 

water balance. Hydrology and Earth System Sciences Discussion. Vol. 4. pp. 2229-2271. 

DOI: 10.5194/hessd-4-2229-2007. 

 Erkossa, T., Awulachew, S.B. & Aster, D. (2011). Soil fertility effect on water productivity 

of maize in the upper Blue Nile Basin, Ethiopia. Agricultural Sciences. Vol. 2(3). pp.238-

247.DOI: 10.4236/as.2011.23032 
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Food category References 

Roots and  

tubers 
Gebremedhin, Y., Bere, A. & Nebiyu, A. (2015). Performance of AquaCrop model in Simu-

lating Tuber Yield of Potato (Solanum tuberosum L.) under Various Water Availability Con-

ditions in Mekelle Area, Northern Ethiopia. Journal of Natural Sciences Research. vol. 5. 

pp. 123-130. ISSN: 2225-0921 

** Haileslassie, et al (2009) 

Pulses and  

legumes 

Girma, F. & Haile, D. (2014). Effects of Supplemental Irrigation on Physiological Parame-

ters and Yield of Faba Bean (Vicia faba L.) Varieties in the Highlands of Bale, Ethiopia. 

Journal of Agronomy. Vol. 13(1). pp. 29-34. ISSN: 1812-5379 

 Worku, W. & Skjelvåg, A.O. (2006). The Effect of Different Moisture and Light Regimes on 

Productivity, Light Interception and Use Efficiency of Common Bean. Ethiopian Journal of 

Science. Vol. 29(2). pp.95-106.DOI: 10.4314/sinet.v29i2.18264 

** Haileslassie, et al (2009) 

* Mekonnen, et al (2010) 

Vegetables Haileslassie, et al (2009) 

Animal prod-

ucts 

Alemayehu, M., Amede, T., Peden, D., Kumsa, T., Böhme, M.H. & Peters, K.J. (2016). As-

sessing Livestock Water Productivity in Mixed Farming Systems of Gumara Watershed, 

Ethiopia. Experimental Agriculture. Vol. (5) pp. 1-14. DOI: 10.5539/jsd.v5n7p1 

 Mekonnen, M.M. & Hoekstra, A.Y. (2010) The green, blue and grey water footprint of farm 

animals and animal products. Delft: UNESCO-IHE. (Value of Water Research Report Series 

No.48). 
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Dietary Nutritional Water Productivity (NWPdiet) for low-income diets (LDI), lower-middle income diet (LMD, equal to middle income diet in Ethiopia and Burkina Faso) and 

high-income diet (HID) were calculated for the micronutrients calcium, magnesium, iron, zinc, vitamin C, vitamin A and folate. The micronutrients were put as a function of 

total dietary consumption of the food categories cereals, roots and tubers, pulses and legumes, oil crops, vegetables, fruits and animal products, values of Water Productivity 

(WP) for crops within the food categories and of the crops nutritious content of declared micronutrients. Overall, LID had the highest values of NWPdiet while HID had the 

lowest values. Exceptions are NWPdiet values for vitamin C and vitamin A calculated for diets in Burkina Faso where HID had higher productivity values than LMD (Table 

B17). 

 

Appendix B. Calculated numbers of NWPdiet for 
micronutrients 

Table B17.Calculated numbers of Dietary Nutritional Water Productivity (NWPdiet) for diets attributed to population in different socio-economic levels in Ethiopia, Tanzania, and Burkina Faso: low-income 

(LID), lower middle-income(LMD), upper middle-income (UMD – only included for Tanzania) and high-income (HD). The values of NWPdiet are calculated from diet compositions for the different socio-

economic levels and from values of Water Productivity (WP [kg m-3] for main crops and food products eaten in the three countries. These values were clustered to WP-values for the food categories cereals, 

roots and tubers, pulses and legumes, oil crops, vegetables, fruits, and animal products. The WP-values for the food categories showed a range in efficiency whereby the values of NWPdiet in the table are 

divided into the categories inefficient-, median- and efficient WPfood category indicating which value of WPfood category which have been used in the calculations of NWPdiet 

Micronutrient Calcium Magnesium Iron Zink Vitamin C Vitamin A Folate 

Unit [mg m-3] [μg m-3] 

Diet LID LMD UMD HD LID LMD UMD HD LID LMD UMD HD LID LMD UMD HD LID LMD UMD HD LID LMD UMD HD LID LMD UMD HD 

Country 
                                                        

Inefficient WP 

Ethiopia 140 49   13 440 161   44 13 5   1 6 2   1 49 14   2 20 8   3 180 61   15 

Tanzania 144 29 18 7 417 83 52 22 13 3 2 1 5 1 1 1 52 9 6 1 46 12 8 3 185 36 23 8 

Burkina Faso 96 22   17 359 95   57 10 3   2 4 1   1 14 1   3 38 2   5 106 23   23 
 Median WP 

Ethiopia 282 162   58 889 540   203 27 16   6 11 7   4 100 47   11 40 27   14 364 205   68 

Tanzania 288 115 81 35 833 331 229 107 25 10 7 4 11 5 4 3 104 38 25 6 93 47 36 17 369 142 100 41 

Burkina Faso 218 87   73 814 387   249 22 11   8 10 6   4 31 9   13 85 8   20 240 93   100 
 Efficient WP 

Ethiopia 624 419   176 1965 1392   616 59 41   19 25 19   11 220 121   35 89 70   44 804 529   205 

Tanzania 606 308 230 110 1751 887 649 333 53 27 20 11 23 14 12 9 219 100 72 20, 195 126 102 53 777 381 285 129 

Burkina Faso 515 262   212 1923 1158   728 52 32   22 23 16   13 73 11   37 201 25   59 568 278   292 
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Nutritional values for ingoing crops in the food categories cereals, roots and tubers, 

pulses and legumes, oil crops, vegetables, fruits, and animal products were clustered 

and the median values of nutritive content for energy, carbohydrates, protein, fibre, 

fat, calcium, magnesium, iron, zinc, vitamin C vitamin A and folate were calculated 

and used in calculations of Dietary Nutritional Water Productivity. Pulses and leg-

umes have the highest content of most nutrition (protein, fibres, calcium, iron, zinc 

and folate); cereals had the highest value of carbohydrates and magnesium; oil 

crops the highest values of energy and fat; vegetables the highest content of vitamin 

A; and fruits the highest values of vitamin C (Table 18) 

 
Table 18. Median nutritional values of main food categories from diets in Ethiopia, Tanzania, and Burkina 

Faso. The values are calculated from nutritive content of main crops included in dietary intake in the three 

countries. . 

Food category Cereals 
Roots and 

tubers 

Pulses and 

legume 
Oil crops Vegetables Fruits 

Animal 

product 

Nutrient  

Energy kcal kg-1 3435 1155 3530 5850 550 1500 1390 

Carbohydrates g kg-1 643 254 426 58 45 97 0 

Protein g kg-1 117 15 256 118 11 7 168 

Fibre g kg-1 93 9 176 46 19 20 0 

Fat g kg-1 28 2 19 542 2 2 95 

Calcium mg kg-1 315 215 746 380 260 125 110 

Magnesium mg kg-1 1620 210 1217 1315 135 100 220 

Iron mg kg-1 42 10 61 32 7 3 18 

Zink mg kg-1 18 4 36 18 3 1 33 

Vitamin C mg kg-1 0 215 68 0 140 298 0 

Vitamin A μg kg-1 0 50 71 0 399 66 100 

Folate μg kg-1 290 250 2150 360 350 120 60 

 

The food categories have a range of WP values as well as nutrition content depend-

ing on ingoing crops in the groups. The largest range of WP was for cereals and the 

least for oil crops. The range of energy content was highest for vegetables and low-

est for roots and tubers (Table 19). However, these orders of magnitude are not gen-

eral but specific to the crops which have been included in the different food 

Appendix C: Numbers and information used in 
calculations of WPdiet and NWPdiet for Ethiopia, 
Tanzania, and Burkina Faso 
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categories in this study. Thus, the range will be different depending on included 

crops and food products. 

 

Table 19. Values of 1st and 3rd quartiles for distributions of water productivity (WP) and energy content for main 

food categories.  

Food category 
WP interval [kg m-3] Energy content [kcal kg-1] 

Quartile 1 Median Quartile 3 Quartile 1 Median Quartile 3 

Cereals 0.30 0.66 2.26 3365 3435 3550 

Roots and tubers 2.23 3.14 3.68 1128 1155 1175 

Pulses and legumes 0.18 0.37 0.53 3340 3530 3645 

Oil crops 0.42 0.47 0.51 5415 5850 6000 

Vegetables 0.92 1.49 1.83 298 550 1180 

Fruits 0.91 1.24 1.64 1230 1500 2240 

Animal products 0.01 0.05 0.18 1165 1390 2460 

 

 

Import and export of food products are indirectly a trade with water. Of commodi-

ties commonly consumed in Ethiopia, Tanzania and Burkina Faso, cereals and fruits 

are net-imported goods. Numbers of pulses and legumes shows net-export. Ethiopia 

and Tanzania do also have net-export numbers for roots and tubers, vegetables, and 

animal products. Burkina Faso shows a net-import of these food categories, but a 

net-export of oil crops (Table 20) 

 

Table 20. Net import of agricultural products in Ethiopia, Tanzania, and Burkina Faso. 

Average values from 2007 – 2016 calculated from FAO Food Balance Sheet. Included 

crops and products in the food categories are those most commonly consumed as food 

within the three countries 

Food category Ethiopia Tanzania Burkina Faso 

 1000 tonnes 

Cereals 1519 836.9 443.9 

Roots and tubers -29.6 -14.3 8.6 

Pulses and legumes -168.3 -125.4 -13.1 

Oil crops 4.7 81.1 -31.4 

Vegetables -138.7 -61.6 11.4 

Fruits 22.3 7.4 1.1 

Animal products -0.86 -73.4 118.7 
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The food categories used to put together median nutritional values to use in calcu-

lations of NWPdiet (cereals, roots and tubers, pulses and legumes, oil crops, vegeta-

bles, fruits, and animal products) where put together by the most commonly con-

sumed crops and animal products in Ethiopia, Tanzania, and Burkina Faso. The 

highest number of crops were included in the category fruits (17) and the least in 

roots and tubers (4) (Table 21). 

 
Table 21. Crops included in calculation of food category nutritive content for en-

ergy content, carbohydrates, protein, fibre, fat, calcium, magnesium, iron, zinc, 

vitamin C, folate, and vitamin A.  
Food category Crop/product 

English common name Latin name 

Cereals Maize 

Sorghum 

Teff 
Wheat 

Barley 

Millet 
Rice 

Amaranth (grain) 

Zea mays 

Sorghum spp. 

Eragrostis teff 
Triticum aestivum 

Hordeum vulgare 

 
Oryxa sativa 

Amaranthus spp. 

Roots and tubers Potato 
Sweet potato 

Cassava 

Yams 

Solanum tuberosum 
Ipomoea batatas 

Manihot esculenta 

Dioscorea sp. 

Pulses and  
legumes 

Chickpea 
Lentil 

Horse bean 

Haricot verts 
Green pea 

Dry pea 

Soybean 

Cicer arietinum 
Lens culinaris 

Vicia faba 

Phaseoulus vulgaris 
Pisum sativum 

 

Glycine max 

Oil crops Sesame seed 

Linseed 

Bambara groundnut 
Sunflower seed 

Almond 

Cashew 
Coconut 

Sesamum indicum 

Linum usitatissimum 

Vigna subterranean 
Helianthus annuus 

Prunus dulcis 

Anacardium occidentale 
Cocos nucifera 

Vegetables Tomato 

Onion 

Shallot 
Lettuce 

Avocado 

Cabbage 
Leek 

Beetroot 
Carrot 

Turnip 

Pumpkin 

Cucumber 

Jute mallow 

Spinach 
Amaranth (leaves) 

Squash 

Solanum lycopersicum 

Allium cepa L. 

 
Lactuca sativa 

Persea americana 

Brassica oleracea 
Allium ampeloprasum 

Beta vulgaris 
Daucus carota 

Brassica rapa 

Cucurbita spp. 

Cucumis sativus 

Corchorus olitorius 

Spinacia oleracea 
Amaranthus spp. 

Cucurbita spp. 
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Fruits Banana 

Apple 
Pineapple 

Grapes 

Pear 
Honeydew melon 

Cantaloupe melon 

Watermelon 
Orange 

Mandarin 

Mango 
Grapefruit 

Papaya 

Lemon 
Peach 

Guava 

Breadfruit 

Musa spp. 

Malus pumila 
Ananas comosus 

Vitis spp. 

Pyrus spp. 
Cucumis melo 

Cucumis melo 

Citrullus lanatus 
Citrus x sinensis 

Citrus reticulata 

Mangifera spp. 
Citrus x paradisi 

Carica papaya 

Citrus limon 
Prunus persica 

Psidium guajava 

Artocarpus altilis 

Animal products Beef 

Chicken meat 

Goat meat 

Lamb/mutton meat 
Pork meat 

Cow milk 

Goat milk 
Egg 
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There were few references found in the review of water productivity (WP) of crops in rainfed agricultural systems in Sub-Saharan Africa (SSA) which were calculated as the 

ratio between average actual yield (Ya) and actual evapotranspiration (ETa). The studies which were review were done in areas both in west-, east-, and southern parts of SSA 

(Table 22). 

 
Table 22. References for Water Productivity (WP) used in calculations of Dietary Water Productivity and Dietary Nutritional Water Productivity. The table show the reference, which country the studies were 

done in, location in the countries and values of WP for studied crops 

Reference Country Location Crop/product Values of WP (Ya ET-1) 

Temesgen, M., Savenije, H.H., Rockström, J. & Hoogmoed, W.B. (2012). 

Assesment of strip tillage systems for maize production in semi-arid Ethio-

pia: Effects on grain yield, water balance and water productivity. Physics 

and Chemistry of the Earth. Vol. 47-48. pp. 156-165. DOI: 

10.1016/j.pce.2011.07.046 

Ethiopia Melkawoba Maize 5.5; 6.4; 5.8; 3.8; 3.1; 3.4; 4.5; 4.1; 4.4 

Mo, F., Wang, J-Y., Xiong, Y-C., Nguluu, S.N. & Li, F-M. (2015). Ridge-

furrow mulching system in semiarid Kenya: A promising solution to im-

prove soil water availability and maize productivity. European Journal of 

Agronomy. Vol. 80. pp. 124-136. DOI: 10.1016/j.eja.2016.07.005 

Kenya 
Katumari Research 

Center 
Maize 3.642; 3.36; 2.025; 1.043; 1.49; 1.557; 0.78; 0.323 

Kurwakumire, N., Chikowo. R., Mtambanengwe, F., Mapfumo, P., Snapp, 

S., Johnston, A. & Zingore, S. (2014). Maize productivity and nutrient and 

water use efficienies across soil fertility domains on smallholder farms in 

Zimbabwe. Field Crop Research. Vol. 164. pp. 136-147. DOI: 

10.1016/j.fcr.2014.05.013 

Zimbabwe Wedza District Maize 0.025; 0.162; 0.091; 0.41; 0.134; 0.4 

Mekonnen, S., Descheemaeker, K., Tolera, A. & Amede, T. (2010). Live-

stock Water Productivity in a Water Stressed Environment in Northern Ethi-

opia. Experimental Agriculture. Vol. 47(S1). pp.85-98. DOI: 

10.1017/S0014479710000852 

Ethiopia 
Lenche Dima water-

shed 

Maize 1.2 

Teff 0.6 

Rice 1.1 

  Chickpeas 0.4 

  

Appendix D: References from review of WP used in calculations of WPdiet and NWPdiet 
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Reference Country Location Crop/product Values of WP (Ya ET-1) 

Haileslassie, A., Peden, D., Gebreselassie, S., Amede, T. & Descheemaeker, 

K. (2009). Livestock water productivity in mixed crop-livestock farming 

systems of the Blue Nile basin: Assessing variability and prospects for im-

provement. Agricultural Systems. vol. 102. pp. 33-40. DOI: 

10.1016/j.agsy.2009.06.006 

Ethiopia Gumera watershed 

Maize 0.36 

Sorghum 0.24 

Teff 0.24; 0.33 

Wheat 0.23; 0.21 

Barley 0.41 

Rice 0.67 

Potato 1.45; 1.46 

Pulses 0.68; 0.18 

Onion 1.76 

Nyakudya, I.W. & Stroosnijder, L. (2014). Effect of rooting depth, plant 

density and planting date on maize (Zea maize L.) yield and water use effi-

ciency in semi-arid Zimbabwe: Modelling with AquaCrop. Agricultural Wa-

ter Management. Vol. 146. pp. 280-296. DOI: 10.1016/j.agwat.2014.08.024 

Zimbabwe 
Rushinga district - 

modelled 
Maize 

2.13; 1.93; 1.79; 1.35; 2.46; 2.29; 2.1; 1.56; 2.59; 

2.38; 2.14; 1.59; 2.6; 2.36; 2.11; 1.57; 2.8; 2.55; 2.35; 

1.7; 2.76; 2.5; 2.24; 1.65; 2.75; 2.51; 2.23; 1.67; 2.94; 

2.61; 2.35; 1.73; 2.8; 2.64; 2.27; 1.65 

Cai, X., Molden, D., Mainuddin, M., Sharma, B., Ahmad, M-u-D. & Karimi, 

P. (2011). Producing more food with less water in a changing world: assess-

ment of water productivity in 10 major river basins. Water International. 

Vol. 36(1). pp. 42-62. DOI: 10.1080/02508060.2011.542403 

Volta delta 

Niger delta 

Reviewed data 

Maize 0.15 

Sorghum 0.1, 0,1 

Millet 0.08 

Mutiro, J., Makurira, H., Senzanje, A. & ;ul, M.L. (2006). Water productiv-

ity analysis for smallholder rainfed systems: A case study of Makanya catch-

ment, Tanzania. Physics and Chemistry of the Earth. Vol. 31, pp. 901-909. 

DOI: 10.1016/j.pce.2006.08.019 

Tanzania 

Makanya  

catchment 

Maize 1.33; 0.44; 0.09; 0.36; 0.06 
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Reference Country Location Crop/product Values of WP (Ya ET-1) 

Erkossa, T., Awulachew, S.B. & Aster, D. (2011). Soil fertility effect on wa-

ter productivity of maize in the upper Blue Nile Basin, Ethiopia. Agricul-

tural Sciences. Vol. 2(3). pp.238-247.DOI: 10.4236/as.2011.23032 

Ethiopia 
Caffee Doonsaa - 

Gimbichu-District 
Maize 1.7; 2.4; 2.6 

 

Temesgen, M., Rockström, J., Savenije, H.H.G., & Hoogmoed, W.B. 

(2007). Assessment of strip tillage systems for maize production in semi-arid 

Ethiopia: effects on grain yield and water balance. Hydrology and Earth Sys-

tem Sciences. Vol. 4. pp. 2229-2271. DOI: 10.5194/hessd-4-2229-2007. 

Ethiopia Melkawoba Maize 4.1; 3.9; 4.1; 4.0; 3.2; 3.5; 4.8; 5.8; 3.8 

 
Mesfine, M., Abede, G. & Al-Tawaha, A-R.M. (2005). Effect of Reduced 

Tillage and Crop Residue Ground Cover on Yield and Water Use Efficiency 

of Sorghum (Sorghum bicolor (L.) Moench) Under Semi-Arid Conditions of 

Ethiopia. World Journal of Agricultural Science. vol. 1(2). pp. 152-160. 

ISSN 1817–3047 

Ethiopia Melkassa Sorghum 0.485; 0.573; 0.655 

Chimonoyo, V.G.P., Modi, A.T. & Mabhaudhi, T. (2015). Water use and 

productivity of a sorghum-cowpea-bottle gourd intercrop system. Agricul-

tural Water Management. Vol. 165. pp. 82-96. DOI: 10.1016/j.ag-

wat.2015.11.014 

South Africa KwaZulu-Natal 

Sorghum 0.589 

Cowpeas 0.39 

Bottle gourds 0.504 

Mulebeke, R., Kironchi, G. & Tenywa, M.M. (2015). Exploiting Cropping 

Management to Improve Agricultural Water Use Efficiency in the Drylands 

of Eastern Uganda. Sustainable Agriculture Research. Vol. 4(2). pp. 57-69. 

DOI: 10.5539/sar.v4n2p57 

Uganda Teso region 

Sorghum 0.376 

Cassava 3.438 

Cowpeas 1.5 

Zougmoré, R. Mando, A., Ringersma, J. & Stroosnijder, L. (2003). Effect of 

combined water and nutrient management on runoff and sorghum yield in 

semiarid Burkina Faso. Soil Use and Management. Vol. 19. pp. 257-264. 

DOI: 10.1111/j.1475-2743.2003.tb00312.x 

Burkina Faso Sarya Sorghum 0.51; 0.59; 0.43 

Adgo, E., Teshome, A. & Mati, B. (2013). Impacts of long-term soil and wa-

ter conservation on agricultural productivity: The case of Anjeie watershed, 

Ethiopia. Agricultural Water Management. Vol. 117. pp. 55-61. DOI: 

10.1016/j.agwat.2012.10.026 

Ethiopia 

Gojam, Amhara Re-

gion 

  

Teff 0.101; 0.135; 0.042; 0.052; 0.07; 0.02 

Barley 
0.135; 0.18; 0.037; 0.086; 0.011; 0.018 
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Araya, A., Keesstra, S.D. & Stroosnijder, L. (2010). Simulating yield re-

sponse to water of Teff (Eragrostis tef) with FAO's AquaCrop model. Field 

Crop Research. Vol. 116. pp. 196-204. DOI: 10.1016/j.fcr.2009.12.010 

Ethiopia 
Mekelle & Ilala - 

modelled 
Teff 0.98; 0.53 

Zwart, S.J., Bastiaanssen, W.G.M., de Fraiture, C. & Molden, D.J. (2010). A 

global benchmark map of water productivity for rainfed and irrigated wheat. 

Agricultural Water Management. pp.1617-1627. DOI: 10.1016/j.ag-

wat.2010.05.018 

SSA rainfed systems   Wheat 0.4; 0.8 

Erkossa, T., Haileslassie, A. & MacAlister, C. (2013). Enhancing farming 

system water productivity through alternative land use and water manage-

ment in vertisol areas of Ethiopian Blue Nile Basin (Abay). Agricultural Wa-

ter Management. Vol. 132. pp. 120-128. DOI: 10.1016/j.agwat.2013.10.007 

Ethiopia 

Blue Nile Basin Wheat 
0.37; 0.58; 0.42; 0.93; 0.54; 0.53; 0.99; 0.49; 0.77; 

0.82; 0.5; 0.83 

  Rice 0.72 

Erkossa, T., Menker, M. & Betrie, G.D. (2011). Effects of Bed Width and 

Planting Date on Water Productivity of Wheat Grown on Vertisols in the 

Ethiopian Highlands. Irrigation and Drainage. vol. 60. pp. 635-643. DOI: 

10.1002/ird.608 

Ethiopia 
Caffee Doonsaa - 

Gimbichu-District 
Wheat 0.48; 0.56; 0.53; 0.66; 0.63 

Araya, A., Habtu, S., Hadgu, K.M., Bebede, A. & Dejene, T. (2010). Test of 

AquaCrop model in simulating biomas and yield of water deficient and irri-

gated barley (Hordeum vulgare). Agricultural Water Management. Vol. 97. 

pp. 1838-1846. DOI: 10.1016/j.agwat.2010.06.021 

Ethiopia Mekelle Barley 0.8; 0.8; 0.75; 0.6; 0.72; 0.59; 0.4 

Sivakumar, M.V.K. & Salaam, S.A. (1998). Effect of year and fertilixer on 

water-use efficiency of pearl millet (Pennisetum glaucum) in Niger. Journal 

of Agricultural Science. Vol. 132. pp. 139-148. ISSN: 1469-5146, 0021-

8596 

Niger Sadoré Millet 
0.171; 0.127; 0.282; 0.151; 0.212; 0.406; 0.362; 

0.246 

Ibrahim, A., Abaidoo, R.C., Fatondji, D. & Opoku, A. (2015). Integrated use 

of fertilizer micro-dosing and Acacia tumida mulching increases millet yield 

and water use efficiency in Sahelian semi-arid environment. Nutrient Cy-

cling in Agroecosystems. Vol. 103(3). pp. 375-388. DOI: 10.1007/s10705-

015-9752-z 

Niger Sadoré Millet 0.15; 0.18; 0.18; 0.39; 0.24; 0.35; 0.23; 0.36 
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Ibrahim, A., Abaidoo R.C., Fatondji, D. & Opoku, A. (2015). Hill placement 

of manure and fertilixer micro-dosing improves yield and water use effi-

ciency in the Sahelian low input millet based cropping system. Field Crops 

Research. Vol. 180. 29-36. DOI: 10.1016/j.fcr.2015.04.022 

Niger Sadoré Millet 0.09; 0.09; 0.2; 0.49; 0.78; 0.07; 0.17; 0.41; 0.87 

Karunaratne, A.S., Walker, S. & Azam-Ali. S.N. (2015). Assessing the 

productivity and resource-use efficiency of underutilised crops: Towards an 

integrative system. Agricultural Water Management. Vol. 147. pp. 129-134. 

DOI: 10.1016/j.agwat.2014.08.002 

Botswana 

Notwane - modelled Millet 2.71; 3.03 

  Groundnuts 0.53; 0.38 

Gebremedhin, Y., Bere, A. & Nebiyu, A. (2015). Performance of AquaCrop 

model in Simulating Tuber Yield of Potato (Solanum tuberosum L.) under 

Various Water Availability Conditions in Mekelle Area, Northern Ethiopia. 

Journal of Natural Sciences Research. vol. 5. pp. 123-130. ISSN: 2225-0921 

Ethiopia Mekelle Potato 2.52; 2.37 

Ezui, K.S., Franke, A.C., Leffelaar, P.A., Mando, A., van Heerwaarden, J., 

Sanabria, J., Sogbedju, J. & Giller, K.E. (2017). Water and radiation use ef-

ficiencies explain the effect of potassium on the productivity of cassava. Eu-

ropean Journal of Agronomy. vol. 83. pp. 28-39. DOI: 

10.1016/j.eja.2016.11.005 

Togo 
Sevekpota & 

Djakakope 
Cassava 

3.26; 2.07; 3.73; 3.99; 3.44; 2.23; 3.73; 3.68; 2.66; 

2.14; 3.14; 3.74 

Girma, F. & Haile, D. (2014). Effects of Supplemental Irrigation on Physio-

logical Parameters and Yield of Faba Bean (Vicia faba L.) Varieties in the 

Highlands of Bale, Ethiopia. Journal of Agronomy. Vol. 13(1). pp. 29-34. 

ISSN: 1812-5379 

Ethiopia 
Sinana - Oromia re-

gion 
Horse beans 0.89 

Worku, W. & Skjelvåg, A.O. (2006). The Effect of Different Moisture and 

Light Regimes on Productivity, Light Interception and Use Efficiency of 

Common Bean. Sinet: Ethiopian Journal of Science. Vol. 29(2). pp.95-106. 

DOI: 10.4314/sinet.v29i2.18264 

Ethiopia Awassa Haricot verts 0.76; 1.0 

Chibarabada, T.P., Modi, A.T. & Mabhaudhi, T. (2017). Nutrient Content 

and Nutritional Water Productivity of Selected Grain Legumes in Response 

to Production Environment. Environmental Research and Public Health. vol. 

14(11). Article no. 1300. DOI: 10.3390/ijerph14111300 

South Africa 

KwaZulu-Natal, 

Umbumbulu & 

Wartburg 

Haricot verts 0.465; 0.756 

  Groundnuts 0.453 
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Sennenhenn, A., Njarul, D.M.G., Mass, B.L. & Whitbread, A.M. (2017). Ex-

ploring Niches for Short-Season Grain Legumes in Semi-Arid Eastern 

Kenya - Coping with the Impacts of Climate Variability. Frontiers in Plant 

Science. Vol. 8. article no. 699. DOI: 10.3389/fpls.2017.00699 

Kenya 

Eastern Province: 

Machakos - Makueni 

transect 

Haricot verts 0.59; 0.4 

  Cowpeas 0.53; 0.37 

  Lablab 
0.51; 0.65 

 

  

Kadyampakeni, D.M., Mloza-Banda, H.R., Singa, D.D., Mangisoni, J.H., 

Ferguson, A. & Snapp, S. (2013). Agronomic and socioeconomic analysis of 

water management techniques for dry season cultivation of common bean in 

Malawi. Irrigation Science. Vol. 31(4). pp. 537-544.: DOI: 10.1007/s00271-

012-0333-5 

Malawi Zomba district Haricot verts 0.28 

Adeboye, O.B., Schultz, B., Adekalu, K.O. & Prasad, K. (2017). Soil water 

storage, yield, water productivity and transpiration efficiency of soybeans 

(Glycine max L. Merr.) as affected by soil surface management in Ile-Ife, 

Nigeria. International Soil and Water Conservation Research. vol. 5. pp. 

141-150. DOI: 10.1016/j.iswcr.2017.04.006 

Nigeria Ile-Ife Soybeans 0.506; 0.294 

Obalum, S.E., Igwe, C.A., Obi, M.E. & Wakatsuki, T. (2011). Water use and 

grain yield response of rainfed soybean to tillage-mulch practises in south-

eastern Nigeria. Scientia Agricola. Vol. 68(5). Pp. 554-561. DOI: 

10.1590/S0103-90162011000500007 

Nigeria Nsukka Soybeans 0.116; 0.14; 0.116; 0.138; 0.22; 0.28; 0.168; 0.21 

Mzezewa, J., Gwata,E.T. & van Rensburg, L.D. (2011). Yield and seasonal 

water productivity of sunflower as affected by tillage and cropping systems 

under dryland conditions in the Limpopo Province of South Africa. Agricul-

tural Water Management. Vol. 98. pp. 1641-1648. DOI: 10.1016/j.ag-

wat.2011.06.003 

South Africa 

Limpopo Province - 

Thohoyandou 
Cowpeas 0.108; 0.022 

  Sunflower seeds 0.33; 0.432 

Miriti, J.M., Kironchi, G., Esilaba, A.O., Heng, L.K., Gachene, C.K.K. & 

Mwangi, D.M. (2012). Yield and water use efficiencies of maize and cow-

pea as affected by tillage and cropping systems in semi-arid Eastern Kenya. 

Agricultural Water Management. Vol. 115. pp. 148-155. DOI: 10.1016/j.ag-

wat.2012.09.002 

Kenya Kampi ya Mawe 

Wheat 0.82; 0.48; 0.25; 0.63; 0.19 

Cowpeas 0.34; 0.19; 0.18; 0.38 
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Anguira, P., Chemining'wa, G.N., Onwonga, R.N. & Ugen, M.A. (2017). Ef-

fect of Organic Residues on Soil Properties and Sesame Water Use Effi-

ciency. Journal of Agricultural Science. Vol. 9(6). pp.98-107. DOI:  

https://doi.org/10.5539/jas.v9n6p98 

Uganda Serere Sesame seeds 0.558; 0.501; 0.49 

Agele, S.O., Iremiren, G.O. & Ojeniyi, S.O. (2011). Evapotranspiration, wa-

ter use efficiency and yield of rainfed and irrigated tomato. International 

Journal of Agriculture and Biology. Vol. 4. pp. 469-476. ISSN:  1560–8530 

Nigeria Akure Tomatoes 0.2 

Karuku, G.N., Gachene, C.K.K., Karanja, N. Cornelis, W. & Verplacke, H. 

(2014). Effect of Different Cover Crop Residue Management Practices on 

Soil Moisture Content under a Tomato Crop. Tropical and Subtropical 

Agroecosystems. Vol. 17. pp. 509-523. ISSN:  1870-0462 

Kenya Nairobi Tomatoes 1.22; 2.04; 1.06 

Fanadzo, M., Chiduza, C., Mnkeni, P.N.S., van der Stoep, I. & Stevens, J. 

(2009). Crop production management practices as a cause for low water 

productivity at Zanyokwe Irrigation Scheme. Water SA. Vol. 36(1). pp. 27-

36. DOI:  10.4314/wsa.v36i1.50904 

South Africa Eastern Cape Pumpkins 2.2 

Gudissa, H.D. & Edossa, D.C. (2014). Evaluation of Surge and Cutback 

Flow Furrow Irrigation Systems for Pepper (Capsicum Annuum) Production. 

Irrigation and Drainage. Vol. 63(4). pp.463-473. DOI:  10.1002/ird.1828 

Ethiopia 
Echway Kebele, 

Gambella 
Peppers 1.75 

Akinro, A.O., lufayo, A.A. & Oguntunde, P.G. (2012), Crop Water Produc-

tivity of Plantain (Musa Sp) in a Humid Tropical Environment. Journal of 

Engineering Science and Technology Review. Vol. 5(1). Pp. 9-25. ISSN:  
1791-2377 

Nigeria Akure Bananas 0.9; 0.91 

Siebert, S. & Döll, P. (2010). Quantifying blue and green virtual water con-

tents in global crop production as well as potential production losses without 

irrigation. Journal of Hydrology. Vol. 384. pp. 198-217. DOI:  
10.1016/j.jhydrol.2009.07.031 

Global values* 

  Grapes 1.819 

  Lemons 1.575 

https://doi.org/10.5539/jas.v9n6p98
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Alemayehu, M., Amede, T., Peden, D., Kumsa, T., Böhme, M.H. & Peters, 

K.J. (2016). Assessing Livestock Water Productivity in Mixed Farming Sys-

tems of Gumara Watershed, Ethiopia. Experimental Agriculture. Vol. p. 1-

14: DOI: 10.1017/S0014479717000321 

Ethiopia 

Gumera watershed Cattle 

0.0266 

 

  Small ruminants 0.0264 

  Equine 0.0149 

Mekonnen, M.M. & Hoekstra, A.Y. (2010) The green, blue and grey water 

footprint of farm animals and animal products. Delft: UNESCO-IHE. 

(Value of Water Research Report Series No.48). 

 

  Cattle 0.12; 0.13; 0.22 

  Sheep 0.17; 0.37; 0.82 

  Goat 0.12; 0.25; 0.57 

  Pork 0.21; 0.19; 0.24 

  Poultry 0.18; 0.31; 0.5 

  Milk 0.97; 1.56 

  Eggs 0.16; 0.28; 0.39 

van Breugel, P., Herrero, M., van de Steeg, J. & Peden, D. (2010). Livestock 

Water Use and Productivity in the Nile Basin. Ecosystems. Vol. 13(2). pp. 

205-221. ISSN:1432-9840 

Nile Basin 

Modelled Meat general 
0.01; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01; 

0.01 

  Milk 
0.03; 0.06; 0.01; 0.08; 0.05; 0.03; 0.06; 0.05; 0.08; 

0.07 

Peden, D., Alemayehu, M., Amede, T., Awulachew, S.B., Faki, H., 

Haileslassie, A., Herero, M., Mapezda, E., Mpaiwe, D., Musa, M.T., 

Taddesse, G. & van Breugel, P. (2009). CPWF Project Report: Nile Basin 

livestock water productivity. Colombo: CPWF. (CPWF Project Report Se-

ries, PN37).  

Nile Basin 

  Meat general 0.011; 0.01; 0.012; 0.014; 0.011; 0.008; 0.013 

  Milk 0.526; 0.082; 0.079; 0.064; 0.05; 0.057; 0.026; 0.041 

Ogilvie, A., Mahé, G., Ward, J., Serpantié, G., Leoalle, J., Morand, P., Barb-

ier, B., Diop, A.T., Caron, A., Namarra, R., Kaczan, D., Lukasiewicz, A., 

Patruel, J-E., Liénou, G. & Clanet, J.C. (2010). Water, agriculture and pov-

erty in the Niger River basin. Water International. vol. 35(5). pp. 594-

622.DOI: 10.1080/02508060.2010.515545 

Niger River Basin   Livestock 0.002; 0.05 
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