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Abstract

The northern part of Sweden has two overlapping land-use interests: forestry

and reindeer husbandry. Forestry a�ects reindeer husbandry in several ways;

most important of these is its impact on ground lichens. Lichens are the primary

winter grazing resource for reindeer, therefore, mapping of lichens is of interest.

The objective of this study is to evaluate the use of remote sensing data from

the new Sentinel-2 satellite for the classi�cation of ground lichen and to assess

whether adding information derived from airborne laser scanning (ALS) will

improve the result. The study area is situated in the reindeer husbandry area

inland of Umeå, in the north of Sweden, and consists of two Sentinel-2 granules.

Two Sentinel-2 images were used, one from 2015-08-19 and one from 2016-10-02.

ALS-derived metrics was also used in the form of DEM, wetness index, a canopy

density metric and forest height. Classi�cation of lichen coverage was carried

out with the Random Forest algorithm, and 90 �eld plots were used as training

data. Due to the small �eld dataset, the evaluation method for this study was

internal cross-validation. Fourteen di�erent classi�cation schemes were tried

with the Random Forest algorithm. Classi�cation scheme 6 (0-33 %, 34-66 % and

67-100 % lichen coverage) was the most interesting of the classi�cation schemes

with three classes, since it has the lowest out-of-bag error at 29 %. Classi�cation

scheme 4 (0-25 %, 26-50 % and 51-100 % lichen coverage), which is based on the

Swedish National Forest Inventory’s lichen class de�nition, also proved to be

fairly accurate, with an out-of-bag error of 37 %. Overall, the analysis showed

that bands 4 (red) and 8 (NIR) of the Sentinel-2 2015-08-19 image, along with

ALS-derived canopy density were the most important variables. Wetness index

was the least important variable. For the Sentinel-2 2016-10-02 image, bands

4 (red) and 5 (red-edge) were the most important. This study showed that a

Sentinel-2 image from a one date during the summer season worked well for

the classi�cation of lichen into three classes, and that adding an ALS-derived

canopy density metric could improve the results. The use of both Sentinel-2

images together did not give better classi�cation results.
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1 Introduction

The northern part of Sweden has two major, spatially overlapping land-use interests:

forestry and reindeer husbandry (Berg 2010). The area a�ected by these con�icting

interests is not insigni�cant, as 55 % of Sweden’s land area belongs to the reindeer

husbandry area (Sandström et al. 2016). Lichens are the primary grazing resource

for reindeer, and therefore, the mapping of the lichen resource is of interest. The

requirements of modern forestry and reindeer husbandry are not always compatible,

which has led to con�ict (Berg 2010; Sandström et al. 2003). At least part of this

con�ict stems from lacking knowledge about the distribution and quantity of reindeer

lichens. Remote sensing is a data source which may be useful for creating spatially

explicit maps with information about the lichen resource.

This Master thesis is based in part on a previous lichen remote sensing study by

Gilichinsky et al. (2011). Since their study came out, new remote sensing data sources

have become available which are of interest to test, namely Sentinel-2 and airborne

laser scanning data.

1.1 Reindeer husbandry, forestry and lichen

Northern Sweden belongs to the boreal zone. Its forests are dominated by two

coniferous tree species, Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies
(L.) H. Karst.), interspersed with a few deciduous tree species, most commonly birch

(Betula spp.) and aspen (Populus tremula L.) (Berg 2010). The climate is harsh and

the vegetation period short, but plants and animals have adapted to these conditions.

Reindeer (Ragnifer tarandus L.) have adapted by following a yearly migration pattern

and by changing their food source with the seasons. Reindeer migrate from the

mountainous inland of Sweden in the summer where they feed on shrubs, herbs,

grass and fungi, to the forested areas closer to the coast during winter (Berg 2010;

Gilichinsky et al. 2011). In the wintertime they forage for lichens which comprise as

much as 50-80 % of their diet (Heggberget et al. 2002). For the most part they feed

on ground-growing, mat-forming lichen of the genus Cladonia, primarily Cladonia
rangiferina, C. arbuscula, C. stellaris as well as Cetraria islandica. Reindeer need more

energy in the wintertime to compensate for colder temperatures and the di�culty in

foraging for food. Wintertime reindeer pastures thus need to have a higher forage

abundance (Nelson et al. 2013).

Reindeer husbandry in Sweden is the traditional livelihood of the indigenous

Sami people. Today only Sami people can practice it (Sandström 2015; Rennäringslag
1971). The semi-domesticated reindeer still follow the migration patterns that their

wild ancestors did, which makes this grazing system unique (Sandström 2015). It is

this fact that makes it demand such large tracts of land. The reindeer husbandry area

includes all seasonal grazing land, as well as migration routes. This region, as stated
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earlier, covers about 55 % of Sweden’s land area, and more than 50 % of the productive

forest land (Sandström et al. 2016). Within this area forestry and reindeer husbandry

must coexist. Forestry a�ects reindeer husbandry in several ways; most important

of these is its impact on ground lichens. Much of the con�ict of interest between

forestry and reindeer husbandry has to do with the management of lichen forests.

Modern forestry a�ects ground lichens in many ways (Sandström et al. 2003;

Sandström 2015). Forestry as practiced in Sweden today is intensive and a�ects

almost all forested land. It mainly follows this sequence: cleaning, thinning, clear-

cutting, soil-scari�cation and planting of new trees. Soil-scari�cation is performed by

turning over the topsoil to expose mineral soil beneath to improve the microclimate

and nutrient availability for seedlings. This process destroys the slow-growing ground

lichens, and can, depending on intensity, eradicate lichen from an area entirely. A

decline in lichen cover has been noticed for the last few decades (Gilichinsky et al.

2011). Since the 1950s, the area of lichen-abundant forest (>50 % cover of ground

lichens) has declined with 71 % (Sandström et al. 2016). This increases the grazing

pressure on the remaining area.

1.2 Remote sensing of lichen

Earlier studies have attempted to map lichens using optical satellite data from Landsat,

SPOT, and other available sensors (Nordberg and Allard 2002; Rees et al. 2003; Sand-

ström et al. 2003; Tømmervik et al. 2003; Rautiainen et al. 2007; Gilichinsky et al. 2011;

Nelson et al. 2013). Various types of lichen, both ground lichen and lichen growing on

stone, has been studied. Some studies have focused on lichen growing on the tundra

or heath, i.e. studies that were unimpeded by tree cover (Nordberg and Allard 2002;

Falldorf et al. 2014). Other studies have attempted to map lichen under tree cover, as

this study aims to do (Théau et al. 2005; Gilichinsky et al. 2011; Käyhkö and Pellikka

1994). As Théau et al. (2005) points out, the inclusion of a tree canopy complicates

the detection of lichens due to the added pixel re�ectance. Several studies have also

incorporated forest data with the remote sensing data in their studies (Nordberg and

Allard 2002; Colpaert et al. 2003; Johnson et al. 2003; Rees et al. 2003; Sandström et al.

2003; Tømmervik et al. 2003).

Several species of lichen, among them Cladonia spp., are light in colour and re�ect

more light in the blue to yellow spectrum as compared to green vegetation (Petzold

and Goward 1988). This makes these lichens distinguishable from other vegetation.

Cladonia spp. often also contain usnic acid, which is a pigment that is pale yellow

in colour and also is distinct spectrally. Nelson et al. (2013) used Landsat 7 ETM+

images in their study and found that usnic lichens have a higher re�ectance in the

visible to NIR-range as compared to other vegetation and even to other kinds of lichen,

especially in the the blue spectral band. This study was the �rst to concentrate solely

on usnic lichens. Nelson et al. (2013) found these lichens to be the most detectable

lichen cover group. They also found that usnic lichen cover is positively correlated

with total lichen cover. This makes usnic lichen cover useful for mapping total lichen

cover.

Käyhkö and Pellikka (1994) used SPOT XS bands 1-3 (green, red and NIR) for

supervised classi�cation of vegetation classes in Finland and Norway. This is an

older study, which means an older sensor. Their study only determined lichen classes

with su�cient accuracy in areas without tree cover. The study also found that

certain combinations of tree density and ground-cover vegetation shared spectral
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characteristics which caused misclassi�cations. The study found that Cladonia had

high re�ectance in the visible to NIR spectra, but also that Cladonia could be hard to

distinguish from green vegetation in the NIR band. In the NIR band of the SPOT XS

satellite, chlorophyll absorption is weak which results in the vegetation appearing

bright in that band. The high re�ectance of Cladonia lichens in this spectrum can thus

lead to confusion of the two. The best results of the study came from independent

use of the red band for classi�cation.

Nordberg (1998) used Landsat TM to develop a Normalized Di�erence Lichen

Index (NDLI) which e�ectively assessed the spectral signatures of lichen. A few

years later Nordberg and Allard (2002) proved Normalized Di�erence Vegetation

Index (NDVI, where NDVI = (NIR–red)/(NIR+red)), to be better at predicting lichen

cover. Nordberg and Allard used Landsat-5 TM images to detect lichen deterioration

above the tree-line in the Swedish mountains. They also showed that lichen coverage

increases the re�ectance across all Landsat-5 TM bands. Greater lichen coverage gives

higher re�ectance, but grazing reduces the height of the lichen thallus, and thus its

re�ectance (Tømmervik et al. 2003). According to the Nordberg and Allard (2002)

study, lichens have lower values than green vegetation in the NIR region. The study

also indicated that the NIR band showed promise for distinguishing low coverage of

lichen (<40 %). Their study also reinforced the known fact that lichen has a higher

re�ectance in the visible spectrum than green vegetation.

Théau et al. (2005) mapped lichen using Landsat-5 TM bands 3, 4 and 5 (red,

NIR and SWIR bands), with a spectral mixture analysis (SMA) and enhancement-

classi�cation method (ECM). Their study showed that ECM was successful in separat-

ing lichen from non-lichen classes, but less accurate in separating between speci�c

lichen classes. SMA also showed good results in separating lichen from non-lichen

classes, but was better than the ECM at distinguishing between lichen classes.

Rautiainen et al. (2007) examined how understory vegetation in�uenced the

re�ectance of forest stands in Northern Finland. They used the SPOT HRVIR data

in the green, red, NIR and SWIR bands. Their study showed that forest stands with

a lichen understory could be distinguished from those with a dwarf shrub (heather

(Calluna vulgaris (L.) Hull) and crowberry (Empetrum nigrum L.)) understory in the

visible wavelength range. In the NIR spectrum however, this was only possible for

sites with very sparse canopy cover.

Falldorf et al. (2014) used Landsat-5 TM images to develop a method for continuous

estimation of lichen volume within lichen-dominated alpine heath in Norway. They

used a 2D Gaussian regression model based on a Normalized Di�erence Lichen

Index (NDLI = (SWIR-NIR)/(SWIR+NIR)) and Normalized Di�erence Moisture Index

(NDMI = (NIR-SWIR)/(NIR+SWIR)). They found that there was a strong correlation

between NDMI and lichen volume. NDMI contrasts the Landsat-5 TM NIR and SWIR

bands (bands 4 and 5). Cladonia lichens are easily distinguishable in both of these

bands.

In the study by Gilichinsky et al. (2011), images from the SPOT 5 and Landsat-7

satellites were used. The SPOT 5 data had a 10 meters pixel size and consisted of

four spectral bands: green, red, NIR and SWIR. The Landsat-7 data had a pixel size

of 25 meters and consisted of seven spectral bands: blue, green, red, NIR as well as

two SWIR bands. The reference data for the study were taken from the Swedish

National Forest Inventory (NFI) (Riksskogstaxeringen 2017) and the validation data

came from an independent �eld inventory. Ground lichen cover was divided into

three thematic classes based on percent lichen cover on the ground. These classes

were: lichen poor (0-25 %), lichen moderate (25-50 %) and lichen abundant (50-100 %).
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Figure 1.1. The original study area with outlines of the Landsat-7 (larger rectangle)

and SPOT 5 (smaller rectangle) imagery in Västerbotten County in Northern Sweden

(Gilichinsky et al. 2011). The dots represent the NFI �eld inventory plots used in the

2011 study.

These class de�nitions were based on the NFI’s lichen class de�nitions. Three methods

of supervised classi�cation were used: Mahalanobis distance, SMA and maximum

likelihood classi�cation. The results indicated that it is possible to use data from the

NFI as reference data for satellite data classi�cation of ground lichen cover classes. The

results showed higher accuracy for the classi�cation using SPOT 5 images (10 meter

pixels) as compared to using Landsat-7 images (25 meter pixels), which might have

been due to the higher spatial resolution of the SPOT images. The accuracy was also

higher when using a training dataset that only had two classes, lichen poor and lichen

abundant, as compared to a dataset where the more di�use lichen moderate class

was included. As for the classi�cation methods, Mahalanobis distance gave the best

results.

The present study is tied to the earlier study by Gilichinsky et al. (2011) and

uses part of the same study area (Figure 1.1), within the reindeer husbandry area

in the county of Västerbotten. Gilichinsky et al. (2011) expressed a possibility to

continue their research either by performing a more detailed classi�cation, using other

classi�cation methods, or by adding airborne laser data or other forest parameters.

This study will attempt to do that.

1.3 Objectives

The objective of this Master thesis is to evaluate the use of remote sensing data

from the Sentinel-2 satellite for the classi�cation of ground lichen and to assess

whether the addition of information from airborne laser scanning data will improve

the classi�cation result.
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2 Materials and Methods

2.1 Material

2.1.1 Study area

The study area is situated inland of Umeå, in Västerbotten County in the north of

Sweden at a latitude of circa 64 degrees north and a longitude of about 18 degrees

east (Figure 2.1). The area belongs to the boreal forest zone and as such the forest

is primarily coniferous and dominated by managed Scots pine and Norway spruce.

There are also a few species of deciduous trees, mostly birch and aspen (Gilichinsky

et al. 2011).

Cladonia rangiferina, C. arbuscula, C. stellaris as well as Cetraria islandica, which

are the four most signi�cant species of reindeer lichen, are abundant within the area,

making it important for reindeer husbandry (Gilichinsky et al. 2011). The area is

used for winter grazing by several Sami villages, namely those of Vilhelmina North,

Vapsten, Upmeje, Malå and Ran. The area has a mixed land ownership, where land is

owned by the state, forestry companies as well as small private owners.

2.1.2 Satellite data

Sentinel-2 satellite images were used in the study. The new study area falls within

the Sentinel-2 granules with the reference numbers 33WXM and 33VXL. The old

study area also included part of the 34WDS granule. This granule was removed from

the study due to pixelwise spectral di�erences in the pixel values within the area of

overlap. The values di�ered between 10 and 50 Digital Numbers (DNs) for di�erent

bands of the Sentinel-2 2015-08-19 image.

The Sentinel-2A satellite was launched on 2015-06-23 and has a 290 km wide-

swath that captures high-resolution, multi-spectral images. Sentinel-2 collects 13

spectral bands with three di�erent spatial resolutions (i.e., pixel sizes): blue, green,

red and NIR with a pixel size of 10 meters, six bands within the red-edge (680-750

nm), NIR and SWIR range with a pixel size of 20 meters, and coastal aerosol, water

vapour and cirrus clouds with a pixel size of 60 meters (European Space Agency 2016)

(Table 2.1). In this study bands 2 through 8, 11 and 12 were used; that is, all the bands

with 10 meter and 20 meter resolution aside from band 8a. The 20 meter bands were

resampled to 10m. No radiometric corrections, such as atmospheric correction, was

performed on the satellite images. Sweref99 TM was the coordinate system used for

the entire study.

The Sentinel-2 satellite has four di�erent bands within the red-edge spectrum

(European Space Agency 2017d). The importance of these for mapping lichen are as

of yet unknown. Furthermore, the Sentinel-2 satellite has a �ner spatial resolutions
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Figure 2.1. Left map: the new study area is situated in Västerbotten County, northern

Sweden. Right map: the study area is made up of two Sentinel-2 granules (33VXL and

33WXM). The dots represent the �eld plots. The Sentinel-2 image is from 2015-08-19,

and displayed in true colour.

compared to the Landsat satellite. Gilichinsky et al. (2011) indicated that the spatial

resolution might be important for detecting smaller patches of lichen, with 10 meters

pixels giving more accurate results than the 25 meter pixels, but also that it might

give a more accurate classi�cation over all.

The Sentinel-2 satellite also has a high radiometric resolution (European Space

Agency 2017b). Radiometric resolution measures the ability of the instrument to

distinguish di�erences in light intensity or re�ectance. Radiometric resolution is

often de�ned as a bit number, typically in the range of 8 to 16 bits. The radiometric

resolution of the Sentinel-2 satellite data is 12 bit. This means that the DNs in the

image can be acquired over a range of 0 to 4095 light intensity values.

The temporal resolution of Sentinel-2A is ten days. Despite this frequent imaging,

only two images from 2015 and 2016 were su�ciently cloud-free to be used in the

study. They are the images from 2015-08-19 and 2016-10-02. These two images were

downloaded from the Copernicus Open Access Hub (European Space Agency 2017a).

However, 2017-03-07 the Sentinel-2B satellite, the twin of the Sentinel-2A, was sent up

(European Space Agency 2017c). This will increase the frequency of the coverage to

once every �ve days at the equator, and roughly once every three days for Scandinavia

(European Space Agency 2017e).

2.1.3 Airborne laser data

The National Mapping Agency (Lantmäteriet 2017) performed a national airborne

laser scanning (ALS) campaign over Sweden between the years 2009 and 2016, where

the point density is approximately 0.5 laser points per square meter over most of the

country (Lantmäteriet 2016). The aim was to produce a digital elevation model (DEM),

which has been done at a 2 meter grid cell resolution. The ALS point data over the

6



Table 2.1. The di�erent spectral bands captured by the Sentinel-2 satellite (European

Space Agency 2016)

Band Spatial Central Bandwidth

resolution wavelength (nm)

(m) (nm)

1 - Coastal aerosol 60 443 20

2 - Blue 10 490 65

3 - Green 10 560 35

4 - Red 10 665 30

5 - Red edge 20 705 15

6 - Red edge 20 740 15

7 - Red edge 20 783 20

8a - Red edge 20 865 20

8 - NIR 10 842 115

9 - Water vapour 60 945 20

10 - SWIR, cirrus 60 1375 30

11 - SWIR 20 1610 90

12 - SWIR 20 2190 180

ground level can be used to estimate height and density metrics about the vegetation

and forest. This study used four ALS-derived metrics: a DEM, the Saga wetness index

(SWI), a canopy density metric in the form of a vegetation ratio (vegkvot) and the

95
th

height percentile (p95) which gives a good indication of forest height.

The 2 meter grid cell size DEM was downloaded from the National Mapping

Agency and resampled to a grid cell size of 10 meters using bilinear interpolation. The

wetness index was calculated from the DEM in R Studio using Saga GIS (Brenning

2008). The forest height and canopy density metrics were calculated from the height

normalized National Mapping Agency point cloud using FUSION’s command of ’grid

metrics’ and ’csv-to-grid’ (McGaughey 2016). The canopy density was calculated

according to the vegetation ratio, which is derived by dividing the number of �rst

returns above a threshold of 1.5 meters by the total number of �rst returns. All ALS

data used in the study were calculated to a grid cell size of 10 meters that spatially

matched the pixels of the Sentinel-2 images.

The ALS-derived metrics, DEM, wetness index, canopy density, and forest height,

were the other datasets used together with the Sentinel-2 data. The �eld plot coordi-

nates were used to extract the values from these datasets and used in the Random

Forest classi�cation.

2.1.4 Field data

The reference data from this project came from two sources: the earlier �eld inventory

by Gilichinsky et al. (2011) and a new �eld inventory. The Gilichinsky et al. (2011)

�eld inventory was carried out 2006-2008 and was comprised of 229 plots . It was

hypothesized that the lichen classes would not have changed signi�cantly, and that

the plots could be re-used for lichen classi�cation. To check this, ten of the old plots

were re-inventoried during early fall of 2016.

The earlier inventory plots were placed according to a strati�ed random sample

within the study area, where the strata were based on an unsupervised classi�cation
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of a Landsat-7 ETM+ image (Gilichinsky et al. 2011). The plots were divided evenly

between three strata: forest with low probability of lichen, forest with medium

probability of lichen and forest with a high probability of lichen. To minimize time

spent locating the plots they were placed within 300 meters of roads. The plots

were squares of 50 meters by 50 meters. Data on lichen and moss abundance, lichen

height, the �eld layer, the tree layer and forest management actions were gathered.

Lichen and moss abundance were estimated based on presence/absence in 100 points

distributed 2 meters apart from North to South, in 4 rows which were 10 meters apart.

In addition to the 2006-2008 �eld data, 20 new plots were inventoried in Fall 2016.

To reduce time spent doing inventory, the new plots were squares of 20 meters by

20 meters, which �t the size of the Sentinel-2 pixels. The plots were placed using a

strati�ed random sample within the study area, where the strata were based on an

unsupervised classi�cation of the 2015-08-19 Sentinel-2 image. Six di�erent strata

were created, water, agricultural land, forest with low probability of lichen, forest with

some probability of lichen, forest with medium probability of lichen, and forest with

high probability of lichen. To minimize time spent locating the plots they were placed

within 300 meters of roads. In the �eld, data on lichen and moss abundance, �eld

layer, bush layer, tree layer and forest management actions were gathered. Lichen and

moss abundance were estimated based on presence/absence in 100 points distributed

1 meter apart from North to South, in 5 rows which were 5 meters apart. The methods

of inventory were based on those used by Gilichinsky et al. (2011).

2.2 Method

Classi�cation was carried out in the following steps: preparation of satellite images

and training data, change analysis and removal of unsuitable plots from the old

dataset, classi�cation and accuracy assessment. The process is described in further

detail in the sections below.

2.2.1 Data preparation

The Sentinel-2 20 meter pixel bands were resampled to 10 meter pixels, using bilinear

interpolation. Following that, all the bands used in the study, bands 2-8 and 11-12,

were merged together into one �le per date and granule. The two Sentinel-2 granules

were mosaiked together. The southernmost part of the mosaics included the coastal

area close to Örnsköldsvik. As it was likely that the training data would be too

dissimilar to be applicable there, the southernmost parts were removed from the study

area.

Change analysis was performed on the 2006-2008 �eld plots using image di�er-

encing in Arc Map. The images used were the 2015-08-19 Sentinel-2 image and a

mosaic of SPOT images from 2008 and 2009, re�ecting the forest state during of the

previous �eld data inventory. SPOT images had to be chosen from two di�erent

years due to the inability to �nd cloud-free images that covered the entire study area

within one year. The change analysis was performed using the NIR, red and green

wavelengths, in that order. The analysis was done to �nd �eld plots that in the old

inventory had been mature forest, but that since then had been clear-cut. 63 plots

a�ected by clear-cutting since the earlier lichen inventory were removed in this step.

Polygons were created from the �eld plot boundaries and used to cut out the

pixels within those polygons. The mean values for the plots were extracted and added

to the training data.
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According to Gilichinsky et al. (2011), 229 plots were inventoried between 2006

and 2008. Only 214 of those plots were made available for this study. Of those,

151 plots remained after the change analysis. Thirty-nine of the remaining plots fell

within the Sentinel-2 granule 34WDS. This granule, and thus the �eld plots within it,

were removed from the study. When the ALS-derived metrics were added, seven plots

were removed both from both the old and the new plots due to N/A-values. Lastly, to

achieve a more balanced training dataset, which is more suitable for Random Forest

(Reese et al. 2014), a further 33 plots with 0 % lichen were removed using random

selection. In the end 71 old plots and 19 new plots, totaling 90 plots, were used in the

Random Forest classi�cation.

The �nal �eld dataset is presented in Table 2.2. Number of plots dominated by

the three di�erent tree species and by the di�erent dwarf shrub species are presented

in Table 2.3

Table 2.2. Mean, minimum and maximum values of the �nal �eld variables for the

90 plots in the training dataset, as well as standard deviation of the mean. Basal area

is in square meters per hectare, coverages are in percentages.

Variables Mean StDev Min Max

Basal area 13.3 5.4 1 27

Number of tree stories 1.2 0.4 1 2

Lichen coverage 26.2 24.4 0 88

Field layer coverage 61.2 20.2 0 95

Canopy coverage 32.5 16.2 5 70

Table 2.3. Number of �eld plots dominated by the di�erent tree and dwarf shrub

species.

Dominant tree species Number of plots

Broadleaves 1

Pine 86

Spruce 3

Dominant dwarf shrub species Number of plots

Bilberry 27

Heather 38

Lingon 25

2.2.2 Random Forest

Random Forest is an algorithm used for classi�cation and regression (Liaw and

Wiener 2002; Breiman 2001; Gislason et al. 2006; Rodriguez-Galiano et al. 2012). It is

an ensemble learning technique that grows many decision trees and then lets them

vote for the most common class. Random Forest increases the diversity of decision

trees by growing them from di�erent subsets of the training data. It does not over�t

to its training set like single decision trees do, either. It is a non-parametric classi�er,

and does not require that the input data are normally distributed, and allows the

input of multiple data sources. Random Forest is useful for classi�cation when there
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are a lot of di�erent variables, but not such a great need for variable selection for

optimizing the model. It also assesses the relative importance of the di�erent variables

of input features during the classi�cation, which is useful for multi-source studies

(Rodriguez-Galiano et al. 2012). The di�culty with the Random Forest algorithm is

that it is a "black-box method" that may be hard to understand.

The Sentinel-2 bands and the ALS-derived metrics were used as variables for

classi�cation with the Random Forest algorithm in seven combinations of di�erent

variable sets (Table 2.4).

Table 2.4. The three di�erent sets of variables used to run the Random Forest, either

for one data source or in combination. s215 is the 2015-08-19 Sentinel-2 image, s216 is

the 2016-10-02 image. Laser refers to the ALS-derived variables: DEM, canopy density

(vegkvot), tree height (p95) and wetness index (SWI).

s215 s216 laser

Band 2 Band 2 DEM

Band 3 Band 3 vegkvot

Band 4 Band 4 p95

Band 5 Band 5 SWI

Band 6 Band 6

Band 7 Band 7

Band 8 Band 8

Band 11 Band 11

Band 12 Band 12

Due to the small �eld dataset, the evaluation method for this study was the

internal cross-validation which assesses model performance. This method is not

an independent accuracy assessment, but is nonetheless relevant when comparing

models relative to each other.

As accuracy assessment, Tables over out-of-bag errors were generated in R using

the Random Forest package. Out-of-bag error measures the prediction error of the

Random Forest. Out-of-bag error is the mean prediction error of training sample X,

that only uses trees that did not have X in their bootstrap sample. Breiman (1996)

showed that out-of-bag error provides the same accuracy as using a test set of the

same size as the training set.

Figures of the mean decrease in accuracy for the three most interesting classi�-

cation schemes were generated in R using the VarImpPlot routine in the Random

Forest package in for the three classi�cation schemes that had the best result. The

mean decrease in accuracy is determined when the out-of-bag errors are calculated.

The more the elimination of a particular variable decreases the accuracy, the more

important that variable is considered. This means that variables that have a large

mean decrease in accuracy are deemed to be more important for classi�cation. To

further analyse important variables, scatter plots of the two most important variables

from the three di�erent sets of variables were generated for the three most interesting

classi�cation schemes.

Mean and standard deviation of the Digital Number for each band were calculated

for the di�erent classes and the variables used to run Random Forest of the three best

classi�cation schemes.
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2.2.3 Classi�cation schemes

Fourteen di�erent classi�cation schemes were tried with the Random Forest algorithm

(Table 2.5). Eleven of the classi�cation schemes were based on lichen coverage. Three

of those incorporated either dominant dwarf shrub type or basal area as grounds for

the class division. Three additional classes were calculated solely from dwarf shrub

type or from basal area. This was done as it was of interest to see if results were

relating to vegetation types co-existing with lichen.

There were six di�erent schemes with four classes (schemes 1-3, 5, 9 and 11), four

schemes had three classes (schemes 4, 6-7 and 13), three schemes had two di�erent

classes (schemes 8, 12 and 14) and lastly one scheme had six classes (scheme 10).

Classi�cation scheme 4 (Table 2.5) was based on the one Gilichinsky et al. (2011)

used, which in turn is based on the NFI division of lichen coverage classes. The

classi�cation schemes divided lichen coverage into di�erent classes, and di�erent

numbers of classes, to test what class division would prove to be more accurate in the

Random Forest classi�cation. This was done to test whether di�erent de�nitions of

lichen classes would a�ect model performance and eventually classi�cation accuracy.

Additional data, such as dominant dwarf shrub species and basal area, was added to

test whether they had any bearing on the classi�cation.

Table 2.5. Classi�cation schemes 1 through 14. Numbers in classi�cation schemes 1

- 11 represent percent lichen coverage. For classi�cation schemes 9 - 11, footnotes

1, 2, 3 and 4 are co-existing dwarf shrub type where 1 is bilberry type, 2 is mixed

heather and lingon type, 3 is heather type and 4 is lingon type. Footnote 5 denotes

basal area≤13 and footnote 6, basal area>13. For classi�cation schemes 12 - 14 the

numbers have the same meaning as the footnotes.

Classi�cation Class number

scheme 1 2 3 4 5 6

1 0.00 1-33 34-66 67-100

2 0-25 26-50 51-75 76-100

3 0-10 11-50 50-70 71-100

4 0-25 26-50 51-100

5 0-10 11-30 31-49 50-100

6 0-33 34-66 67-100

7 0-10 11-55 56-100

8 0-49 50-100

9 0−501 0−502 51−1001 51 −
1002

10 0−331 0−332 34 − 661 34−662 67 −
1001

67 −
1002

11 0−395 0−396 40−1005 40 −
1006

12 5 6

13 1 3 4

14 1 2
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3 Results

3.1 Comparison of out-of-bag errors

The most accurate classi�cation scheme was number 8 (Table 3.1), with only 2 classes

(0-50 % and 51-100 %) and an out-of-bag error of 19 %. Four of the classi�cation

schemes with four classes, schemes 1-3 and 5 (Table 2.5), were not very accurate.

Classi�cation scheme 6 (0-33 %, 34-66 % and 67-100 %) is probably the most interesting

of the classi�cation schemes with three classes, since it has the lowest out-of-bag

error at 29 % out of those. Classi�cation scheme 4 (0-25 %, 26-50 % and 51-100 % ),

which is the same as the one used in the old study, also proved to be fairly accurate

with an out-of-bag error of 37 %. Classi�cation scheme 2 (0-25 %, 26-50 %, 51-75 %

and 76-100 %) was the most accurate of the classi�cation schemes with four classes.

Classi�cation schemes 9 through 11 used additional data other than lichen cover

percentage for class division, but this did not increase accuracy.

Classi�cation schemes 12-14 were not based on lichen coverage (Table 3.1). Clas-

si�cation scheme 12, which was based on basal area, was fairly accurate, as was

classi�cation scheme 14, with two classes based on dominant dwarf shrub species.

Scheme 13, with its three classes based on dominant dwarf shrub species, was less

accurate.

Of the single variable sets used, the Sentinel-2 image from August 2015 gave lower

out-of-bag errors as compared to the Sentinel-2 image from October 2016. Using

the ALS-derived variables generally gave a higher out-of-bag error than using the

Sentinel-2 2015-08-19 image, with four exceptions. Those were classi�cation schemes

3, 7 and 8, where the out-of-bag errors either were the same as that for the Sentinel-2

2015-08-19 image and thus lower than that for the Sentinel-2 2016-10-02 image, or

equal to that of the Sentinel-2 2015-08-19 image.

Combining several variable sets gave mixed results. Using both Sentinel-2 images

gave a lower out-of-bag error than for just the 2015-08-19 image for nine of the

classi�cation schemes, the same out-of-bag error for classi�cation scheme 6, and

higher out-of-bag error for classi�cation schemes 1, 5, 10 and 11.

The Sentinel-2 2015-08-19 image in combination with the ALS-derived variables

gave better results. This combination gave a lower out-of-bag error than just the

2015-08-19 image for ten of the classi�cation schemes, the same out-of-bag error for

classi�cation scheme 8, and higher out-of-bag error for classi�cation schemes 5, 10

and 11.

In contrast, the combination of the 2016-10-02 Sentinel-2 image and the ALS-

derived variables was less accurate. This combination gave a lower out-of-bag error

than the 2015-08-19 image alone for just four of the classi�cation schemes, schemes 2,

3, 8 and 14. It generated the same out-of-bag error for classi�cation schemes 1, 4 and

7, and a higher out-of-bag error for the remaining seven classi�cation schemes. Using
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Table 3.1. Comparison of the out-of-bag errors for the di�erent classi�cation schemes

and variable sets. Numbers are in percentages. s215 is the 2015-08-19 Sentinel 2 image,

s216 is the 2016-10-02 image. Laser refers to the ALS-derived variables: DEM, canopy

density (vegkvot), tree height (p95) and wetness index (SWI). The numbers in bold
represent the 2-class, 3-class and 4-class classi�cations with the lowest out-of-bag

errors.

Classi�cation Out-of-bag errors for the variable sets

scheme s215 s216 laser s215+ s215+ s216+ s215+

s216 laser laser s216+

laser

1 57 61 58 60 52 57 54

2 40 46 53 38 37 38 37
3 50 54 50 46 46 49 48

4 38 46 51 37 37 38 37

5 49 62 51 57 51 50 49

6 32 39 38 32 29 34 32

7 51 53 51 47 44 51 46

8 20 29 20 19 20 19 20

9 53 62 60 47 52 56 47

10 54 68 67 61 58 60 62

11 49 60 67 52 53 61 57

12 37 38 50 34 36 43 39

13 50 56 60 44 48 54 44

14 34 37 37 29 33 32 29

all the variables gave lower out-of-bag errors than only the 2015-08-19 Sentinel-2

image for eight classi�cations schemes equal out-of-bag errors for classi�cations

schemes 5, 6 and 8, and higher out-of-bag errors for classi�cations schemes 10, 11

and 12.

3.2 Maps

Several maps of the classi�cation were produced. Overviews of classi�cation schemes

2, 4 and 6 using the Sentinel-2 2015-08-19 image and ALS-derived variables, as well as

using only Sentinel-2 variables are presented in Figure 3.1 and 3.2. Larger, individual

maps are presented in the appendix, Appendix �gures 13-20.
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Figure 3.1. The study area, a) the Sentinel-2 2015-08-19 image shown in true colour,

b) classi�cation scheme 2 with 4 classes, c) classi�cation scheme 4 with 3 classes, d)

classi�cation scheme 6 with 3 classes. b-d) were classi�ed with the Random Forest

algorithm using the Sentinel-2 image from 2015-08-19 and ALS-derived variables

(DEM, p95, canopy density (vegkvot) and wetness index).
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Figure 3.2. Part of the study area, a) the Sentinel-2 2015-08-19 image shown in true

colour, b) classi�cation scheme 2 with 4 classes, c) classi�cation scheme 4 with 3

classes, d) classi�cation scheme 6 with 3 classes. b-d) were classi�ed with the Random

Forest algorithm using the Sentinel-2 image from 2015-08-19.

3.3 Variable importance

Classi�cation schemes 2, 4 and 6 were deemed the most interesting to present more

results for. This is due to the fact that scheme 2 was the most accurate of the classi�-

cation schemes that had four classes, scheme 4 was the same as that in the previous

study (Gilichinsky et al. 2011) and scheme 6 was the most accurate of the schemes

with three classes. Figure 3.3 shows the mean decrease in accuracy and thus the vari-

able importance in the model for classi�cation schemes 2, 4 and 6 when all variables

were used. Appendix Figures 1-6 show the mean decrease in accuracy for the other

variables combinations for the same classi�cation schemes.

The analysis showed that when using all the variables, Sentinel-2 2015-08-19

bands 4 (red) and 8 (NIR) were the most important. For classi�cation schemes 2 and 4

Sentinel-2 2015-08-19 bands 5 (red-edge) and 6 (red-edge) were fourth and �fth most

important (Figure 3.3). For classi�cation scheme 6 (Figure 3.3), however, 6 (red-edge)

and 7 (red-edge) were fourth and �fth. Band 2 (blue) was the most important Sentinel-
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Figure 3.3. The mean decrease in accuracy for classi�cation scheme 2, 4 and 6 and all

Sentinel-2 2015-08-19 and 2016-10-02 bands as well as ALS-derived variables (DEM,

forest height (p95), canopy density (vegkvot) and wetness index (SWI)). The variables

are ordered top-to-bottom as most to least important.

2 2016-10-02 band for all three classi�cation schemes, and 2016-10-02 bands were

generally less important than 2015-08-19 bands. For the ALS-derived variables, canopy

density remained the most important variable, as �fth and third most important for

the di�erent schemes. Forest height was also fairly important over all, but wetness

index was the least important.

Overall, the analysis showed that the Sentinel-2 2015-08-19 image bands 4 (red)

and 8 (NIR) along with ALS-derived canopy density metric were the most important

variables for all three schemes and all di�erent combinations of variables (Figure 3.3

and Appendix �gures 1-6). Forest height was of middling importance, while wetness

index remained the least important variable. For the Sentinel-2 2016-10-02 image,

bands 4 (red) and 5 (red-edge) were generally the most important.

3.4 Bandwise mean and variation

Tables 3.2-3.4 show standard deviation of the mean Digital Number for each band.

The standard deviation was greater for the majority of the classes with less lichen

cover and smaller for the classes with greater lichen cover. The standard deviation for

the Sentinel-2 bands within the visible spectrum were generally smaller than those

within the red edge and NIR spectra.
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Table 3.2. Mean and standard deviation of the Digital Number for each band for the

four classes and all possible variables for classi�cation scheme 2

Variables Mean and standard deviation for the lichen cover classes

0-25 % 26-50 % 51-75 % 76-100 %

Mean SD Mean SD Mean SD Mean SD

s215 b2 807 70.61 815.39 38.42 830.99 28.61 849.6 32.1

s215 b3 656.3 93.2 652.84 43.23 669.1 35.5 695.4 28.9

s215 b4 421.8 122.6 440.4 71.8 461.9 43.9 504.4 54.7

s215 b5 713.8 201.5 690.1 70.1 738.3 73.7 773.7 83

s215 b6 1630 420.7 1471.6 165.4 1471.1 167.4 1414.3 53.7

s215 b7 1951.1 521 1722.8 207.5 1733.2 201.5 1633.7 39.8

s215 b8 1931.6 572.3 1709.2 196.7 1674.6 182.2 1600.1 114.4

s215 b11 1012.8 294.9 1039.2 175.5 1161.1 142.4 1239 183

s215 b12 454.8 155.7 480.9 103.5 544.6 70.7 612.3 109.1

s216 b2 1057.3 43.9 1065.1 30.4 1069.1 23.4 1065.8 27.4

s216 b3 729.79 60.2 742.59 50.77 759.7 45.9 759.59 16.61

s216 b4 496.4 112.4 492.1 60.3 513.3 51.2 522.2 29.2

s216 b5 700.7 188.1 702.9 111.8 771.3 97.6 732.3 52

s216 b6 1264.3 308.1 1295.2 232.8 1449 243.3 1322.3 72.1

s216 b7 1444.8 377.6 1462.9 266.7 1650.2 281.9 1474.3 82.9

s216 b8 1475.4 460.2 1498 287.4 1627.3 312.1 1467.6 122.9

s216 b11 685.2 309.3 663 191.5 798.6 181.9 787.7 104.7

s216 b12 324.1 169.4 302.1 94.9 364.8 82.2 373 48.6

DEM 265.35 49.87 256.59 47.01 260.27 29.02 258.04 16.35

SWI 4.81 1.279 4.576 1.178 4.305 1.067 4.4 2.05

vegkvot 50.58 25.44 44.88 16.11 31.51 16.66 47.9 24.5

p95 13.852 5.155 13.088 3.782 14.21 4.94 15.735 0.494
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Table 3.3. Mean and standard deviation of the Digital Number for each band for the

three classes and all possible variables for classi�cation scheme 4

Variables Mean and standard deviation for the lichen cover classes

0-25 % 26-50 % 51-100 %

Mean SD Mean SD Mean SD

s215 b2 807 70.61 815.39 38.42 835.29 29.19

s215 b3 656.3 93.2 652.84 43.23 675.2 34.92

s215 b4 421.8 122.6 440.4 71.8 471.7 47.9

s215 b5 713.8 201.5 690.1 70.1 746.5 73.9

s215 b6 1630 420.7 1471.6 165.4 1458 148.7

s215 b7 1951.1 521 1722.8 207.5 1710.2 180.6

s215 b8 1931.6 572.3 1709.2 196.7 1657.4 167.7

s215 b11 1012.8 294.9 1039.2 175.5 1179 148.2

s215 b12 454.8 155.7 480.9 103.5 560.2 81.3

s216 b2 1057.3 43.9 1065.1 30.4 1068.4 23.2

s216 b3 729.79 60.2 742.59 50.77 759.7 40.3

s216 b4 496.4 112.4 492.1 60.3 515.4 46.1

s216 b5 700.7 188.1 702.9 111.8 762.3 88.8

s216 b6 1264.3 308.1 1295.2 232.8 1419.8 219.8

s216 b7 1444.8 377.6 1462.9 266.7 1609.6 258.3

s216 b8 1475.4 460.2 1498 287.4 1590.5 283.7

s216 b11 685.2 309.3 663 191.5 796.1 163.3

s216 b12 324.1 169.4 302.1 94.9 366.7 74

DEM 265.35 49.87 256.59 47.01 259.76 26.02

SWI 4.81 1.279 4.576 1.178 4.327 1.249

vegkvot 50.58 25.44 44.88 16.11 35.29 18.96

p95 13.852 5.155 13.088 3.782 14.56 4.34
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Table 3.4. Mean and standard deviation of the Digital Number for each band for the

three classes and all possible variables for classi�cation scheme 6

Variables Mean and standard deviation for the lichen cover classes

0-33 % 34-66 % 67-100 %

Mean SD Mean SD Mean SD

s215 b2 807.82 67.69 818.98 34.42 840.7 34.9

s215 b3 655.5 88.2 654.93 42.58 689.4 27.4

s215 b4 423.5 117.9 445.3 63.9 484.7 54

s215 b5 710.2 190 699 72.2 767 74.9

s215 b6 1608.9 400.7 1458.5 165.4 1508.3 153.6

s215 b7 1920.7 498.3 1710.9 204.7 1763.1 192.8

s215 b8 1896.8 547 1704.2 199.3 1692.5 155.1

s215 b11 1013.2 281.7 1071.7 175.9 1201.3 158

s215 b12 457.7 149.9 495.8 100.2 575.4 95.1

s216 b2 1056.1 41.5 1069.6 29.6 1072.2 25.6

s216 b3 728.87 56.92 749.05 50.59 770.5 47.1

s216 b4 493.1 106.2 501.5 59.7 523.4 53.5

s216 b5 697.5 178 719.9 111.4 778.4 105.1

s216 b6 1259.5 291.5 1334.3 242.8 1451.1 250.6

s216 b7 1441.1 357.4 1497.5 276 1656 305

s216 b8 1462.1 436.3 1549.5 294.5 1609 308

s216 b11 677.7 293.2 698 196.6 819 191.4

s216 b12 318.8 160.6 318.9 95.6 381.1 85.9

DEM 267.59 49.31 247.27 41.09 270.06 20.77

SWI 4.776 1.273 4.563 1.147 4.202 1.386

vegkvot 50.22 24.77 41.48 15.99 36.98 20.37

p95 13.827 4.925 13.264 4.29 14.62 3.88
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3.5 Scatter plots

Scatter plots are shown in Figures 3.4-3.6 for the two most important spectral bands

for classi�cation schemes 2, 4 and 6. No clear patterns for class division based on the

spectral bands emerge. However, it is possible to see that the class with the lowest

lichen cover percentages is the largest class, and that it stretches over the entire

scatter plot, i.e., it has a large standard deviation.

Figure 3.4. Scatter plot of the two most important Sentinel-2 2015-08-19 bands, band

8 and band 4, for classi�cation scheme 2. Each point represents a value for each of

the two spectral bands, as well as a class. The classes are 20: 0-25 %, 21: 26-50 %, 22:

51-75 % and 23 76-100 % lichen coverage.

Figure 3.5. Scatter plot of the two most important Sentinel-2 2016-10-02 bands, band

5 and band 4, for classi�cation scheme 2. Each point represents a value for each of

the two spectral bands, as well as a class. The classes are 20: 0-25 %, 21: 26-50 %, 22:

51-75 % and 23 76-100 % lichen coverage.
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Figure 3.6. Scatter plot of the two most important ALS-derived variables, canopy

density and forest height (p95), for classi�cation scheme 2. Each point represents a

value for each of the two spectral bands, as well as a class. The classes are 20: 0-25 %,

21: 26-50 %, 22: 51-75 % and 23 76-100 % lichen coverage.
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4 Discussion

4.1 Utility of Sentinel-2 data for lichen cover classi�cation

The objective of this study was to evaluate the use of data from the Sentinel-2 satellite

for the classi�cation of ground lichen and to assess whether the addition of information

from airborne laser scanning data would improve the results. The Sentinel-2 satellite

is new and particularly interesting for classi�cation with its increased number of

red-edge spectral data bands, frequent imaging, and bands with 10-20 meter spatial

resolution. Using Sentinel-2 images is also interesting as a means to classify or map

lichens over even larger areas than the study area used in this thesis.

As for the 2015-08-19 Sentinel-2 image versus the 2016-10-02 image, the 2015-08-

19 image generally gave higher accuracy, both by itself and in combination with other

data. This might be due to the fact that the August image is more useful for ground

vegetation classi�cation. While the lichen stays the same spectrally over the year, it is

very rare that a single pixel would consist entirely of lichen. This is especially true for

the classes with lower lichen coverage. Other vegetation, such as trees, dwarf shrubs,

herbs, and grasses, contribute to the spectral information. Coniferous trees might not

be very a�ected spectrally by the changing season, but other species groups, such as

deciduous trees and dwarf shrubs, are. There is probably a di�erence in senescence

between August and October, which will a�ect the result of the classi�cation. Among

the dwarf shrubs, the lingon and heather are not as di�erent spectrally between the

seasons as bilberry is. This is the reason for the creation of the classi�cation schemes

that are based on the co-existing dominant dwarf shrub species. The hope was that

the additional information would increase the accuracy, which it failed to do.

The study area being situated so far north also means that the change in time of

year between the August of 2015 and October of 2016 Sentinel-2 images impacts the

day length and the position of the sun. This will in turn a�ect the quality of the light

and the length of shadows. Especially shadows might interfere with classi�cation

results.

For the Sentinel-2 2015-08-19 image, band 4 (red) and 8 (NIR), were the most

important for the classi�cation. For the classi�cations using the 2016-10-02 image,

bands 4 (red) and 5 (red-edge), were the most important. For the classi�cation solely

using the ALS-derived metrics, canopy density and tree height were most important

for classi�cation schemes 2 and 4, while canopy density and DEM were the most

important for scheme 6.

The fact that band 8 had such a great impact on classi�cation was not surprising,

as NIR is known to be of great use for classi�cation of vegetation. Band 4 (red) was

also important for classi�cation. Käyhkö and Pellikka (1994) also found that the red

band was useful for identifying lichen, thus the importance of the red band was not

entirely unexpected. However, it was expected that band 2 (blue) would be more
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important for classifying lichen. Previous studies had indicated that the blue band

would be useful for identifying lichen (Nelson et al. 2013; Petzold and Goward 1988).

One challenge in this study was the newness of the Sentinel-2 satellite. There

were some problems with the images. Initially, the plan for the study had been to

include the 34-WDS granule. However, there were signi�cant discrepancies between

the WDS and the WXM granules both spatially and spectrally, for pixels that should

have matched. The discrepancies were said to be due to geographic corrections to

two di�erent UTM zones, which are performed on a granule-to-granule basis rather

than a scene-to-scene basis (Rosengren 2016). This, together with the problem of

�nding cloud-free images for the WDS granule, led to the decision to exclude it from

the study.

The newness of the Sentinel-2 satellite also meant that, at the time of the start

of the study, there was only little more than a year’s worth of images to choose

from, namely the period between the launch of the Sentinel-2A satellite in June 2015

and the beginning phase of this study, October 2016. During this period only two

cloud-free images could be found. It would have been interesting to use at least three

images in the study, but this was not possible. The fact that the images chosen fall

during di�erent times of the year also a�ects the results. The 2015-08-19 image is

from August, whereas the 2016-10-02 image is from October, when senescence has

already started. The greatest spectral di�erences between vegetation types occur

during spring and autumn, right before the leaves fall.

4.2 Utility of combining Sentinel-2 and airborne laser data
for lichen cover classi�cation

As stated, the objective of this study was to evaluate the use of data from the Sentinel-2

satellite for the classi�cation of ground lichen cover and to assess whether the addition

of information from airborne laser scanning data would improve the results. For

the most part adding ALS-derived metrics did improve classi�cation results. Adding

ALS-derived metrics to the Sentinel-2 2015-08-19 image gave lower out-of-bag error

for ten of the 14 di�erent classi�cation schemes, and ALS-derived metrics improved

the result of the classi�cation using both satellite images as it gave a lower out-of-bag

error for eight of the classi�cation schemes. The addition of ALS-derived metrics to

the 2016-10-02 image however only improved the out-of-bag errors for four of the

classi�cation schemes.

As for the most in�uential ALS-derived variables, canopy density in the form

of a vegetation ratio was unquestionably the most important, while forest height

and elevation from the DEM were also quite important for the results. As this study

attempts to classify lichen coverage on forest land, both canopy density and tree

height have an impact on spectral composition, as well as the amount of lichen in

an area. Lichen grows more frequently and in greater abundance in open forests, i.e.

forests with a lower canopy density. Canopy density would also be expected to be

greater for a spruce dominated forest, in which there would be little or no lichen,

than for a pine forest, where lichens are more likely to grow. Furthermore, a greater

canopy density would shade out the ground, making it harder to image using remote

sensing (Théau et al. 2005; Käyhkö and Pellikka 1994).

It was initially surprising that wetness index had the least impact of all variables,

both ALS-derived metrics and spectral bands, seeing how lichen abundance tends to

correlate well with dryness. However, the wetness index does not take soil texture
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into account, nor is this information available at a suitable spatial resolution. Coarse

sand in river �ood plains that are very dry could thus accidentally be labelled as ‘wet’

due to their position in the landscape.

4.3 Class de�nitions of lichen cover

Over all, the classi�cation schemes with fewer classes showed greater accuracy, which

was to be expected. A classi�cation scheme with three lichen cover classes, similar

to the one used by Gilichinsky et al. (2011), may be the most reasonable to use since

it has an accuracy that would be acceptable in a mapping of lichen. Classi�cation

scheme 2 (0-25 %, 26-50 %, 51-75 % and 76-100 % lichen coverage) gave more detail

by dividing Gilichinsky et al. (2011)’s highest percentage class of lichen coverage

into two classes. This division, however, might not be worthwhile, given the lower

accuracy of the model.

No clear pattern for class division could be discerned based on the scatter-plots

of the two most important variables. Ideally, the individual classes would have been

grouped together, or showed some other pattern. This was not the case.

The standard deviations of the mean Digital Numbers for each band were generally

greater for the classes with less lichen cover and smaller for the classes with greater

lichen cover. A larger standard deviation shows that the data points are spread out

from the mean, i.e. that there is a large variation within the di�erent classes in this

case. This is not unexpected, as there were fewer plots in the dataset with higher

percentages of lichen cover but also due to the fact that areas with greater lichen

cover are more homogeneous than those with less or no lichen. The former class

consists largely of dry pine heath with dwarf shrubs, whereas the latter class can be

characterized as ’all other forest land’, meaning various tree species on various types

of land and so forth. This makes the possible spectral signatures of this class very

varied, as compared to the classes with the greatest lichen coverage. Perhaps a more

detailed division of this class would increase the accuracy of the classi�cation.

The hope was that adding information regarding the co-existing species in the

�eld layer would help explain spectral variation and improve the model performance.

While this did not result in higher accuracies in this study, perhaps due to the limited

�eld data, it may still be of value for future studies to consider. Another reason why

the �eld-layer data did not increase accuracy might be the fact that such data is of

more use for sparse forests types than for more dense forest, where the canopy shades

out the �eld-layer. This study included all forest land within the study area.

4.4 Field data

Within remote sensing, it is important to have accurate and representative �eld data.

Without reliable �eld reference data, it is hard to use the satellite image classify the

actual landscape with any accuracy.

This study uses �eld data from a previous study (Gilichinsky et al. 2011) along

with 20 newly inventoried plots. Starting with the old plots, 63 were removed in the

change analysis due to clear-cutting, which was expected. However, plots were also

missing from the expected dataset from the earlier study. The missing plots were

mostly those with a higher percentage lichen coverage, which skewed the dataset

towards no-lichen plots. Furthermore, both among the old and new plots, plots were

removed due to N/A values in the ALS-derived metrics, which the random forest
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algorithm is unable to process. An additional 39 plots were removed when the WDS

Sentinel-2 granule was removed from the study area. This further unexpectedly

reduced the training data. To somewhat balance the training data between no-lichen

and lichen plots, 33 no-lichen plots were eliminated before running the random forest

algorithm. In the end, only 90 of an initially possible 249 plots remained.

The number of �eld plots might be the greatest weakness of the study. In hindsight,

inventorying an additional 20 to 30 new plots would have greatly bene�ted the study.

4.5 Comparison to previous study and recommendations for
future studies

Gilichinsky et al. (2011) utilized lichen information collected by the Swedish National

Forest Inventory (NFI) as training data to classify lichen cover using one Landsat-7

TM and one SPOT 5 satellite image. For the SPOT 5 image they used a maximum

of 943 NFI plots as training data, and for the larger Landsat-7 scene they used a

maximum of 3670 NFI plots as training data. The lichen cover classes were: 0-25 %,

26-50 % and 51-100 %.Gilichinsky et al. tested three di�erent classi�cation methods:

Mahalanobis distance, maximum likelihood and spectral mixture analysis (SMA).

They got high accuracy for the classi�cation of the SPOT 5 image when using the

Mahalanobis distance classi�er, with an overall accuracy 84.3 %. The classi�cation

accuracy for the Landsat-7 image was slightly lower at 76.8 %, using the maximum

likelihood classi�cation.

This study is based on the Gilichinsky et al. (2011) study. It uses largely the

same study area, and utilizes the earlier study’s validation data as training data. This

study uses other data for classi�cation, however, and a di�erent method, namely the

Random Forest algorithm to try several di�erent classi�cation schemes, compared to

the earlier study’s one classi�cation scheme.

The classi�cation results of this study are not as accurate as those of the earlier

study (Gilichinsky et al. 2011). The best out-of-bag error was 19 % for the present

study’s classi�cation scheme 8, which has two classes. Generally, though, the out-

of-bag errors fall in the span between 20 % and 60 %. One of the lichen coverage

classi�cation schemes in this study was the same as the one Gilichinsky et al. (2011)

tested, namely classi�cation scheme 4. The most accurate result for that classi�cation

scheme was an out-of-bag error of 37 %.

However the purpose of this study was not to get higher classi�cation accuracies

than Gilichinsky et al., but to test new data sources: the Sentinel-2 satellite and

ALS-derived metrics. In that, this study succeeded. Sentinel-2 is indeed useful for

classi�cation, as are the ALS-derived metrics. A single summer date of Sentinel-2

imagery was su�cient, as compared to combining Summer and Fall images, for good

results. That said, it would have been interesting to use three or four Sentinel-2 images,

and to include data about soil texture and fertility in addition to the ALS-derived

metrics to perhaps increase accuracy.

In the future for the �eld of lichen mapping as a whole, quantifying lichen biomass

would be interesting and of potential use for the forestry and reindeer husbandry

land-use. With the debate about the e�ect of global warming on the environment,

and the in�uence of forestry on lichen cover, it would also be of interest to study

change in lichen cover over time.
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Appendix

Appendix �gure 1. The mean decrease in accuracy for classi�cation scheme 2, 4

and 6 and all Sentinel-2 2015-08-19 bands. The variables are ordered top-to-bottom as

most to least important.
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Appendix �gure 2. The mean decrease in accuracy for classi�cation scheme 2, 4

and 6 and all Sentinel-2 2016-10-02 bands. The variables are ordered top-to-bottom as

most to least important.

Appendix �gure 3. The mean decrease in accuracy classi�cation scheme 2, 4 and 6

and all ALS-derived variables (DEM, forest height (p95), canopy density (vegkvot)

and wetness index (SWI)). The variables are ordered top-to-bottom as most to least

important.
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Appendix �gure 4. The mean decrease in accuracy for classi�cation scheme 2, 4

and 6 and all Sentinel-2 2015-08-19 and 2016-10-02 bands. The variables are ordered

top-to-bottom as most to least important.

Appendix �gure 5. The mean decrease in accuracy for classi�cation scheme 2, 4

and 6 and all Sentinel-2 2015-08-19 bands and ALS-derived variables (DEM, forest

height (p95), canopy density (vegkvot) and wetness index (SWI)). The variables are

ordered top-to-bottom as most to least important.
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Appendix �gure 6. The mean decrease in accuracy for classi�cation scheme 2, 4

and 6 and all Sentinel-2 2016-10-02 bands and ALS-derived variables (DEM, forest

height (p95), canopy density (vegkvot) and wetness index (SWI)). The variables are

ordered top-to-bottom as most to least important.

Appendix �gure 7. Scatter plot of the two most important Sentinel-2 2015-08-19

bands, band 8 and band 4, for classi�cation scheme 4. The classes are 40: 0-25 %, 41:

26-50 % and 42: 51-100 % lichen coverage.
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Appendix �gure 8. Scatter plot of the two most important Sentinel-2 2016-10-02

bands, band 5 and band 4, for classi�cation scheme 4. The classes are 40: 0-25 %, 41:

26-50 % and 42: 51-100 % lichen coverage.

Appendix �gure 9. Scatter plot of the two most important ALS-derived variables,

vegetation ratio and forest height, for classi�cation scheme 4. The classes are 40:

0-25 %, 41: 26-50 % and 42: 51-100 % lichen coverage.
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Appendix �gure 10. Scatter plot of the two most important Sentinel-2 2015-08-19

bands, band 8 and band 4, for classi�cation scheme 6. The classes are 60: 0-33 %, 61:

34-66 % and 62: 67-100 % lichen coverage.

Appendix �gure 11. Scatter plot of the two most important Sentinel-2 2016-10-02

bands, band 5 and band 4, for classi�cation scheme 6. The classes are 60: 0-33 %, 61:

34-66 % and 62: 67-100 % lichen coverage.
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Appendix �gure 12. Scatter plot of the two most important ALS-derived variables,

vegetation ratio and forest height, for classi�cation scheme 6. The classes are 60:

0-33 %, 61: 34-66 % and 62: 67-100 % lichen coverage.
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Appendix �gure 13. Map of the study area. The Sentinel-2 image from 2015-08-19

is shown in true colour.
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Appendix �gure 14. Lichen coverage map of the study area, classi�ed with the

Random Forest algorithm according to classi�cation scheme 2, using the Sentinel-2

image from 2015-08-19 and ALS-derived variables (DEM, forest height, canopy density

and wetness index).
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Appendix �gure 15. Lichen coverage map of the study area, classi�ed with the

Random Forest algorithm according to classi�cation scheme 4, using the Sentinel-2

image from 2015-08-19 and ALS-derived variables (DEM, forest height, canopy density

and wetness index).
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Appendix �gure 16. Lichen coverage map of the study area, classi�ed with the

Random Forest algorithm according to classi�cation scheme 6, using the Sentinel-2

image from 2015-08-19 and ALS-derived variables(DEM, forest height, canopy density

and wetness index).
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Appendix �gure 17. Map of part of the study area. The Sentinel-2 image from

2015-08-19 is shown in true colour.
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Appendix �gure 18. Detail lichen coverage map of part of the study area, classi�ed

with the Random Forest algorithm according to classi�cation scheme 2, using the

Sentinel-2 image from 2015-08-19.
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Appendix �gure 19. Detail lichen coverage map of part of the study area, classi�ed

with the Random Forest algorithm according to classi�cation scheme 4, using the

Sentinel-2 image from 2015-08-19.
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Appendix �gure 20. Detail lichen coverage map of part of the study area, classi�ed

with the Random Forest algorithm according to classi�cation scheme 6, using the

Sentinel-2 image from 2015-08-19.
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