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Abstract  
The purpose of this thesis is to determine if the predictions of the theory of storage can explain the 
volatility of copper prices during the past two decades. The theory predicts that decreasing interest 
rates should reduce the volatility of commodity prices by encouraging the smoothing of short-run 
price swings caused by temporary shocks to supply and demand. In contrast, interest rates should 
have no effect on price volatility in the long-run as inventory smoothing cannot be used against 
persistent shocks. The theory is tested by estimating the volatility of copper spot and futures prices 
traded on the London Metal Exchange (LME) using the Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) model for the period of 1994 to mid-2017. The effect of real interest 
rates changes on the volatility of the prices is also examined. Temporary shocks are identified by 
movements in the time spread of the futures curve, calculated as the price difference between the 15-
months’ contract and the spot contract. The volatility effect of persistent shocks is represented by 
fluctuations in long-term prices in terms of the 15-months’ and 27-months’ contracts.  
The empirical results show that the volatility of copper prices have been largely driven by persistent 
shocks during the sample period and that the real interest rate has a significant decreasing effect on 
the volatility of all contracts, including long-term prices. This suggest that if the expectations of 
booming demand for copper and increasing interest rates are realized in the coming years, the 
volatility of copper is likely to increase considerably. This will have important implications to a 
number of countries and industries, such as the growing sectors of renewable energy systems and 
technologies which rely heavily on copper.    
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1. Introduction
1.1. Background

Copper prices have become increasingly volatile since the beginning of the 2000s. This is illustrated 
in Figure 1, displaying a significant increase in price fluctuations since 2003. Commodity prices 
have historically undergone periods of boom and bust, entailing long periods of deviations from the 
long-run trend. These cycles, sometimes decades-long, have been associated with persistent demand 
shocks driven by world GDP (Jacks, 2013; Stürmer, 2016), and have eventually been punctuated by 
booms and busts in prices. The booms and busts have become increasingly longer and larger in more 
recent years and are particularly bearing in determining the volatility of real commodity prices 
(Jacks, 2013).  

Figure 1: Spot price of copper, February 1994 - September 2017 

As for the factors influencing short-term fluctuations, macroeconomic forces such as real interest 
rates (e.g. Frankel and Hardouvelis, 1985; Barsky and Kilian, 2002; Hamilton, 2008; Frankel, 2008) 
and exchange rates (Akram, 2009) have been identified as drivers of commodity prices along with 
changes in inflation, industrial production, inventories and the long-term and short-term interest rate 
spread, particularly during periods of high volatility (Karali and Power, 2013). Focusing on real 
interest rates, high real interest rates affect real commodity prices through three channels (Frankel, 
2008): (i) by decreasing the firm’s demand for inventories, as the interest rate constitutes a financial 
cost of storage (ii) by increasing the incentive to extract the commodity today rather than later and 
earn interest on the proceeds from the sale, and (iii) by encouraging speculators to shift out of 
commodity contracts, especially spot contracts, and into treasury bills. All three mechanisms work to 
reduce the market price of commodities as market supply increases, while a decrease in the real 
interest rate has the opposite effect. An issue with examining the causality of interest rates on 
commodity prices is however that they both are affected by the business cycle. Akram (2009) 
addresses this by controlling for factors relating to economic growth and find that commodity prices 
rise when the real interest rate fall and when the real value of the dollar depreciates. Furthermore, oil 
and metal prices show overshooting behaviour in response to interest rate changes such that current 
prices rise more than the long-run equilibrium level. 

As a result of the inherent volatility of commodity prices, market participants have always sought 
ways of hedging against price fluctuations. Futures contracts are among the most popular financial 
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instruments for managing risk and have been trading for hundreds of years. It was however only in 
the beginning of the 2000s that commodity futures became popular in mainstream investment 
portfolios. Greer (2000) could demonstrate a negative correlation between commodity returns and 
stock returns and after the equity market crash in 2000, billions of dollars flowed into commodity 
markets from a range of financial institutions, such as hedge funds, insurance companies and pension 
funds. The increase in financial speculation on commodity futures thus occurred at the same time as 
commodity prices became increasingly volatile. Tang and Xiong (2012) argue that this increase in 
speculation on commodity markets has made commodity prices increasingly correlated with one 
another and with the stock market, which should explain the increased volatility of non-energy 
commodities that occurred around 2008. Prior to the beginning of the 2000s, commodity prices were 
largely uncorrelated with one another (Erb and Harvey, 2006) or with the stock market (Gorton and 
Rouwenhorst, 2006) and individual commodity prices were largely determined by supply and 
demand factors. The increased correlation across commodities and with the stock market has, 
however, exposed commodity prices to the general risk appetite for financial assets and the 
investment behaviours of commodity index investors (Tang and Xiong, 2012). Contrary to these 
explanations, Gruber and Vigfusson (2016) found that the correlation and volatility of commodity 
prices have increased due to decreasing interest rates and increasing volatility of persistent shocks. 
Their results are in line with the theory of storage, which is well established in the literature and 
form the conceptual framework of this thesis. 
 

1.2. The problem 

The theory of storage predicts that the volatility of real commodity prices should fall with decreasing 
real interest rates. The rationale behind this is that interest rates constitute a cost of storage for 
consumers and producers, and reduced storage costs (lower interest rates) should therefore 
encourage the use of inventories to smooth price fluctuations originating from temporary shocks. 
Inventory smoothing implies that, in a situation of e.g. a temporary spike in demand accompanied by 
higher prices, producers can sell out of inventories and profit on the temporary “shock” in prices. 
This is of course conditional on the level of inventories that have been carried into the current period. 
If interest rates have been high, storage has been costly and inventory levels are likely to be low, 
which would make the market more vulnerable to unexpected shocks to supply and demand. In 
contrast, price fluctuations originating from persistent, long-lasting shocks do not encourage 
inventory smoothing as it is not profitable in the long-term and inventories would eventually be 
depleted. 
 
The theory thus predicts that periods of low interest rates should display lower volatility in 
commodity prices. The increased volatility in copper spot prices plotted in Figure 1 occurred during 
a period of relatively low interest rates. According to the theory and the empirical findings of Gruber 
and Vigfusson (2016), this is explained by an increase in the volatility of persistent shocks against 
which low interest rates have no impact. Their empirical results show however no significant impact 
of the real interest rate on the volatility of copper prices, and the same was found by Hammoudeh 
and Yuan (2008). Several studies have tested the theory of storage in terms of the relationship 
between inventory levels and copper price volatility (e.g. Fama and French, 1988; Ng. and Pirrong, 
1994; Brunetti and Gilbert; 1995; Geman and Smith, 2012) and found evidence supporting the 
theory but the prediction relating decreasing real interest rates with lower copper price volatility has 
been less explored.  
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Addressing this gap in the literature is important for several reasons. Copper is one of the most 
important metals in the world by production volumes and variety of applications, providing crucial 
materials to buildings, infrastructure, power lines, and electronics. It is the main source of export 
earnings for producing countries like Chile, Peru and Zambia, generating important employment, 
investments and government revenue. In addition, demand is expected to rise significantly in the 
years ahead due to the increasing global population and economy, and the growing sectors of 
renewable energy systems and technologies. Copper is a crucial input component in electric vehicles 
and efficient motors, as well as wind turbines and solar panels and the infrastructure that powers 
them. Volatility in copper prices thus constitutes a risk factor affecting long-term investment 
decisions concerning these new important systems and technologies, which are largely driven by 
decreasing costs. Price volatility also has a negative impact on macroeconomic factors, particularly 
for producing countries and low-income countries. Exploring the characteristics of copper volatility 
is therefore relevant in light of the expected increases in interest rates in the near future, the booming 
global demand for copper, and the importance of the metal for a wide range of industries and 
countries. 
 

1.3. Objective of the thesis  

The purpose of the study is to determine if the volatility of real copper prices for the past two 
decades can be explained by the theory of storage, which predicts that decreasing real interest rates 
should have an important dampening effect on commodity price volatility. To test if the predictions 
of the theory hold, the volatility of monthly copper spot and futures prices and the volatility effect of 
real interest rate changes will be estimated using the Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) model. The research question to be tested is: 

• Are the characteristics of copper price volatility consistent with the predictions of the theory 
of storage? 

The hypotheses derived from the theory are the following: 

• Hypothesis 1: Short-term prices are more volatile than long-term prices as they are affected 
by both temporary and persistent shocks.  

• Hypothesis 2: Decreasing real interest rates reduce the volatility of short-term prices as well 
as the spread between futures and spot prices (hereafter termed the “time spread”).  

• Hypothesis 3: Decreasing real interest rates have no effect on the volatility of long-term 
prices. 
 

1.4. Outline 

The rest of the thesis is organized as follows. Section 2 provides the relevant theoretical framework 
of the thesis, including a brief introduction to the market for copper futures followed by a literature 
review of the theory of storage. Section 3 describes the empirical methodology used throughout the 
thesis by reviewing the features of time series data and the conditions that must be satisfied before 
estimating the GARCH models. Section 4 presents the data, relevant diagnostic tests on the 
variables, and specifies the models to be estimated. Section 5 presents the empirical results, which 
are discussed in Section 6. Finally, Section 7 summarizes and concludes the thesis.    
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2. Theoretical framework 
2.1. The futures market for copper 

As a consequence of the inherent volatility of commodity markets, producers and consumers have 
always sought ways of hedging and trading the risk of large price fluctuations. This resulted in the 
development of commodity futures markets in which options and futures contracts are traded 
(Geman and Smith, 2013). A futures contract allows participants to lock in a price in advance and 
obliges the owner to pay to the seller on the maturity date and in return receives a specified quantity 
of the commodity. The maturity typically ranges from one month up to several years in the future. 
For example, a construction company may want to fix the price of copper that they will use some 
months later to avoid unexpected price increases. Spot markets also exist, in which immediate 
delivery is available (or typically in two days forward). The copper spot price is the actual price paid 
when for example large manufacturers buy the quantity they need for the production.  
 
The standard method of estimating the volatility of commodity prices is to use data on futures prices. 
Futures prices are available at high sampling frequency and the contracts are standardized such that 
e.g. the quality is the same across prices. In addition, price discovery usually occurs in futures 
markets (Karali and Power, 2013). This implies that actual commodity prices are determined in the 
futures market based on supply and demand factors related to the market. Futures prices thus reflect 
the expected spot price at a future date and vary depending on market expectations on scarcity, 
extraction costs and inventory levels. Futures and spot prices are thus interlinked and can be used to 
estimate the volatility of real copper prices over time.  
 
Copper prices are suitable for analysis for several reasons. First of all, it is a relatively homogenous 
good as refined copper is 99.99 per cent pure copper. Secondly, the cost of transporting copper 
constitutes a small percentage of the final price. Third, the supply of copper is subject to little 
seasonal variation and only minor in demand (related to slight variations in construction activity 
across the northern hemisphere year) and it is also easy to store at a relatively low cost and with 
negligible degradation over time compared to other commodities (Geman and Smith, 2013). Finally, 
copper is sold on global markets rather than in various regional markets and as a result, the prices are 
correlated within the bounds set by the cost of transporting copper (Svedberg and Tilton, 2006). The 
London Metal Exchange (LME) was founded in 1877 and is the futures exchange with the world’s 
largest market in options and futures contracts on metals and provides 600 warehouses worldwide. It 
is the principal marketplace to establish prices in the copper market (Stürmer, 2016). 
On each trading day, contracts for delivery in 2 days (“spot”), 3 months, 15 months and 27 months 
are traded. The 3-month contract is the most traded contract and was originally introduced because it 
took that long for tin from South-East Asia, or copper from Chile, to arrive by ship to London 
(Geman and Smith, 2013).  
 

2.2. Theory of storage 

The theory of storage has become the dominating theory explaining short-term fluctuations in futures 
and spot prices. In its simplest form, the framework takes the supply of the commodity as given and 
assumes that risk-neutral commodity consumers operate in a competitive market in which they 
choose the optimal quantity to consume or store, based on the price of storage. The price of storage 
relates to the difference between the futures price and the spot price (or the price of the contract 
closest to maturity if spot prices are not available). In the U.S. in the early 1930s, empirical research 



 

5 
 

had long noted that short-term futures prices were often higher than long-term futures, reflecting a 
negative spread (Keynes, 1930). This was a puzzle to researchers at the time, as inventories were 
carried over periods despite market expectations of decreasing prices. The rational strategy would be 
to buy the commodity later at a lower price, or buy the long-term futures contract, but market 
inventory levels were nevertheless substantial despite the apparent capital loss. In addition, the 
spread between futures and spot prices also seemed to vary from year to year. Working (1933, 1934, 
1948, and 1949) sought to explain this by analysing the futures market on wheat and inventory 
levels. His findings laid the foundation to the theory of storage, relating spot and futures prices with 
market inventory levels. Working plotted the futures—spot spreads observed over time against 
observed inventory levels and a clear relationship emerged: years of low inventory displayed higher 
spot prices than futures prices, resulting in a negative spread, while years of no shortage (high 
inventory levels) displayed futures prices slightly above spot prices, which approximately 
corresponded to the cost of storing the commodity until the future delivery date. The relationship has 
been termed the Working curve (1933) and is shown in Figure 2. The curve shows a negative spread 
at times of low inventory levels and a slightly positive spread, approaching a constant level, for high 
levels of inventories.  

 
Figure 2: Relationship between Chicaco July-September spread in June and U.S. wheat stocks on July 1 (Working, 1933) 

Working also contributed importantly to demonstrating some typical features of commodity futures 
prices which are in line with the predictions that will be tested later in the thesis, summarized as 
follows: 

(i) Spot price volatility is higher in times of low inventories compared to times of high levels 
since any news on short term supply, demand or inventory will have a large impact on the spot 
market.  

(ii) Information concerning the short-term supply or demand affects short-term prices more than 
the long-term futures. 

(iii) Information affecting long-term supply or demand affects the short and long-term futures 
prices approximately equally, thus leaving the spread unaffected. 

The conflict of holding inventories in times of negative futures—spot spreads was however not 
solved until Kaldor (1939) provided an explanation by introducing the concept of an unobserved 
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“convenience yield”. The convenience yield represents the benefit derived from holding physical 
commodities and having ready access to them, as it allows firms to immediately respond to demand 
and supply shocks. The convenience yield enters the relationship between the futures price and the 
spot price as follows (Fama and French, 1987): 

𝐹(𝑡, 𝑇) − 𝑆(𝑡) = 𝑆(𝑡)[𝑅(𝑡, 𝑇) + 𝐶(𝑡, 𝑇) − 𝑌(𝑡, 𝑇)] (A1) 

Where, 
• 𝐹(𝑡, 𝑇) is the futures price of a commodity at time 𝑡, for delivery at time 𝑇.  
• 𝑆(𝑡) is the spot price at time 𝑡.  
• 𝐹(𝑡, 𝑇) − 𝑆(𝑡) is the return of buying the commodity in time 𝑡 and selling it for delivery at 

time 𝑇. 
• R(t, T) is the cost of financing the futures position from time 𝑡 to time 𝑇, in other words the 

interest rate. 
• 𝐶(𝑡, 𝑇) is the cost of storage of the physical commodity, such as warehouse costs, from time 

𝑡 to time 𝑇. 
• Y(t, T) is the convenience yield associated with storing the commodity from time 𝑡 to time 

𝑇, calculated to satisfy the relationship rather than observed directly.  
 

The theory predicts a negative relationship between the convenience yield and inventories, implying 
that the smaller the level of inventories on hand the greater the convenience yield of an additional 
unit of storage (Brennan, 1958). This implies that the marginal convenience yield can sometimes 
exceed the marginal costs of storage when inventory levels are low, thus resulting in the negative 
futures—spot spreads observed in Working’s curve in Figure 2. The spread can therefore be used as 
a signal for the market level of inventories: a positive spread signals a soft market with inventories in 
abundance, and a negative spread signals a tight market with inventories running low (Frankel, 
2014). To better understand the relationship between the spread and the convenience yield, equation 
(A1) can be expressed as: 

(𝐹(𝑡, 𝑇) − 𝑆(𝑡))
𝑆(𝑡)

= 𝑅(𝑡, 𝑇) + 𝐶(𝑡, 𝑇) − 𝑌(𝑡, 𝑇) 
(A2) 

The relationship can also be expressed in terms of the convenience yield, which gives: 
(𝐹(𝑡, 𝑇) − 𝑆(𝑡))

𝑆(𝑡)
− 𝑅(𝑡, 𝑇) − 𝐶(𝑡, 𝑇) = −𝑌(𝑡, 𝑇) 

(A3) 

From (A3), it is clear that the convenience yield is simply the futures—spot spread but expressed 
with opposite sign and adjusting for the cost of financing and storing the commodity over the period 
(Geman and Smith, 2013).  
 
Working’s finding of high spot price volatility in times of low inventory levels has been examined in 
several studies related to base metals. Fama and French (1988) examined the relationship between 
the volatility of base metals traded on the LME and inventories and found that, in line with 
Working’s prediction, spot price volatility increases as inventory decrease. This relationship is 
supported by Ng. and Pirrong (1994) who found a strong relationship between the spread and spot 
price volatility, followed by Brunetti and Gilbert (1995), who also linked high spot price volatility of 
LME-traded base metals to low inventory levels.  
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Deaton and Laroque (1992, 1996) extended the model and confronted the theory by testing whether 
it could explain the actual behaviour of a broad range of commodity prices. The authors failed to 
reproduce the predictions of the theory, such as the high autocorrelation of most commodity prices. 
Cafiero et. al. (2011) pointed out problems in their estimations and when re-estimating the model, it 
actually yielded estimates consistent with observed levels of autocorrelation. The model of Deaton 
and Laroque entails forward-looking stockholders of a commodity, who maximizes profit by 
considering the expected future price relative to the current price as well as the cost of carrying 
inventories into the next period. The equilibrium price of the commodity, which would otherwise be 
determined by a simple process of supply and demand, is thus determined by the maximization 
process of the stockholders. The source of volatility in the model is unexpected temporary shocks to 
supply or demand, which can be dampened by holding inventories. In the model, commodity prices 
are denoted by: 

𝑃5 = 𝑃(𝑧5, ∆𝐼5), (A4) 

where 𝑃5 is the price, 𝑧5  is a combination of supply and demand for the commodity (i.e. net demand 
or net supply) and subject to stochastic shocks, and ∆𝐼5  is the inventory level for each period. 
Inventories are accumulated according to: 

	∆𝐼5 = 𝐼5 − (1 − 𝜕)𝐼5<=, 
(A5) 

where (𝐼5) is the inventory level in time 𝑡, (1 − 𝜕) is the depreciation rate at which inventories 
deteriorates over the period, and (𝐼5<=) is the quantity of inventories carried from time 𝑡 − 1 to time 
𝑡. Stockholders are assumed to be profit-maximizing, risk-neutral, and hold a non-negative quantity 
of inventories (as commodities cannot be consumed before they exist). Risk-neutrality ensures that 
the futures price equals the expected future spot price. In each period, supply can either be consumed 
or entered into storage for future consumption and consumption can either come from inventory or 
current supply. Inventories are associated with costs in terms of the depreciation rate (d) and a 
constant real interest rate (r), which affect the valuation of the expected price in the next period.  
In equilibrium, prices must thus satisfy the following relationship: 

	𝑝5 = max	[
(1 − 𝛿)
(1 + 𝑟)

𝐸5𝑝5E=, 𝑃(𝑧5 + (1 − 𝛿)𝐼5<=] 
(A6) 

The first term on the right-hand side represents the expected value of storing one unit of the 
commodity over the period, adjusted for depreciation and interest costs. If prices are expected to 
increase or decrease by less than the storage cost, inventories will be zero. For inventories to be 
carried to the next period, the expected price must be the current price plus the storage cost, implying 
a positive futures—spot spread. The second term is the value of the current price if no inventories are 
carried into the next period, with the current net supply 𝑧5  and surviving inventories from the 
previous period (1 − 𝛿)𝐼5<=	sold to the highest bidder. If this price is higher than the first term, 
speculators will be reluctant to hold inventories and the latter price will set the market price. 
However, if selling everything (the value of the second term) would drive the price lower than the 
expected price net of costs, inventories would be held until the price equals the first term in the 
brackets and arbitrage was no longer profitable. In other words, even though the interest rate is 
assumed to be constant, the model suggests that lower interest rates decrease price fluctuations in 
response to temporary shocks by encouraging stockholding. This prediction will be tested in the 
empirical results section.  
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3. Empirical methodology  
3.1. Stationarity  

A time series is a sample of random variables ordered in time, often called a stochastic process, 
which can either be stationary or non-stationary. The definition of a strictly stationary process is 
when the joint probability distribution is not dependent on time, and the mean and variance 
characterizing the distribution are stable over time (Maddala and Kim, 1998). Regressing a non-
stationary variable on another could provide statistically significant results when in fact there is no 
causal relationship between the variables. This is called a spurious regression and was coined by 
Granger and Newbold in 1974. It is thus important to ensure that the variables to be modelled are 
stationary. Sources to non-stationarity could be trends, which means that the variable contain a unit 
root, or structural breaks causing a sudden change in the time series that must be accounted for in the 
regression model (Stock and Watson, 2012). In practice, time series variables are rarely stationary 
but it can be achieved through differencing the variable so that trends or other factors causing the 
non-stationarity are removed (Maddala and Kim, 1998). In addition, Meucci (2005) argues that 
expressing prices in their logarithmic (log) first difference form, i.e. in terms of log-returns between 
the price of one period and another, will simplify the modelling since log-returns are approximately 
symmetrically distributed in contrast to linear returns.  
 

Stationarity can be examined by plotting the time series and examining whether they appear to 
include trends or other systematic structures. Tests can also be applied to determine if the variable 
follows a unit-root process. In this study, the Augmented Dickey-Fuller (ADF) test will be applied to 
test for unit roots, against the alternative hypothesis that it was generated from a stationary process. 
Dickey and Fuller (1979) introduced the test which, in addition to testing for unit root as the original 
Dickey-Fuller test, controls for serial correlation by fitting a model of the form: 

∆𝑦5 = 𝛼 + 𝛽𝑦5<= + 𝜁=∆𝑦5<= +⋯+ 𝜁K∆𝑦5<K + 𝜖5, 
(B1) 

where ∆𝑦5 is the first difference form of the dependent variable, 𝑎 is a constant, 𝛽 is the coefficient 
of the autoregressive dependent variable, and 𝑘 is the number of lags of the autoregressive process 
chosen in the test. The null hypothesis of the test is that 𝛽 = 0 against the alternative that 𝛽 < 0. 
Stationarity thus implies that 𝑦5 returns to a constant mean and can therefore be used to predict the 
next period’s change while non-stationary variables are random walks, and cannot be used to 
forecast values of the consecutive periods. In addition, a supremum Wald (sup Wald) test will be 
applied for testing if the time series variables are subject to structural breaks. The sup Wald test 
computes sample statistics over a set of possible break dates for a range of the data. Andrews (1993) 
recommends trimming the sample to be tested by 15% so that, for this study, observations during 
October 1997 to March 2014 will be tested for breaks.  
 

3.2. Volatility clustering 

Another feature of time series data, particularly for economic and financial data, is that the variance 
tends to be grouped in clusters (Zivot, 2008). This implies that periods subject to particularly large 
shocks or disturbances are followed by large variances in consecutive periods and vice versa for 
small variance. Volatility clustering usually implies that the variance of the error term of the 
regression is higher for some ranges of the data than for others and that the change in the variance is 
not random (Stock and Watson, 2012). Instead, the variance of the error term is likely to be 
correlated with past values and thus suffer from time-varying heteroskedasticity, or conditional 
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heteroskedasticity. This clustering of the variance of the error term over time violates the ordinary 
least squares (OLS) assumption of homoscedasticity, which states that the expected value of the sum 
of squared errors does not vary over time (Engle, 2001). OLS can therefore not be used as estimation 
method since it would produce biased regression coefficients. Conditional heteroskedasticity is, 
however, not a problem one need to correct for if the key issue is to analyse why the variance of the 
error terms changes. There are models designed to capture conditional heteroskedasticity in the 
regression error, namely the autoregressive conditional heteroskedasticity (ARCH) model and its 
extensions.  
 

3.3. ARCH and GARCH models 

The ARCH model was first introduced by Engle in 1982 to model volatility when the variance of the 
error term varies over time. Today, estimating and forecasting volatility is a central part of financial 
econometrics and the ARCH model and its extensions have become the standard tool for doing it. 
The ARCH model is a system of two equations: the conditional mean equation and the conditional 
variance equation, where conditional implies that the mean and variance are time-varying such that 
they are conditional on the information set available up to time 𝑡 − 1.  
Consider the following conditional mean model of price returns at time 𝑡 (𝑅5) (Stock and Watson, 
2012): 

𝑅5 = 𝜇 + 𝜂′𝑋5<U + 𝜀5, 
(B2) 

where 𝑅5  is a function of a constant (𝜇) denoting the average returns (price difference of two 
periods), a set of variables (𝑋5<U) that could be autoregressive terms of 𝑅5  and other exogenous 
variables affecting the returns, (𝜂) are the associated coefficients to be estimated, and (𝜀5) the error 
term. In Engle’s original model (1982), the error term(𝜀5) was assumed to follow a normal 
distribution with zero mean and a variance of 𝜎5X but, as pointed out by Mandelbrot (1963) and many 
others, the distribution of financial time series is often leptokurtic. A leptokurtic distribution implies 
that the series have a higher peak and heavier tails than a normally distributed sample, implying that 
extreme values are more frequent than would be expected with a normal distribution. It is thus 
common to fit the model assuming the errors to follow distributions with fatter tails than the normal 
distributions, such as the Student t-distribution or the generalized error distribution (GED) (Zivot, 
2009). 
 

The ARCH (q) model estimates the conditional variance and is specified as: 

𝜎5X = 𝛼Y + 𝛼=𝜀5<=X + 𝛼X𝜀5<XX +⋯+ 𝛼Z𝜀5<[X , (B3) 

where the conditional variance (𝜎5X) at time 𝑡 is estimated as a function of past squared values of 𝜀5  
and unknown parameters (𝛼Y,𝛼=, … , 𝛼Z) to be estimated. This way, the magnitudes of the parameters 
(𝛼U) indicate the importance of past values for the current volatility. The econometric challenge is to 
determine the order of q and in general, it requires a large number of lags to capture the effect of 
volatility clustering. This can make ARCH estimations complicated. 
  
Bollerslev (1986) extended the model such that 𝜎5X depends on its own lags in addition to the lags of 
the squared errors. The model is called the Generalized ARCH (GARCH) model and has fewer 
parameters than the ARCH and is thus easier to estimate. Hansen and Lunde (2004) have also shown 
that it is difficult to find a volatility model that beats the simple GARCH (1, 1) model, including one 
lag of the error term and the variance. 
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The conditional mean equation is the same as for the ARCH model but the conditional variance 
equation, the GARCH (p, q), is specified as: 

𝜎5X = ω + 𝛼=𝜀5<=X +⋯+ 𝛼[𝜀5<[X + 𝛽=𝜎5<=X + ⋯+ 𝛽Z𝜎5<ZX + 𝛿𝑦5, 
(B4) 

where the conditional variance (σ_X) at time t depends on a constant (ω), the effect of past squared 
errors αaε_<aX , the effect of past values of the variance itself βdσ_<dX , and the effect of some 
exogenous variable δy_. The parameter αd is also called the ARCH effect, or past shock effect, and 
βd is called the GARCH effect and represents the past volatility effect.  
Since the variance is a function of the mean, equation (B2) and (B3 or B4) are estimated 
simultaneously using the maximum likelihood method, which maximizes the log likelihood function 
with respect to the parameters ω, 𝛼[, 𝛽Z and 𝛿. The sum of ∑(𝛼 + 𝛽) measures the degree of 
convergence to the long-run equilibrium level of the variance, or in other words the persistence of 
random shocks to the conditional variance in the model (Ma et al., 2006). A high value of the sum 
indicates slow convergence, or high persistence. To ensure a positive conditional variance, the 
estimated parameters of the variance equation must be non-negative, such that ω ≥ 0, 𝛼 ≥ 0 and 
𝛽 ≥ 0 and |𝛼 + 𝛽| < 1.  
 

3.4. EGARCH model 
Nelson (1991) was first to recognize the non-negativity restriction on the parameters (ω, 𝛼 and 𝛽) as 
a weakness of the GARCH model. As the residuals in equation (B4) enter as squared errors, the 
effect of past residuals or shocks can only be symmetric on to the conditional variance. As a result, 
negative and positive shocks can thus not have different impacts on the variance. It is a stylized fact 
that negative shocks in terms of bad news have a larger impact on the volatility of stock prices than 
good news (i.e. positive shocks) (Zivot, 2009). For example, volatility tend to be higher in a 
declining market than in a rising market due to the decreasing effect of bad news on stock prices 
which increases the debt-equity ratio for companies making the stock more volatile. Nelson (1991) 
addressed this by relaxing the restrictions on the parameters by specifying the Exponential GARCH 
(EGARCH) model. The EGARCH uses the same mean equation as the original GARCH model but 
the variance equation allows for asymmetric effects on the conditional variance and is specified as: 

ln	(𝜎5X) = ω + 𝛾=
𝜀5<U
𝜎5<m

+ 𝛾X n
𝜀5<U
𝜎5<m

n + 𝛽ln	(𝜎5<mX ) + 𝛿𝑦5, 
(B5) 

where the conditional variance	𝜎5X  is estimated in a log-linear form to allow for positive and 
negative impacts, ω is the intercept, and 𝜎5<mX  the logged GARCH term and 𝛽	is its coefficient. The 
asymmetric effect is measured by (𝛾=) and the symmetric effect (replacing the ARCH effect in the 
original GARCH model) by (𝛾X). If  

opqr
spqt

 is positive, then the effect of the shock on the log 
conditional variance is (𝛾= + 𝛾X) and if the term is negative, the effect is (𝛾X − 𝛾=). 
 

3.5. Engle’s ARCH test 

If the squared residuals of the estimated conditional mean equation display autocorrelation, they are 
said to exhibit autoregressive conditional heteroskedastic (ARCH) effects. This can be determined 
by examining the autocorrelation function of the squared error term of the mean regression or by 
applying the Engle’s ARCH test. The null hypothesis of the test is that the squared residuals are 
determined by a white noise process while the alternative hypothesis is that they are correlated with 
its lagged terms. The alternative hypothesis is thus that the squared error term (𝜀5) in equation (5) is  
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correlated according to:  

	𝜀5X = 𝛼Y + 𝛼=𝜀5<=X + ⋯+ 𝛼u𝜀5<uX + 𝑢5, 
(B6) 

where 𝑢5  is a white noise error process. The null hypothesis of the test is that all the coefficients are 
zero, such that: 

	𝛼Y = 𝛼= = ⋯ = 𝛼u = 0, (B7) 

and no ARCH effects are present since the error is only dependent on 𝑢5 . The test will be applied to 
the residuals of the mean models in the study. 
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4. Data and descriptive statistics 
According to the predictions of Deaton and Laroque’s model, decreasing interest rates should reduce 
volatility in prices attributable to temporary shocks. In contrast, decreasing interest rates should not 
affect price volatility caused by persistent shocks. This study will follow the method of Gruber and 
Vigfusson (2016), first introduced by Schwartz and Smith (2000), and test the theory of storage by 
separating price movements caused by temporary shocks from persistent shocks. 
 

4.1. Data 

To estimate copper price volatility, monthly data on spot and futures prices will be analysed. The 
data set covers the period of February 1994 to September 2017 and has been obtained from Thomson 
Reuters Datastream. The LME is the principal marketplace to establish prices in the global copper 
market (Stürmer, 2016). Copper prices are therefore represented by prices of the cash contract, the 3-
months’ futures contract, the 15-months’ futures contract, and the 27-months’ futures contract, all 
traded on the LME. The cash price is the current price of cash LME contracts for delivery two days 
forward. This implies that the cash price is the price paid for copper on the spot market and thus 
represents the spot price. All prices are expressed in U.S. dollar (USD) per metric ton. The USD 
currency is used since most contracts in international commodity trade are settled in USD (Kornher 
and Kalkuhl, 2013). As the purpose is to test the theory of storage, in which decisions are made 
based on relative prices over periods, interest rates and copper prices will be deflated by the U.S. 
consumer price index (CPI of all items) and expressed in real terms. Real prices have been calculated 
by taking the log of the price for each month and subtract the log of the U.S. CPI as of the same 
month.  
The interest rate is represented by the U.S. interest rate in terms of the 3-month Treasury bill: 
secondary market rate. The real interest rate has been calculated by subtracting off the change in the 
CPI between month 𝑡 and 𝑡 − 1. The U.S. rate has been chosen since global real rates tend to follow 
the same path as the rate in the U.S. (Gruber and Vigfusson, 2016). Finally, the time spread is 
calculated as the difference between the real log-price of the 15-months’ contract and the real log-
price of the spot price, defined as: 

ln	 wxpyz{
|p
}, 

(C1) 

where 𝐹5E=~ is the futures price of the 15 months’ contract and 𝑆5  is the spot price. Illustrated in the 
formula, movements in the spread can only originate from temporary shocks as persistent shocks 
would impact both the numerator and the denominator. 
 

4.2. Descriptive statistics  

The descriptive summary statistics for the variables of interest are reported in Table 1, including the 
log-prices of the different contracts and the first differences (referred to as log-returns). The prices 
have close to the same mean, although the mean prices of the short-term contracts are slightly higher 
on average. The standard deviations (SD) of the different prices confirm the common perception that 
commodity prices are volatile, particularly for the shorter-term contracts, which display monthly 
volatilities of over 7% (for the log-returns). The 27-months’ contract has the lowest average return 
and the lowest standard deviation.  
 
As described in Section 3.1, log-returns have kurtosis and skewness closer to the normal distribution 
compared to log-prices. This is confirmed visually when inspecting the histograms in Figures 1.a-h 
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(Appendix 1), which show that the log-returns are more symmetrically distributed than the log-prices 
although the distribution is clearly not normal. In contrast, the log-returns appear to exhibit the 
typical distribution of financial time series data, namely asymmetry and leptokurtosis, which means 
that extreme log-returns are more frequent than would be expected if the returns were normally 
distributed.  

Table 1: Descriptive statistics 
     
Descriptive statistics Mean SD Kurtosis Skewness 
     
Log of Spot-price 3.722 0.511 0.511 0.511 
Log of 3-month-price 3.718 0.507 0.507 0.507 
Log of 15-month-price 3.692 0.498 0.498 0.498 
Log of 27-month-price 3.671 0.487 0.487 0.487 
Time spread between 15-month-price and the Spot-price -0.030 0.078 0.078 0.078 
Real Interest Rate based on 3-month T-bill 2.228 2.164 2.164 2.164 
Return on Spot-prices 0.003 0.075 0.075 0.075 
Return of 3-month-prices 0.003 0.072 0.072 0.072 
Return of 15-month prices 0.003 0.064 0.064 0.064 
Return of 27-month prices 0.002 0.060 0.060 0.060 
First difference of the RIR -0.009 0.426 0.426 0.426 
First difference of the time spread -0.000 0.028 0.028 0.028 

As expected, when testing the skewness and kurtosis jointly, normality is rejected for all variables at 
the 1% level except from the Real Interest Rate (RIR), which is normally distributed. This suggests 
that assuming error distributions with fatter tails are likely to fit the data better than the normal 
distribution.  
 
Moreover, looking at Figures 2.b-g) and 3.a-f) (Appendix 2 and 3), volatility clustering seems to be 
present based on the variance behaviour of the variables and the variance of the residuals from the 
mean models. Months of small volatility are followed by small volatility in consecutive months and 
vice versa for periods of high volatility. The period of 2006 - 2010 is marked by exceptionally large 
price swings.  

Table 2: Period 1, February 1994 – November 2005 
VARIABLES Mean SD Kurtosis Skewness 
Return on Spot-prices 0.004 0.064 0.064 0.064 
Return of 3-month-prices 0.004 0.059 0.059 0.059 
Return of 15-month prices 0.002 0.045 0.045 0.045 
Return of 27-month prices 0.001 0.041 0.041 0.041 
First difference of the time spread -0.002 0.036 0.036 0.036 

Dividing the sample into two periods to identify any pattern of change in the descriptive statistics 
allows for a first comparison of whether the volatility, in terms of the sample standard deviation, has 
changed over time. The first period ranges from 1994 to 2005 and the second period from 2005 to 
mid-2017. Examining the average standard deviations of the returns of the first period in Table 2, it 
can be noted that volatility is much lower compared to the standard deviations of the second period 
(Table 3) except from the volatility of the first differenced time spread, which has decreased. 
Volatility of the prices has increased with 33% (Spot), 42% (3-month), 73% (15-month), 83% (27-
month) between the periods, whereas the spread has decreased with 53%.  

Table 3: Period 2, December 2005 - September 2017 
VARIABLES Mean SD Kurtosis Skewness 
     
Return on Spot-prices 0.001 0.085 0.085 0.085 
Return of 3-month-prices 0.001 0.084 0.084 0.084 
Return of 15-month prices 0.002 0.078 0.078 0.078 
Return of 27-month prices 0.003 0.075 0.075 0.075 
First difference of the time spread 0.001 0.017 0.017 0.017 
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When plotting the time spread and the RIR over time in Figure 2 and 3, the pattern of the spread 
follows the predictions of the theory. That is, the spread appears to be less volatile at times of low 
interest rates, such as after the financial crisis in 2008.  

 
 
 
 
 

 
Figure 2 and 3: Time series plot of the time spread and the RIR 

 
4.3. Diagnostic testing on the time series variables 

Moving over to diagnostic testing of the variables and the mean models to be estimated, the log-
prices are first examined in Figure 2.a) (Appendix 2). Copper prices may have grown over time and 
the time series plot over the sample period shows that the log-prices could include an upward trend 
while the time series plots of the log-returns in Figure 2.b-g) display no obvious trends. As described 
in section 3.1, financial time series data tend to be less variant when expressed as returns than in 
levels, which is also confirmed by comparing the plots of the log-prices to the log-returns. 
Transforming the log-prices into their first difference form and remove potential trends could thus be 
appropriate before estimating the models to ensure stationarity of the variables. Table 4 reports the 
test statistics of the Augmented Dickey Fuller (ADF) test and shows that all log-prices are non-
stationary while the log-returns are stationary. The RIR is also stationary in its first-difference form 
but the time spread is slightly below the critical value and the null hypothesis of unit root cannot be 
rejected. This is also demonstrated by the autocorrelation function of the time-spread variable in 
Figure 4. i) (Appendix 4), which shows autocorrelation of up to 10 lags (displayed as spikes external 
to the confidence band). The time series of the time spread is thus likely to include a trend 
component. For further diagnostic testing and model estimation, all variables will therefore be 
modelled in their first difference form, defined as:  

	𝐿𝑛𝑟5 = 𝑙𝑛𝑃5 − 𝑙𝑛𝑃5<= = ∆𝑙𝑛𝑃5 
(C2) 

where 𝐿𝑛𝑟5  represents the first difference of the copper prices, the spread, or the RIR, defined as the 
difference between the log of the observation of month 𝑡 and 𝑡 − 1. The differenced prices will be 
referred to as log-returns hereafter.  
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Table 4: Diagnostic tests on the variables 
Diagnostic tests  Spot 3-

months’ 
15-

months’ 
27-

months’ 
Time- 
spread 

First diff. 
Time spread 

RIR First diff. 
RIR 

ADF test statistic* 
ADF 
Box Pierce P-
values 
Lag 1 
Lag 2 
Lag 3 
Lag 4 
Lag 5 
PAC 

-6.454 
I(0) 

 
 

0.0174 
0.0202 
0.0502 
0.0986 
0.1389 

1 
 

-6.428 
I(0) 

 
 

0.0228 
0.0131 
0.0338 
0.0696 
0.0954 

1 
 

-6.293 
I(0) 

 
 

0.0207 
0.0050 
0.0131 
0.0281 
0.0368 

1 
 

-6.387 
I(0) 

 
 

0.0823 
0.0396 
0.0802 
0.1362 
0.1480 

0 
 

-2.390 
I(1) 

 
 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

1 
 

-7.511 
I(0) 

 
 

0.9577 
0.0531 
0.0469 
0.0794 
0.1004 

0 
 

-1.327 
I(1) 

 
 
 
 

 
 
 
 

-6.552 
I(0) 

 
 
 
 

 
 
 
 

*including 5 lags. Critical values for the ADF test statistic is -2.879 for the 5% significance level. 

4.4. Diagnostic testing of the mean models 
The log-return of each month is likely to be affected by the returns of previous months. To select 
how many lags to include in the mean models, the autocorrelation structure can be examined for 
each variable as well as comparing the values of the Akaike’s information criterion (AIC) for each 
model and identify the model which minimizes the criteria. The AIC value is calculated based on the 
sum of squared errors of the model, the number of estimated regression coefficients, and the sample 
size.   
 

Starting with the autocorrelation structure, it can be noted that the p-values of the Box Pierce Q 
statistics reported in Table 4 allows for rejection of the null hypothesis. The null hypothesis states 
that the autocorrelation up to lag k is zero and can be rejected for all variables at the 5% significance 
level up to about five lags depending on the variables examined, except for the 27-months futures 
price and the first difference of the time-spread. This implies that the mean models should include 
lagged values (except from the 27-months’ contract and the first differenced spread) and to 
determine the lag order, the partial autocorrelation functions (PAC) for each variable can be 
examined, showing the unique correlation of each lag with the current value. The PACs are plotted 
in Figures 4. b-l) in Appendix 4, where lags external to the confidence band (the grey area) indicate 
the appropriate lag order for the mean models to be estimated. This can be confirmed by testing 
models with different number of lags and with or without the effect of the RIR. The selected mean 
model specifications are reported in Table 5 based on the PACs and comparing AIC values. The p-
values associated with the sup-Wald tests fail to reject the null hypothesis, which means that the 
variables are not affected by any structural breaks except for the Time spread which, as mentioned 
earlier, also has a problem of non-stationarity. The spread will therefore be modelled in its first 
difference form.   

Table 5: Mean models 
Mean model: Spot 3-months’ 15-months’ 27-months’ Time spread First diff. 

Time spread 
Mean specification AR(1) AR(1) AR(1) Simple AR(1) Simple 
Sup-Wald test 0.7655 0.7394 0.4943 0.7515 0.0000 0.8382 
ARCH effects p-values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Shapiro-Wilks p-values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

The third row in Table 5 shows the p-values from the Engle’s ARCH test on the squared residuals 
from the mean models and confirms that the “no ARCH” hypothesis can be rejected for all models. 
The conditional variance of the variables is thus suitable to be estimated with a GARCH model.  
Figures 5.a-f) (Appendix 5) show the standardized normal probability plots (P-P plots) and the 
quantile-normal plots (Q-Q plots) of the residuals of the mean models for the different variables. The 
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P-P plots compares the distribution of the residuals with the normal distribution focusing on the 
center of the distribution, while the Q-Q plots focus on the tails of the distribution. Miller (1997) 
strongly recommends Q-Q plots for detecting non-normality and to reveal exactly where it differs 
from normality. Based on the P-P plots, the middle range of the residual distribution looks to be in 
line with the normal distribution except for the time spread and its first difference form, which 
clearly differs in the center from the normal distribution. This is likely to be due to the peakedness of 
the distribution, illustrated in the histogram in Figure 1.j) (Appendix 1). Based on the Q-Q plots, it 
can also be concluded, as discussed earlier, that the tails diverge from the normal. This is also 
confirmed by the Shapiro-Wilks test for normality (p-values are reported in Table 5), with the null 
hypothesis of normal distribution, which is rejected for all the residuals. When deciding on model 
specification of the models to be estimated, the normal distribution, the Student’s t-distribution and 
the Generalized Error Distribution (GED) will be considered. The t-distribution and the GED are the 
most common fat-tailed error distributions for GARCH models and might thus be appropriate for the 
data (Zivot, 2009). 
 

4.5. Model specification  

Models of the GARCH family are designed to capture the different characteristics of the sample 
data, namely volatility clustering, non-normality of the price series, and autoregressive conditional 
heteroskedasticity in the errors. As described in section 3.3, the GARCH (p, q) model is a system 
including the regressions of the conditional mean and the conditional variance, which are estimated 
simultaneously. The chosen specification of the mean regression for each variable is reported in 
Table 5. The conditional mean of the spot contract, the 3-months’ contract and the 15-months’ 
contract will thus be estimated as first order autoregressive processes (AR(1)), defined as:  

	𝐿𝑛𝑟5 = 𝜋Y + 𝜋=𝐿𝑛𝑟5<= + 𝜀5, 
(C3) 

where 𝐿𝑛𝑟5  represents real log-returns of the copper prices defined as the log difference between 
month 𝑡 and 𝑡 − 1, 𝜋Y is the intercept, 𝐿𝑛𝑟5<= is the AR(1) term of 	𝐿𝑛𝑟5,, and 𝜀5  is the error term.  
The conditional mean equation of the 27 months’ contract is defined as: 

	𝐿𝑛𝑟5 = 𝜇 + 𝜀5, 
(C4) 

where 	𝐿𝑛𝑟5  is the real return of the 27-months’ contract defined as the log difference between month 
𝑡 and 𝑡 − 1, 𝜇 is the intercept, and 𝜀5  is the error term.  
The conditional mean equation of the time spread is defined as: 

𝐿𝑛 �
𝐹5
𝑆5
� − 𝐿𝑛 �

𝐹5<=
𝑆5<=

� = 	𝜇 + 𝜀5,	 
(C5) 

where 𝐿𝑛 wxp
|p
} − 𝐿𝑛 wxpqz

|pqz
}	is the first difference form of the time spread between the 15-months’ 

futures price and the spot price (the cash price), 𝜇	is the intercept and 𝜀5  the error term. 
 
To evaluate the fit of the GARCH (p, q) model for the variable of interest, a number of graphical and 
statistical diagnostics tests can be used. If the GARCH model is correctly specified with the 
appropriate order of (p, q) and underlying assumption of error distribution, the estimated 
standardized residuals should behave like conventional regression residuals. The standardized 
residuals are defined as the estimated residual of the GARCH model divided by the estimated 
conditional standard deviation:  op

sp
= 𝑧5 . This implies that 𝑧5  should not exhibit any autocorrelation 

or ARCH effects, and its distribution should approach the specified error distribution used in the 
estimation (Zivot, 2009).  
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To select appropriate GARCH (p, q) models and error distribution for the estimation of each 
variable, a number of different orders of the ARCH and GARCH terms have been estimated 
assuming the normal distribution, the Student’s t-distribution and the GED distribution. As noted in 
Section 4.2, the log returns do not have a normal distribution due to the long tails. This could be due 
to the effect of past volatilities (the GARCH effect) and the normal distribution could nevertheless 
be adequate for the data but it is more likely that using the likelihood of the Student’s  
t-distribution or the Generalized Error Distribution (GED), which have longer tails, will generate a 
better fit than the normal. This, along with the order of the lags of the GARCH and ARCH 
parameters (p and q), are evaluated by comparing AIC values. As expected, the Student’s t-
distribution gives the best fit for all models. As for the order of (p, q), the GARCH (1, 1) is selected 
for all variables. 
 
Moreover, the Box-Pierce Q-statistics confirms that the squared standardized residuals (𝑧5X) are no 
longer serially correlated and the Engle’s ARCH LM test fails to reject the null hypothesis of no 
ARCH effects. This implies that the specification of GARCH model for each variable successfully 
captures all ARCH effects in the errors. The conditional variance equation for all variables is 
specified as: 

	𝜎5X = ω + 𝛼=𝜀5<=X + 𝛽=𝜎5<=X , (C6) 

where 	𝜎5X is the conditional variance, ω is the intercept, 𝛼= is the effect of past shocks to the log-
return, 𝜀5<=X  is the lagged value of the squared error term, and 𝜎5<=X  represents the lagged squared 
conditional variance.  
Continuing with the second model including the effect of the real interest rate (RIR), the  
GARCH (1, 1) model assuming the t-distribution is selected for all variables according to: 

	𝜎5X = ω + 𝛼=𝜀5<=X + 𝛽=𝜎5<=X + 𝛿𝑅𝐼𝑅5<=, (C7) 

where the notations are equal to equation (C6) except from the effect of past month’s RIR 
(𝛿𝑅𝐼𝑅5<=), where RIR is expressed in its first difference form. In line with Hammoudeh and Yuan 
(2008), the RIR is likely to affect the volatility of the next month and is therefore lagged by one 
month.  
The parameter restriction of ∑𝛼 + 𝛽Z < 1 must hold for all estimations, otherwise the conditional 
variance will be estimated using the EGARCH (1, 1) model, specified as: 

	ln	(𝜎5X) = ω + 𝛾=
𝜀5<=
𝜎5<=

+ 𝛾X|
𝜀5<=
𝜎5<=

| + 𝛽=ln	(𝜎5<=X ) + 𝛿𝑅𝐼𝑅5<=, (C8) 

where the conditional variance	𝜎5X  is estimated in a log-linear form to allow for positive and 
negative impacts, ω is the intercept, 𝜎5<mX  is the logged past volatility effect and 𝛽	is its coefficient.  

The asymmetric effect is measured by (𝛾=) and the symmetric effect (replacing the ARCH effect in 
the original GARCH model) by (𝛾X). The asymmetric effect depends on the sign of 𝛾= and whether 
past shocks �opqr

spqt
	� are positive or negative. As previously, the lag order and the Student’s  

t-distribution have been selected based on the AIC criterion.  
Estimating the parameters of the models will answer if the hypotheses defined in Section 1.2 hold for 
the sample, which imply testing if: 

(1) the average standard deviation (�	𝜎5X) estimated in equation (C6) is higher for the spot and the 3-
months’ contract relative to the 15-month’s and 27-month’s contract. Comparing the volatility of 
the contracts with the volatility of the time spread will indicate if temporary shocks and persistent 
shocks have been equally important to copper price volatility during the sample period. 
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(2) an increase in the interest rate increases the volatility of spot-returns, 3-months’ returns, and the 
first difference of the time spread, such that δ > 0 in (C7). 

(3) the effect of the RIR (δ) in (C6) should not be statistically significant for the 15-months’ contract 
or the 27-months’ contract.  
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5. Empirical results  
5.1. Estimated volatilities with the GARCH (1, 1) and EGARCH (1, 1) models 

Table 8 reports the empirical results of the GARCH (1, 1) model, assuming the Student’s t-
distribution. The first column reports the estimated parameters of each model and the associated log-
likelihood and AIC values as well as the average volatility and persistence of the models. The rest of 
the columns display the estimates of the conditional mean and variance regressions for each variable. 
The impact of past shocks, the ARCH effect (𝛼=), is significantly positive for all contracts implying 
that shocks to the log-returns increase the conditional variance in the next month. The ARCH effect 
on the variance of the 15-months’ and 27-months’ contracts are considerably larger than for the spot 
and 3-months’ contracts. A 1% increase in past shocks to the log-return of the spot contract and 15-
month’s contract increase the next month’s variance by 0.07% and 0.06% respectively while the 
ARCH effect is almost double for the 15-months’ and 27-months’ contracts.   
 
The variance of all contracts is strongly dominated by past volatilities, the GARCH effect (β=), 
which indicates that past month’s variance is more important to the current month’s variance than 
past shocks. The GARCH effect is significantly positive for all contracts and particularly large for 
the spot and 3-months’ contracts for which an increase in past volatilities increases the variance of 
the next month by 0.89% while the effect is only 0.83% and 0.82% for the long-term contracts.   

Table 8: Volatility of the log-returns of the contracts 
GARCH 

t-
distribution: 

 
Spot 

  
3-month 

 
 
 

 
15-month 

 

 
 
 

 
27-month 

 

 
 

 Mean Variance Mean Variance Mean Variance Mean Variance 
Constant 0.0019  

(0.0038) 
0.0003 

(0.0003) 
0.0020 

(0.0036) 
0.0002 

(0.0002) 
0.0002 

(0.0030) 
0.0002 

(0.0002) 
-0.0002 
(0.0028) 

0.0002 
(0.0002) 

𝐷𝑒𝑝. 𝑣𝑎𝑟5<= 0.0980* 
(0.0582) 

 0.0991* 
(0.0575) 

 0.0840 
(0.0596) 

   

𝛼=  0.0684* 
(0.0376) 

 0.0647* 
(0.0357) 

 0.1113** 
(0.0540) 

 0.1148** 
(0.0538) 

𝛽=  0.891***  
(0.0608) 

 0.8920*** 
(0.0610) 

 0.8290*** 
(0.0783) 

 0.8240*** 
(0.0782) 

LL 355.0187  367.1899  409.3746  428.4485  
AIC -698.0374  -722.4  -806.7  -846.9  

Volatility 0.0721  0.0697  0.0605  0.0574  
Persistence 0.959  0.957  0.9403  0.9388  

Notes: 𝐷𝑒𝑝. 𝑣𝑎𝑟5<= denotes the dependent variable in the mean equation lagged one month, 𝛼= denotes the lagged ARCH 

effect, and 𝛽= is the lagged GARCH effect. Standard errors are in parentheses. ***, **, * represent the statistical 
significance levels 1%, 5% and 10%, respectively. LL is the log likelihood of the model. AIC denotes the Akaike 

Information Criterion. The volatility is calculated as the mean of the square root of the estimated conditional variance of 
each variable. Persistence is calculated as the sum of the ARCH and GARCH parameters (α= + β=).   

The persistence of the estimated variance of the models is measured by (𝛼= + 𝛽=) and indicates how 
fast the volatility effect of past shocks and variances declines. The persistence is over 0.9 for all 
models, which is very high and implies that the effect of past shocks persists for a long period of 
time.  
 
The estimated parameters of the time spread (Table 9) differ from the estimates of the other contracts 
in that the ARCH effect is much larger while the GARCH effect is in line with the long-term 
contracts in terms of magnitude. The ARCH and GARCH parameters sum to greater than one and 
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the parameter restriction is thus violated. This implies that the effect of a shock will decay very 
slowly, or even linger on to infinity. The model is thus unstable and the EGARCH model is therefore 
applied to capture potential asymmetric effects of lagged positive and negative shocks on the 
variance of the spread. Results from the EGARCH estimation are reported in the third and fourth 
column in Table 9. The asymmetric effect (𝛾=) is negative and considerably larger than the 
symmetric effect (which replaces the regular ARCH effect). A negative shock increases the volatility 
by 0.3935% (calculated as 𝛾= + 𝛾X) in the next month while a positive shock decreases next month’s 
volatility by -0.09%. This indicates that unanticipated negative shocks to the spread (the futures and 
the spot price approaches) increases the current conditional variance more than an unexpected 
increase in the spread in the previous month, which has a dampening effect on current volatility.  
 

The EGARCH model was applied to the other variables as well but the coefficient estimating the 
asymmetric effect lacked statistical significance, implying that it is only the spread that is subject to 
asymmetric effects.   

Table 9: Volatility of the first difference of the time spread, measured with GARCH (1,1) and EGARCH (1,1) models 
 Time Spread – 

GARCH (1,1) 
 Time Spread – 

EGARCH (1,1) 
 

 Mean Variance Mean Variance 
Constant 0.0004 

(0.0006) 
0.0000 

(0.0000) 
-0.0000 
(0.0005) 

-0.0208 
(0.0515) 

𝛼=  0.2130** 
(0.0995) 

  

𝛽=  0.8246*** 
(0.0424) 

 0.9991*** 
(0.0068) 

𝛾=    -0.2434*** 
(0.0657) 

𝛾X    0.1501** 
(0.0697) 

LL 752.1411  757.3512  
AIC -1494  -1503  

Volatility 0.0255  0.0239  
Persistence 1.038    

Notes: ***, **, * represent the statistical significance levels 1%, 5% and 10%, respectively. For the EGARCH (1,1) model, 
if the asymmetric effect is statistically significant and negative (𝛾= < 0), it implies that a negative shock will increase the 

volatility by (𝛾= + 𝛾X) in the next period while a positive shock affects next period’s volatility by (−𝛾= + 𝛾X). 
 
The average volatility of each contract over the sample period is calculated as the mean value of the 
square root of the estimated conditional variances of each month. As can be noted in Table 8, the 
short-term contracts are more volatile than the long-term contracts. The volatilities are plotted in 
Figure 4, displaying the volatility of each month. In the beginning of the sample period, the spread is 
about as volatile as the other contracts but during the first part of the 2000s, the volatility decreased 
significantly compared to the volatility level of the other contracts. The volatility during the second 
half of the 2000s increased for all contacts including the spread, followed by decreasing volatilities 
since 2010.  
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Figure 4: Estimated average volatilities during the sample period 

5.2. Estimated volatilities including the effect of the RIR 

The models including the effect of the lagged RIR in the conditional variance regression are 
estimated with the GARCH (1,1) specification, assuming the Student’s t-distribution. Empirical 
results from the estimations are reported in Table 10. First, it can be noted that after including the 
RIR variable, the ARCH effect is no longer statistically significant. This implies that past shocks do 
not have an impact on current volatility. In contrast, the GARCH effect is greater than before, 
implying that current volatility is strongly driven by past month’s volatility.  

Table 10: Volatility of the log-returns, including the impact of the RIR (lagged one month) 
GARCH (1,1) 
t-distribution: 

 
Spot 

  
3-month 

 
 
 

 
15-month 

 

 
 
 

 
27-month 

 

 
 

 Mean Variance Mean Variance Mean Variance Mean Variance 
Constant 0.0005 

(0.0037) 
-9.2254*** 

(0.7185) 
0.0005 

(0.0035) 
 

-9.2676*** 
(0.6453) 

-0.0011 
(0.0030) 

-9.3619*** 
(0.5401) 

-0.0013 
(0.0028) 

-9.3458*** 
(0.5515) 

𝐷𝑒𝑝. 𝑣𝑎𝑟5<= 0.1015* 
(0.0599) 

 0.1002* 
(0.0588) 

 0.0768 
(0.0594) 

   

𝑅𝐼𝑅5<=  3.5111*** 
(0.5444) 

 3.5384*** 
(0.4707) 

 3.7219***  3.6867*** 

𝛼=  0.0268 
(0.0271) 

 0.0123 
(0.0230) 

 0.0197 
(0.0309) 

 0.0343 
(0.0368) 

𝛽=  0.9117*** 
(0.0382) 

 0.9232*** 
(0.0327) 

 0.8967*** 
(0.0397) 

 0.8741*** 
(0.0480) 

LL 361.3665  374.7127  418.3861  435.385  
AIC -708.7  -735.4  -822.8  -858.8  

Volatility 0.0705  0.0678  0.0592  0.0559  
Persistence 0.939  0.936  0.916  0.908  

Notes: 𝑅𝐼𝑅5<= denotes the U.S. 3-month Treasury bill rate lagged by one month. 

The effect of the RIR is significantly positively correlated with the estimated conditional variance of 
the variables. A 1% increase in the RIR of the previous month increases the conditional variance by 
more than 3.5% for all variables, which is a significant impact. The RIR effect is the largest for the 
15-months’ contract and the time spread (Table 11). In addition, the persistence of past variances and 
shocks on the conditional variance is smaller when the RIR is included in the estimation, especially 
for the 15-months’ contract and the 27-months’ contract.  
 
The estimated parameters of the time-spread still violate the parameter restriction and the EGARCH 
model is therefore applied again and the results are reported in Table 11. This time, the symmetric 
effect (regular ARCH effect) is no longer statistically significant while the asymmetric effect is 
approximately of the same magnitude as before and with the same sign. This suggests that negative 
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shocks affect the volatility of the spread but not the symmetric ARCH effect, in line with the other 
contracts. Interestingly, the effect of the RIR is significantly lower estimated with the EGARCH 
model relative to the GARCH model.  

Table 11: Volatility of the first difference of the time spread, including the impact of the RIR (lagged one month) 
  

Time Spread –  
GARCH (1,1) 

  
Time Spread –  

EGARCH 

 

 Mean Variance Mean Variance 
Constant 0.0004 

(0.0006) 
-13.0113*** 

(1.1784) 
-0.0002 
(0.0006) 

 

𝑅𝐼𝑅5<=  3.8790** 
(1.7119) 

 0.2347** 
(0.0949) 

𝛼=  0.2201** 
(0.1066) 

  

𝛽=  0.8124*** 
(0.0487) 

 0.9977*** 
(0.0056) 

𝛾=    -0.2405*** 
(0.0596) 

𝛾X    0.0772 
(0.0508) 

LL 750.1585  756.8977  
AIC -1488  -1500  

Volatility 0.0255  0.0235  
Persistence 1.033    

Notes: ***, **, * represent the statistical significance levels 1%, 5% and 10%, respectively. 
 
Moreover, the estimated average volatility is slightly lower for all variables compared to the 
previous estimations except from the time spread, which has approximately the same estimated 
volatility. The volatilities are illustrated in Figure 5.  

 

 
Figure 5: Estimated average volatilities during the sample period including the effect of the RIR 
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6. Discussion 
The aim of this thesis was to determine if the volatility of copper prices for the past decades can be 
explained by the theory of storage. To test the theory, three hypotheses were outlined in Section 1.2 
and specified further in Section 4.4 and the results were presented in the previous section.  
 
Starting with the first hypothesis, which states that short-term prices are more volatile than long-term 
prices since they are subject to both temporary and persistent shocks, the estimated average standard 
deviation (volatility) of each price series were examined. In line with the theory, the spot contract is 
the most volatile of the contracts, followed by the 3-months’ and 15-months’ contracts, whereas the 
27-months’ contract is the least volatile. The time spread is notably less volatile than all the 
contracts. According to the theory, this suggests that persistent shocks have been more important to 
copper price volatility during the sample period, as the volatility of the time spread is only affected 
by temporary shocks. These results confirm the hypothesis and are also in line with the conclusion of 
Gruber and Vigfusson (2016), who find that the volatility of the time spread for a number of 
commodities is lower than the front month contract and 15-months’ contract. In addition, dividing 
the sample into two periods and comparing the sample standard deviations of the contracts between 
the periods, as described in Section 4.2, shows that the volatility of all variables has increased in the 
second period except from the time spread which has become less volatile. The sample standard 
deviation of the 15-months’ and 27-months’ contracts had increased by 73% and 83% respectively 
compared to the first period, which is considerably larger relative to the short-term prices.  
 
The overall conclusion is thus that temporary shocks have become less important while persistent 
shocks have become more frequent and important. Interest rates have been exceptionally low after 
the financial crisis in 2008, resulting in low costs of storage which should have offset short-term 
price fluctuations with inventory smoothing. This is demonstrated by the low volatility of the time 
spread while the volatility of the other contracts is higher due to being driven by persistent shocks. 
The fact that interest rates have been low for so long may also explain that shocks to the return has a 
smaller impact on the volatility in the next month compared to the volatility of the past month, which 
is the dominating determinant of the volatility of all contracts. In addition, the effect of shocks has a 
larger impact on the long-term contracts compared to the short-term, which also indicates that 
persistent shocks are more important than transitory ones. The finding is also in line with the 
conclusions of Jacks (2013) and Stürmer (2016), who identified persistent demand shocks such as 
growth in world GDP as the main driver of copper prices over time. The increase in persistent shocks 
is likely to have been driven by increased demand from emerging markets, particularly China. As the 
elasticity of supply of copper is low, an increase in global demand will reduce the available stocks 
and the consumers will bid up the price of both spot and the futures prices, causing great volatility in 
the market which will persist until supply responds and bring prices back to some equilibrium level.    
 
Moreover, unexpected declines in the time spread increases the volatility in the next month and the 
effect is greater compared to an unexpected increase in the spread. This could be explained by the 
fact that a decreasing spread is often associated with increased uncertainty of future stocks of the 
commodity. Alquist and Kilian (2010) showed that increased uncertainty of future supply shortages 
causes the spread between oil futures and spot prices to decline. Increased uncertainty also causes 
precautionary demand for oil to increase which results in an immediate increase in the real spot 
price. Their conclusion is that a decrease in the spread can be interpreted as an indicator of volatility 
in the spot price, driven by shocks attributable to precautionary demand. The same conclusion is 
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likely to be true for the futures—spot spread of copper prices, that is, a fall in the spread is associated 
with increased uncertainty of future stocks, which increases short-term volatility due to a spiking 
precautionary demand. This results in an increase in the volatility of prices in the next month and the 
effect is larger than in response to an increase in the spread, which actually decreases volatility in the 
next month as a rise in the spread is not associated with any uncertainty for future supply.  
 
Furthermore, the second hypothesis states that a negative change in the RIR should decrease the 
volatility of short-term prices and the time spread, as low interest rates is synonymous with low 
storage costs and thus allows for inventory smoothing over short-term price fluctuations. The 
hypothesis is accepted as the RIR has a significantly positive effect on the volatility of the spot and 
the 3-months’ contracts as well as the time spread. When the RIR is included in the estimation, the 
effect of past shocks to the volatility in the next month is no longer statistically significant, implying 
that copper price volatility is only driven by past month’s volatility and changes in the RIR. The RIR 
has been about zero since 2009 and this could eliminate the volatility effect of a past shocks since 
one can build inventories at essentially no cost and shocks causing short-term fluctuations in prices 
can be dampened by consuming or selling out of inventories. When accounting for asymmetry in the 
effect of past shocks on the volatility of the time spread, the estimated effect of the RIR is lower than 
when estimated with the GARCH model. The explanation to this is not obvious but the dampening 
effect of the RIR could be conditional on the sign of the shock.  
 
Finally, the third hypothesis, must be rejected as the effect of the RIR is statistically significant for 
all contracts, including the long-term prices. According to the theory, lower interest rates should only 
decrease the volatility of the spread and the short-term prices as those are subject to temporary 
shocks. The result is in contrast to the finding of Gruber and Vigfusson (2016), who conclude that 
the pattern of statistical significance in their empirical results supports the theory. Their results 
demonstrate a statistical significant effect of the RIR on the time spread of some commodities while 
the effect on the short- and long-term prices is not statistically significant. The empirical results of 
this thesis show the opposite: the interest rate decreases the volatility of not only the time spread and 
the short-term prices but the long-term prices as well. Again, this could be due to the extremely low 
level of the RIR for a long period of time and market participants may thus have expected the 
situation to persist, resulting in high levels of inventories and hence the dampening effect of the RIR 
even on long-term price volatility. Estimating volatility with the GARCH model is however limited 
to explaining the average effect of the RIR over the sample period and analysing if the effect of the 
RIR changes over different time horizons of the sample is unfortunately not possible. 
 
Another weakness of the study is that, as described by Akram (2008), shocks that increases the 
future price of a commodity, such as higher economic growth, could also result in higher real interest 
rates. It could thus be that the volatility of long-term copper prices increases with increasing interest 
rates due to being correlated with growth in world GDP. An increase in the RIR would then increase 
the volatility of long-term prices as it constitutes a demand shock expected to persist. A single 
equation approach such as the GARCH and EGARCH model cannot account for such a dynamic 
relationship between interest rates and copper prices. One approach would be to apply the 
multivariate GARCH model, which allows the current volatility of a time series variable to be 
influenced not only by its own past errors and volatility but also by past values of other time series. 
This extended analysis is beyond the scope of this thesis but could be a methodology for future 
research on why the effect of the RIR differ between studies and maturity of the contract. 
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Additionally, the thesis is limited to examining the effect of the RIR. There may be other omitted 
variables that are important to the volatility of copper prices. Moreover, using prices quoted on the 
LME and the U.S. interest rate may not be valid for all copper markets. Even though copper futures 
traded on the LME are said to represent global prices, empirical results using copper futures prices 
traded on the Shanghai Futures Exchange could differ from the results of this study. Examining if the 
same pattern is true when using other data series could also be an interesting topic for future 
research.  
 
Finally, the interpretation of the empirical results relies on the assumption that the RIR affects the 
volatility of the variable solely through encouraging inventory smoothing, since that is the prediction 
of the theory of storage. However, the study does not examine whether actual levels of inventory on 
the market increase in response to a decrease in the RIR and hence the dampening effect of the price 
volatility of commodities. But as explained above, this dampening effect could be related to the RIR 
being correlated with world GDP and the effect may thus not be entirely associated with the 
predictions of the theory.   
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7. Summary and concluding remarks 
The thesis has examined to what extent the predictions derived from the theory of storage can 
explain the volatility of copper prices during the period of 1994 to mid-2017. The theory of storage 
is well established in the literature, explaining how decreasing interest rates increases commodity 
prices by lowering the cost of storage and increasing the demand for inventories. The theory also 
suggests that decreasing interest rates should reduce the volatility of commodity prices, since lower 
storage costs contributes to higher levels of inventories which can be used to offset price fluctuations 
caused by temporary shocks to supply or demand. In contrast, interest rates should have no effect on 
long-term prices as inventory smoothing is only profitable over a short period of time. Previous 
research has proven these predictions to be valid for several commodities but not for copper prices. 
The focus of this thesis was therefore to examine this further by applying the predictions to copper 
price volatility exclusively.  
 
To test if the theory holds for copper prices, temporary shocks were identified through movements in 
the spread between the 15-months’ futures contract and the spot price for copper. The effect of 
persistent shocks is represented by movements in long-term prices in terms of the 15-months’ and 
27-months’ contracts. The empirical results suggest that most of the characteristics of copper price 
volatility can be explained by the theory: short-term prices are more volatile than long-term prices 
and the real interest rate has a significantly dampening effect on price volatility. In addition, the 
theory allows for the interpretation that the volatility of copper has been largely driven by persistent 
shocks in recent years. This is in contrast to previous research which have found interest rates not to 
affect the volatility of copper prices (Hammoudeh and Yuan, 2008; Gruber and Vigfusson, 2016). 
The empirical findings also show that the interest rate decreases the volatility of long-term prices, 
which is not consistent with the theory. The long period of exceptionally low-interest rates may 
explain why the results differ from the predictions of the theory. A suggestion for future research is 
to account for the possible correlation between interest rates and growth in world GDP in order to 
determine if the interest rate effect is only attributable to the cost of storage. 
 
The overall conclusion is that the volatility of copper prices to a large extent can be explained by the 
theory but the reason why interest rate changes affect prices at all horizons remains unexplained. The 
results suggest that if the expectations of growing demand for copper and increasing interest rates are 
realized in the years ahead, the volatility of copper is likely to increase considerably. This will have 
important implications to a number of countries and industries, such as the growing sector of 
renewable energy systems and technologies, which rely heavily on copper.    
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9. Appendices 
 

9.1. Appendix 1: Histograms of the distribution of the variables compared to the normal 
distribution 

 

 
Figure 1. a) Distribution of the log cash price                                 Figure 1. b) Distribution of the log-return cash price 

 
Figure 1. c) Distribution of the log 3-months’ price                       Figure 1. d) Distribution of the log-return 3-months’ price 

 
Figure 1. e) Distribution of the log 15-months’ price                     Figure 1. f) Distribution of the log-return 15-months’ price 
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Figure 1. g) Distribution of the log 27-months’ price                    Figure 1. h) Distribution of the log-return 27-months’ price 

  
Figure 1. i) Distribution of the time spread                                     Figure 1. j) Distribution of the first differenced time spread 
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9.2. Appendix 2: Time series plots of the prices 
 

 
Figure 2.a) Log-prices of the contracts 

 
Figure 2.b) Log-returns of the cash contract                                       Figure 2.c) Log-returns of the 3-months’ contract price 

 

 
Figure 2.d) Log- returns of the 15-months’ contract                           Figure 2.e) Log-return of the 27-months contract 
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Figure 2.f) Time spread                                                                           Figure 2.g) First difference of the time spread 
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9.3. Appendix 3: Time series plots of the residuals of the mean models  
 

 
Figure 3. a) Residuals of the mean cash model                               Figure 3. b) Residuals of the mean 3-months’ model 

 
Figure 3. c)  Residuals of the mean 15-months’ model                 Figure 3. d) Residuals of the mean 27-months’ model 

 
Figure 3. e) Residuals of the mean time spread model    Figure 3. f) Residuals of the mean first difference time spread model 
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9.4. Appendix 4: Autocorrelation (AC) and partial autocorrelation (PAC) of the log-
returns and their lags 

 

 
Figure 4. a) Autocorrelation (AC) of the cash-price                     Figure 4. b) Partial autocorrelation(PAC) of the cash-price 

 
Figure 4. c) AC of the 3-months’ contract                                    Figure 4. d) PAC of the 3-months’ contract 

 
Figure 4. e) AC of the 15-months’ contract                                  Figure 4.f) PAC of the 15-months’ contract 
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Figure 4. g) AC of the 27-months’ contract                                 Figure 4. h) PAC of the 27-months’ contract 

 
Figure 4. i) AC of the time spread                                                  Figure 4. j) PAC of the time spread 

 
Figure 4. k) AC of the first difference of the time spread           Figure 4. l) PAC of the first difference of the time spread 
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9.5. Appendix 5: Standardized normal probability plots (P-P plots) and quantile-normal 
plots (Q-Q plots) of the residuals of the mean model 

 

  
Figure 5. a) P-P plot and Q-Q-plot of the residuals of the mean cash model   

 
 
Figure 5. b) P-P plot and Q-Q-plot of the residuals of the mean 3-months’ model 

  
Figure 5. c) P-P plot and Q-Q-plot of the residuals of the mean 15-months’ model 
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Figure 5. d) P-P plot and Q-Q-plot of the residuals of the mean 27-months’ model 

Figure 5. 
e) P-P plot and Q-Q plot of the residuals of the mean time spread model 

 
Figure 5. f) P-P plot and Q-Q plot of the residuals of the mean first difference of the time spread model 
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