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ABSTRACT 
Despite improved spatial and spectral characteristics of satellite and aerial imaging systems, 
land-cover classification is still challenged by a continuously evolving and complex rural and 
urban landscape conditions resulting from diverse land-use scenarios. Sizes and material 
composition of impervious surfaces changes greatly from urban to rural areas, leading to 
varying spectral signatures and ultimately misclassification. This creates a challenge in 
choosing suitable classification algorithms and image processing methods. In this study, the 
influence of spatial resolution and land-cover spectral and spatial heterogeneity on accuracy 
of land-cover classification at a rural-urban interface was examined alongside comparison of 
Random Forest (RF) and Support Vector Machine (SVM) classification algorithms. Further, the 
performance of spectral unmixing strategies was tested against standard feature extraction 
methods, namely, NAPCA and PCA. The results showed a 10 % improvement in classification 
accuracy from 30 m to 10 m spatial resolution for both overall accuracy and Kappa 
coefficients, however, relatively high per-pixel class disagreement (39 %) was recorded 
between the different resolution maps, pointing to the fact that overall accuracy or Kappa 
coefficients may not capture the spatial resolution effects on classification accuracy results in 
its entirety. SVM classifier proved superior to the RF classifier with even a relatively bigger 
margin at the coarser spatial resolution (i.e. 4.9 % and 5.7 % higher accuracy at 10 m and 30 
m spatial resolution respectively). Higher classification accuracies were observed for partial 
unmixing and sum-to-unity unmixing feature extraction strategies at both spatial resolutions 
relative to the results from PCA, NAPCA and original image data (i.e. 62 %, 61 %, 51 %, 61 % 
and 59 % respectively for 30 m resolution, and, 67 %, 67 %, 62 %, 65 % and 66 % respectively 
for 10 m resolution image). It was found that the dominance of unmixing-based feature 
extraction methods reduced while the standard dimensionality reduction approaches (NAPCA 
and PCA) made a zero contribution to improving classification accuracy at finer spatial 
resolution (i.e. 10 m). According to the results of land-cover heterogeneity assessment, more 
fragmented and spatially diverse landscapes were comparably more spectrally diverse along 
the rural-urban gradient. A high degree of landscape heterogeneity and lowest classification 
accuracy was observed in the peri-urban region at approximately 11 kilometers from the very 
urban area. The findings indicate that landscapes with high PD, LSI, SHDI and low CONTAG 
have lower accuracy while homogeneous and less fragmented landscapes have higher 
accuracy. The findings from the study will provide a basis for more accurate time series 
analysis of land-use dynamics at the rural-urban interface. 

Keywords: Image classification, spatial resolution, heterogeneity, support vector machine 
(SVM), random forest (RF), spectral unmixing, feature extraction, endmember extraction.
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1 Introduction 

1.1 Background and Relevance 

Analyses of land use changes and their effects on sustainable management of natural 
resources requires a good information base on the patterns and dynamics in land-cover at 
different spatial and temporal scales. For this reason satellite remote sensing data have 
become very instrumental especially with recent advances in optical satellite imaging systems 
(Chassot et al. 2011; Benediktsson et al. 2012; Jensen 2015; Dash and Ogutu 2016; Khorram 
et al. 2016). Such data often shows the spectral characteristics of land surface features. 
Suitably, these should be converted into thematic form to aid the extraction of relevant 
information. As such, classification of remotely sensed images is a popular and a very 
instructive method for organizing land cover and land use information in the form of thematic 
maps. 

Accuracy of land-cover maps has for long being a pertinent issue for image classification 
processes, however, in the recent past, information on map accuracy have particularly 
received wider attention with the increasing consensus on understanding and monitoring of 
global environmental change, and coordination of mitigation and adaptation actions (Mora et 
al. 2014). For instance, accurate characterization of land-cover is vital for studying climate 
change, biodiversity and carbon cycle (Hackman et al. 2017). Additionally, land-cover datasets 
serve as inputs in many ecosystem models, regional and global climate simulation models, 
global circulation models, land surface models (Mora et al 2014; Fritz et al. 2011) and socio-
economic models (Nesbitt and Meitner 2016; Schüle et al. 2017). Thus, consistent and 
accurate land cover data are in high demand since the quality of selected land-cover datasets 
has a remarkable influence on model results (Benitez et al 2004; Sertel et al 2010). 
Accordingly, techniques that overcome common sources of classification error and provide 
optimally accurate results will gain significance. 

In fast developing megacities, rapid changes in land-use and land-cover are evident in both 
urban and rural areas. Further, same land-cover types, particularly green spaces tend to 
assume considerably different functions along rural-urban interface. For example, ecological 
and production functions are predominant at rural frontiers, whereas urban centers are 
associated with recreational functions. It has been hypothesized that these variations in the 
functioning and configuration of green spaces exhibit similar patterns over space and time 
and also reflects socioeconomic features in surrounding landscapes (Simon 2008). As part of 
a project (FOR2432/1) to test this hypothesis in the Indian megacity of Bangalore, the general 
idea of this study is therefore to explore and test options for land-cover classification that 
ensures more accurate time series analysis of land-use dynamics at the rural-urban interface.  
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1.2 Image Classification and Accuracy Assessment 

Classification accuracy refers to how well a particular map label describes earth surface 
features (Al-doski et al. 2013). A typical example is whether a wheat field is correctly labeled 
as cropland or classified wrongly as grassland. Errors in classification are therefore 
discrepancies between ground reality and its representation on a thematic map (Foody 2002). 

Accuracy assessment is conducted by identifying and evaluating map errors (Congalton and 
Green 2008). Congalton (2001) identifies four main ways to progressively investigate map 
accuracy, and are regarded as the major historical stages in accuracy assessment (Foody 
2002). These include visual inspection, non-site specific analysis, difference image creation 
and quantitative accuracy assessment. 

Initially, accuracy assessment was restricted to basic visual appraisal, and maps were regarded 
as accurate if they ‘looked good’ to the analyst. This step of accuracy assessment is subjective 
and considered insufficient or inappropriate as the concluding step (Foody, 2002). Meanwhile, 
it is very essential to visually assess maps in order to justify further accuracy assessment steps 
(Congalton, 2001). The second stage of accuracy assessment was aimed at a more objective 
way of quantifying classification accuracy. The analysis only involved a comparison of the 
extent of area occupied by classes in the derived map in relation to a reference dataset 
assumed to be error free (Foody, 2002). However a major limitation to this approach of 
accuracy assessment is its disregard for any location component (Congalton, 2001). The 
difference image creation approach involves accuracy metrics derivation from a direct 
comparison of two registered images (Congalton, 2001). When the comparison is between a 
derived map and reference map, the process returns the proportion of same class pixels that 
are in agreement in both maps. This is usually referred to as the overall map accuracy. Such 
comparison can also be between images or maps of the same area occurring at different 
points in time, and, maps from different analyst using same dated images. In the former case, 
the difference is regarded as changes over time whereas the latter shows differences in 
methodology used by the different analysts (Congalton, 2001). 

The quantitative accuracy assessment stage is essentially a modification or improvement of 
the third. This involves a deeper assessment of information on the agreement of derived and 
reference map labels. The results are usually reported in the form of a contingency table or 
error matrix. The error matrix is an array of numbers displayed in rows and columns which 
represent the number of sample units (i.e. pixels, cluster of pixels or polygons) assigned to a 
certain map label as against the actual ground truth category (Congalton, 1991). Error matrix 
allows for the computation of descriptive accuracy statistics for the overall classification 
exercise (i.e. overall accuracy) but also the accuracy of individual categories either as producer 
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accuracy or user accuracy. Further, the error matrix serves as a basis for applying discrete 
multivariate analysis like KAPPA in evaluating the performance of different classification 
algorithms or processes (Cohen, 1960). 

1.3 Challenges to Image Classification and Advances in Complex Landscapes 

Among the myriad challenges to remotely sensed image classification, sensor resolution, 
landscape characteristics and classification procedures have been documented as important 
causes of classification error (Smith et al. 2002; Wu et al. 2008; Fritz et al. 2011). Despite 
improved spatial and spectral characteristics of satellite and aerial imaging systems, 
classification efforts are still challenged by a continuously evolving and complex rural and 
urban landscape conditions resulting from diverse land-use scenarios. Landsat images which 
are possibly the most widely used data source often falls short of satisfying land use and land 
cover classification requirements particularly in a complex rural-urban landscapes, owing to 
its relatively coarse spatial resolution (Lu and Weng, 2005). Alternatively, high spatial 
resolution images like IKONOS, Quickbird and Worldview have been promoted for land-cover 
classification (Sugumaran et al. 2002; van der Sande et al. 2003; Lu et al. 2010) and mapping 
of impervious surfaces in urban environments (Goetz et al. 2003; Lu and Weng 2009; 
Kamphaus 2014). Although this has been advantageous in minimizing mixed pixel problems 
(Lu and Weng, 2009) with relatively more detailed information extraction potential, such high 
resolution data are constrained by shadows, high spectral variation within the same land 
cover class (Lu et al. 2010; Lu and Weng 2009) and high processing requirements (Lu and Weng 
2007). These disadvantages create difficulties in selection of effective classification 
procedures and may further result in low classification accuracies (Cushnie 1987; Lu et al. 
2010). 

Further, landscape characteristics such as heterogeneity have been reported to exert a direct 
influence on classification accuracy (Smith et al. 2002; Smith et al 2003; Lu et al. 2010). Land-
cover spectral and spatial heterogeneity resulting from landscape composition are 
considerably different in rural and urban landscapes. For instance while rural landscapes are 
mainly characterized by large expanses of agricultural fields with few human settlements, 
urban landscapes are predominantly composed of built up surfaces such as roads, buildings, 
roof-tops, parking lots etc. The high variation in spectral signatures of built surfaces thus 
renders urban landscapes spectrally more heterogeneous (Lu et al. 2010) which may cause 
misclassification and ultimately reduce accuracy. Moreover sizes and shapes of built surfaces 
exhibits enormous variation and may lead to inaccuracies in classification (Tran et al. 2014). 

In dealing with the limitations associated with coarse and medium resolution images, sub-
pixel classification approaches have been developed to allow more accurate land-cover 

9 



classification especially in complex landscapes. To this end, spectral mixture analysis (SMA) 
and fuzzy-set classification techniques are popular approaches to deal with mixed pixel 
problems (Lu and Weng 2007). By allowing multiple class membership at the individual pixel 
level, fuzzy-set classification techniques aids in a more accurate classification and area 
estimation of land-cover than traditional per-pixel methods (Woodcock and Gopal 2000; 
Zhang and Foody 2001). SMA on the other hand models each pixel as a linear combination of 
individual endmember spectra (Lu and Weng 2007; Dopido et al. 2011). The output is a set 
fractional abundance images, with each representing one endmember spectrum. Hussin and 
Atmopawiro (2004) observed a higher accuracy when using sub-pixel classification (75 %) 
relative to maximum likelihood classification (57 %) in detecting single tree felling from 30 m 
Landsat ETM+ images. Similarly, other studies have demonstrated the accuracy enhancing 
capability of SMA in vegetation cover estimation (Sohn and McCoy 1997; Small 2001; Bai et 
al. 2012), burn severity mapping (Quintano et al. 2013), and land-cover mapping (Tran et al. 
2014). 

Per-pixel classification often results in noisy outputs due to high spatial frequency (Lu and 
Weng 2007; Lu et al. 2010) particularly for high resolution images in heterogeneous 
landscapes. Accordingly, object oriented classification approaches have been explored to 
minimize landscape heterogeneity effects on classification accuracy with better results (Yu et 
al. 2006; Mathieu and Aryal 2007; Mallinis et al. 2008; Zhou et al. 2008). Further, incorporation 
of textural features to spectral information has been proven to enhance classification 
accuracy in heterogeneous landscape conditions (Shaban and Dikshit 2001; Puissant et al. 
2005; Pacifici et al. 2009).    However there is a challenge in the selection of suitable texture 
due to its dependence on the type of image data used and the features of the landscape under 
study (Lu et al. 2010). 

1.4 Rational of the Study 

Within the study area, the rural-urban interface is extremely diverse in terms of land-use and 
land-cover types. Sizes and material composition of impervious surfaces changes greatly from 
urban to rural areas, leading to varying spectral signatures and ultimately misclassification. 
This creates a challenge in choosing suitable classification algorithms and image processing 
methods (Lu et al, 2010). The use of object-oriented approach (MacLean and Congalton 2012) 
and the incorporation of texture and spectral bands (Lu et al, 2010) have been explored to 
enhance image classification accuracy in similar contexts. Yet these studies are restricted to 
urban areas and little is known about the performance of classification processes when 
simultaneously considering rural and urban landscapes. Moreover, no prior studies reports on 
how classification accuracy changes along such a rural-urban gradient. Therefore a focus on 
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how to effectively use the features of remotely sensed data together with a suitable selection 
of classification approaches is vital to improve classification accuracy at the rural-urban 
interface, while knowledge of the distance-dependence of classification accuracy along the 
rural urban gradient will contribute to literature and enrich understanding of the effects of 
landscape characteristics on classification accuracy. 

1.5 General objective 

The general objective of this study is to examine the influence of spatial resolution, land cover 
heterogeneity and spectral un-mixing techniques on accuracy of land cover mapping at the 
rural-urban interface in Bangalore-India. 

1.6 Specific objectives 

Specifically, this study focuses on; 

1. Comparing the influence of different spatial resolutions in combination with Support 
Vector Machines and Random Forest algorithms on accuracy of land cover mapping at 
the rural-urban interface 

2. Evaluating the performance of spectral un-mixing for feature extraction prior to 
classification with Support Vector Machines at the rural-urban interface 

3. Analyzing the effect of land-cover spectral and spatial heterogeneity on changes in 
classification accuracy along the rural-urban gradient 
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2.  Study Area, Materials and Methods 

2.1 Study Area 

A 50 x 5 km transect was chosen in the northern part of Bangalore, containing different land 
use categories in rural, urban and suburban areas in the context of FOR2432/1 project. For 
the analysis of classification accuracy, the transect was divided into 5x5 km subsets (Figure 
2.1). 

 

Figure 2. 1 Map of study area centered on Bangalore District - India with the 2500 km2 transect and 
five-kilometer vertical divisions 

Bangalore is located in the Indian State of Karnataka. The city is a popular center for 
Information Technology, Biotechnology, Aerospace and other knowledge based industries 
(Hiremath et al. 2013). Bangalore rural and urban districts have a geographical extent ranging 
between N 13°21’: N 12°39’ and E 77°15’: E 77°51’. The area is a rapidly growing megapolis 
with concomitant increases in population (from 163,091 in 1901 to 8,499,399 in 2011) (Census 
of India 2011), economic activity and urban sprawl. This extensive growth has resulted in 
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landscape fragmentation and remarkable changes in land use along the rural-urban interface 
(Sudhira and Nagendra 2013). 

2.1.1 Physiography and Climate 

Bangalore lies on Southern India’s Deccan plateau, at about 920 m above msl (Sudhira and 
Nagendra 2013). The topography is relatively flat at the Northern taluk while the Southern 
taluk is slightly undulating, with a central ridge running in north-east and south-west direction. 
The area is drained by two small rivers. River Arkavathi flows through a small stretch of 
Bangalore North while River Vrishabhavathi which is a tributary of Arkavathi runs through the 
city (BBMP 2010; Sudhira and Nagendra 2013). Further, the city and peripheral regions are 
dotted by a network of freshwater lakes and reservoirs (figure 2.2). According to the BBMP 
(2010), over 200 lakes are located within greater Bangalore. 
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Figure 2. 2 Distribution of lakes within Bangalore and surrounding areas (Sudhira and Nagendra 
2013) 

 

Bangalore urban and rural districts lie within the tropical savanna climate zone characterized 
by distinct wet and dry seasons (Gayathri et al. 2013). Generally, the district experiences 
moderate climatic conditions throughout the year. June to September and October to 
November represents two windows within the rainy season and corresponds to the South-
West and North-East monsoons respectively (Indian Meteorological Department 2013). 
Gayathri et al. (2013) reports the general annual rainfall to average around 889 mm. Mean 
annual minimum temperature is 15±1 0C, observed in January, whereas April is the hottest 
month with a mean maximum temperature of 33.6 0C (Gayathri et al. 2013,Indian 
Meteorological Department 2013). 
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2.1.2 Vegetation 

A variety of green spaces occur in Bangalore rural and urban districts and varies considerably 
within various land use categories, including parks, wetlands, remnant forests, home gardens, 
wooded streets and agricultural fields (Sudha and Ravindranath 2000; Nagendra and Gopal 
2011; Sudhira and Nagendra 2013). For example Sudha and Ravindranath (2000) reported 
high tree species richness and density in areas where land use is recreational (e.g. in parks 
and around lakes). However commercial and residential (i.e. high built-up areas) areas 
generally exhibit a low tree density. Moreover, urban areas hold a greater heterogeneity in 
tree species type with a high fraction of exotic species compared to rural and forested areas 
(Nagendra and Gopal 2011; Sudhira and Nagendra 2013). Only few patches of remnant natural 
vegetation exist due to anthropogenic activities, and are largely confined to rural forested 
areas. Streets and parks in the urban district tend to be dominated by old large canopy shade 
trees while recent plantings are small canopy ornamental trees (Sudhira and Nagendra 2013). 

2.2 Materials 

Landsat 8, Sentinel 2A and Worldview3 datasets (figure 2.3) acquired simultaneously during 
cloud free conditions in November 2016 were used in this study. All image datasets were 
received in WGS84 Universal Transverse Mercator (UTM) zone 43N projection as GeoTiFF 
image format. The Landsat 8 and Sentinel 2A images were processed to surface reflectance 
and served as the basis for land cover mapping whereas the high resolution Worldview 3 
image mainly served the purpose of map validation. Table 2.1 shows a summary of source and 
properties of the image datasets.  

 

Figure 2. 3 Urban scenes of satellite images used for the study (a = Landsat 8, b = Sentinel 2A and c 
= World View 3) 
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Table 2. 1 List of satellite image data collected for the study 

Satellite data Acquisition date Resolution Source 

Landsat 8 November, 2016 

30 m Visible, Near Infrared 
(NIR), Short-Wave Infrared 
(SWIR), 100 m Thermal Infrared 
(TIR), 15 m panchromatic 

USGS 

Sentinel-2a November, 2016 

10 m, 20 m and 60 m in Visible 
and Near Infrared (NIR) to Short-
Wave Infrared (SWIR) spectral 
range 

European Space 
Agency (ESA) 

Worldview-3 November, 2016 

31 cm panchromatic, 1.24 m 
multispectral, 3.7 m Short-Wave 
Infrared (SWIR), 30 m Clouds, 
Aerosols, Vapors, Ice, and Snow 
(CAVIS) 

Digital Globe Inc. 

 

2.3 Methods 

2.3.1 Classification Scheme 

Within the study area a mixture of different land uses ranging from agricultural to industrial 
can be identified. Consequently the area is characterized by a broad spectrum of 
anthropogenic (e.g. concrete, asphalt, metals, roofing material etc.), semi-natural (e.g. grass, 
fields, reservoirs) and natural (e.g. lakes, trees, bare soil) land cover features. A classification 
scheme for land cover categories encountered was thus developed such that as much spatial 
and spectral heterogeneity as possible was covered along the gradient. Overall, eight classes 
were finalized, namely; built-up, tree cover, grassland, reservoir, lake, barren land, fallow land 
and crop fields (see table 2.2). 
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2.3.2 Training Strategy 

Due to the varying composition of land use and land cover types within the study area, the 
transect was analyzed and vertically differentiated into urban, suburban and rural regions 
based on the degree of urbanness to aid the collection of training samples that span the 
inherent spectral variability in land cover classes. Further, this fed into a semi-variance 
analysis used to assist the collection of non-correlated training samples. 

2.3.2.1 Determining Urban, Suburban and Rural extents 

A preliminary supervised classification of Landsat 8 imagery was conducted for the purpose 
of determining the degree of urbanness along the gradient. Although aspects of the social 
environment are largely employed in defining urban environments, assessment of 
composition and configuration of all pixels within a defined geographic region has been 
identified as a useful consideration in developing indices that measure urban extents (Rashed 
and Jürgens 2010). Of principal interest is the observation of changes in the built-up 
environment. Hence, the extent of urban, suburban and rural areas was based on the 
composition of pixels in the classified Landsat 8 imagery. Using a fourteen by one grid (3.2 
km2) and a cross-classification approach, the gradient was differentiated into urban, suburban 
and rural depending on the share of built up pixel found within the grid. 
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Table 2. 2 Land cover classification scheme 

Class number Class name Description 

Class 1 Built-up 

Structures with walls and roof, including residential 
buildings, industrial buildings etc, long surfaced 
vehicle tracks, mostly asphalt coated, also including 
narrow streets and all railroad systems, 
predominantly metallic tracks 

Class 2 Tree cover Patches of leaved trees within the landscape 

Class 3 Grassland Areas such as urban parks and lawns but also grass-
covered areas around agricultural fields 

Class 4 Reservoir Man-made tanks filled with water, close to 
agricultural fields and often with high sediment load 

Class 5 Lake Large water bodies surrounded by land 

Class 6 Barren land Open areas covered by bare soil. Outside agricultural 
land use contexts 

Class 7 Fallow land Agricultural lands currently without crops 

Class 8 Crop field Agricultural lands currently covered with crops 

 

2.3.2.2 Semi-variance for Detecting Spatial Autocorrelation 

Key among the considerations for selecting training samples is spatial autocorrealation. 
Computation of spatial autocorrelation gives an idea about the distance at which values from 
different sampling points are similar. Accordingly, it is important to quantify the degree of 
autocorrelation to guide the selection of uncorrelated data (Chen and Stow 2002). A common 
method to depict the spatial characteristics of image pixels is semi-variance analysis (De Smith 
et al. 2007; Chen and Stow 2002). Semi-variance measures the average squared difference 
between pairs of values separated by a distance and has the general form: 

ƴ (h)=
∑ (𝑧𝑧(𝑖𝑖)−𝑧𝑧(𝑖𝑖+ℎ))2𝑛𝑛
𝑖𝑖=1

2𝑛𝑛
    (Eq. 1) 
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Where h is the lag or fixed distance between pixel values (z) at points (i) and (i+h), and n is the 
number of pixel pairs. Sill and range are common characteristics that describe a 
semivariogram model. The semi-variance increases gradually with distance and levels-off at a 
point. This point is known as the sill and the distance at which the sill is reached is called the 
range (De Smith et al 2007). The range signifies the distance at which spatial autocorrelation 
of pixel pairs ceases.  

Semi-variograms for the urban, suburban and rural extents were generated using gstat 
Package in R (R Core Team 2016). The range parameters of the semi-variograms were 
determined by means of spherical and exponential model-fits, and the average range 
parameter from the model with the best fit was utilized in the collection of training data (Chen 
and Stow 2002). 

2.3.2.3 Sampling 

A systematic sampling approach was adopted for the collection of training data. Here, more 
emphasis was placed on obtaining samples large enough with adequate spatial distribution. 
This was to ensure that both rare and frequently encountered land cover types were well 
sampled to cover all spectral variability within classes (Foody and Mathur 2004).  

Using the MMQGIS plugin available in QGIS (QGIS Development Team 2017), a 140 point grid 
layer was created to cover the whole extent of the image subsets. However, only 78 points 
came to lei completely within the extent of the imagery. The average range parameter derived 
from fitted semi-variograms for the rural, suburban and urban extents of Landsat 8 image 
subset was utilized as point spacing for the systematic point grid. Hence spatially auto-
correlated samples were avoided. Circular polygon buffers of 500 m radius were installed at 
each sampling point to serve as response units within which training samples were recorded.  

The number of training samples was determined by means of simple heuristics which gives 
sample size as a function of image data dimensionality (Foody et al. 2006; Mather 1999). 
Mather (1999) recommends using a minimum of 10p to 30p training pixels for each thematic 
class, where p is the number of spectral bands used. Thus with a minimum and maximum of 
seven (Landsat 8) and ten (Sentinel 2A) spectral bands respectively used in this study, the 
minimum required training pixels per class lies between 70 and 100. Using eight thematic 
classes, a total of 560 to 800 training pixels were needed for the whole classification. 
Nonetheless 809 polygons of pixels (i.e. approximately, Landsat 8 = 12,294 training pixels and 
Sentinel 2A = 122,940 training Pixels) were used in this study, which is considerably above the 
minimum recommended by Mather (1999). 
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2.3.2.4 Class Training 

The underlying feature of supervised land cover classification is class training. Training set for 
defined land cover classes (Table 2.2) were selected by visually identifying and digitizing 
polygons of pixels within the response units (Chen and Stow 2002) rather than individual 
pixels. As noted by McCoy (2005) and Momeni et al. (2016), using polygons or blocks of pixels 
as training units can prevent the selection of potentially noisy individual pixels. In essence 
several polygons were selected for each land cover class to adequately characterize their 
spatial and spectral properties. The same polygon extents and locations were used to extract 
training samples at the different spatial resolutions in order to allow a direct comparability of 
results. Class training for all classifiers at the different spatial resolutions was executed using 
Orfeo Toolbox (Image analysis) available in QGIS (QGIS Development Team 2017). 

2.3.2.5 Assessment of Training Class Spectral Separability 

During class training, every attempt was made to ensure spectral separability of training 
classes. Specifically, spectral plots of training classes were reviewed and repeatedly modified 
until all class training sets attained adequate spectral separability. Further, the Jefferies-
Matusita (JM) distances for pairs of class training sets were computed to provide a statistical 
evaluation of training class separability. The JM distance is a commonly used measure for 
defining spectral (dis)similarity of thematic classes (Van Niel et al. 2005; Dabboor et al. 2014; 
Momeni et al. 2016). A major component of the JM separability measure is Bhattacharyya (B) 
distance calculated as (Van Niel et al. 2005):  

B = 1
8
𝐷𝐷pool2 +  1

2
ln

�
∑𝑖𝑖+ ∑𝑗𝑗

2 �

�|∑𝑖𝑖|∗�∑𝑗𝑗�
    (Eq. 2) 

Where D2pool is the pooled Malanobis distance for classes i and j, and ∑ is the variance-
covariance matrix (Van Niel et al. 2005). The pooled Malanobis distance is calculated as: 

D2pool = (µi - µj) T  �∑𝑖𝑖+ ∑𝑗𝑗
2

� (µi - µj)    (Eq. 3) 

Where µi and µj are the mean reflectance values for classes i and j (Van Niel et al. 2005). Hence 
the JM separability measure between two classes is computed as: 

JM = 2(1 – e-B)   (Eq. 4) 

The JM distance asymptotically approaches 2 when the class spectral signatures are 
completely different and falls to 0 when spectral signatures are identical (Richards and Jia 
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2006). For JM values below 1.3, training classes were refined and in some cases merged until 
all classes were satisfactorily separable. 

2.3.3 Feature Extraction 

2.3.3.1 Spectral Unmixing 

In cases where the spatial resolution of sensors are not fine enough to record pure signals 
from surface materials, multiple signals from different materials can occupy a single pixel. As 
such, the reflectance per pixel is assumed to be the result of a linear combination of the 
reflectance of each constituent material within the pixel (Dopido et al. 2011). Consequently, 
spectral un-mixing is an approach to decompose the measured spectrum from a mixed pixel 
into constituent endmembers and a collection of fractional abundances indicating the 
proportion of each endmember within the pixel (Keshava and Mustard 2002). Here linear 
spectral un-mixing and partial un-mixing techniques for feature extraction were applied to 
Landsat 8 and Sentinel 2A scenes. Using the linear mixture model, each pixel X (where X = 
[x1,…,xn] for n band remotely sensed scene) can be modeled as (Dopido et al. 2011) 

X = ∑ 𝜑𝜑𝑧𝑧 ∙ 𝐸𝐸𝑧𝑧 + 𝑛𝑛𝑝𝑝
𝑧𝑧=1    (Eq. 5) 

Where p is the number of endmembers, n is a noise vector, Ez is the spectral response of 
endmember z and 𝜑𝜑𝑧𝑧 is its fractional abundance. Two constraints can be considered under 
the linear mixture model, namely: the abundance sum-to-one constraint (∑ 𝜑𝜑𝑧𝑧

𝑝𝑝
𝑧𝑧=1  = 1) and 

abundance non-negative constraint (𝜑𝜑𝑧𝑧 ≥ 0) (Dopido et al. 2011). 

21 



 

Figure 2. 4 Steps for spectral un-mixing sequence 1 

 

 

Figure 2. 5 Steps for spectral un-mixing sequence 2 

Unmixing Sequence 1 

The first sequence of spectral un-mixing based feature extraction is summarized in figure 2.4. 
First, Minimum Noise Fraction rotation transform was applied to the original image data to 
check the inherent dimensionality and to select less noisy bands for further processing based 
on their eigenvalues. Next, the Pixel Purity Index was run on the output from MNF 
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transformation to highlight pure pixels. The PPI is a standard technique to determine the most 
spectrally pure pixels in remotely sensed images (Liming et al. 2012). The output pure 
endmembers from the PPI were then extracted into the n-D Visualizer in ENVI to examine and 
refine endmember spectra for Linear Spectral Un-mixing. In effect, Linear Spectral Un-mixing 
with a sum-to-unity constraint was applied to estimate the abundance of each derived 
endmember. Finally, a supervised classification using Support Vector Machine (SVM) was 
executed on the abundance fractions. 

Unmixing Sequence 2 

Due to the challenge of estimating the number of endmembers from the original image and 
accompanying computation complexity (Plaza et al. 2009), a variation of the first un-mixing 
sequence was developed and implemented. Figure 2.5 summarizes the second un-mixing 
sequence where endmember spectra were collected from the labeled training samples as an 
alternative to endmember extraction from the original image data. This minimizes 
computational tasks since endmember extraction is conducted only on the training samples. 
Moreover, since the number of extracted endmembers is defined according to the different 
training classes, the challenge of estimating the number of endmembers becomes simplified. 
Nonetheless, the actual number of endmembers could be more in the original image data 
than the labeled training classes. Therefore the Mixture-Tuned Match Filtering (MTMF) 
technique was used to partially un-mix the original image data with MNF transformed results 
as input data. The MTMF process integrates Linear Spectral Un-mixing and statistical match 
filtering (Dopido et al. 2011). Thus it leverages the capability to return endmember abundance 
fractions from spectral mixture modeling, and reduction in the number of false positives 
arising from match filtering by adding infeasibility image bands. Following the MTMF process, 
a supervised classification was performed on the abundance fractions using SVM classifier. 

2.3.3.2 Principal Component Analysis (PCA) and Noise Adjusted Principal Component Analysis 

Feature extraction techniques that are able to enhance the performance of SVM classification 
by reducing image data dimensionality while preserving the original information (Melgani and 
Bruzzone 2004; Plaza et al. 2009; Dopido et al. 2011) were applied to Landsat 8 and Sentinel 
2A scenes in order to evaluate the performance of spectral un-mixing for feature extraction. 
Here Principal Component Analysis (PCA) and Noise Adjusted Principal Component (NAPCA) 
transformation techniques were used. The PCA transform thrives on the maximization of data 
variance to yield new uncorrelated dataset while the NAPCA maximizes signal-to-noise ratio 
(SNR). Both PCA and NAPCA transformations was executed using Orfeo-Toolbox available in 
QGIS (QGIS Development Team 2017). 
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2.3.4 Image classification 

Pixel-based classification was performed using two supervised non-parametric classifiers 
namely, Support Vector Machine and Random Forest. 

The selection of non-parametric classification approaches was contingent on their special 
ability to handle complex classification problems. For example, when using fine spatial 
resolution imagery, alongside a detailed classification scheme to map heterogeneous 
environments (Momeni et al. 2016). In this context, the inherent spatial heterogeneity in high 
(Sentinel 2A) and medium (Landsat 8) resolution imagery used, high spectral variation within 
land cover classes and the training strategy adopted renders them more suitable compared 
with parametric methods. 

2.3.4.1 Support Vector Machine (SVM) 

The support vector machine classifier is a non-parametric binary learning algorithm based on 
statistical learning theory (Vapnik 2013). SVMs have increasingly been applied in image 
classification, often yielding high accuracies over other conventional methods (Hamedianfar 
et al. 2014; Foody et al. 2006; Nong et al. 2015). The algorithm seeks to generate an optimal 
separating hyper-plane between two classes by setting decision boundaries using the location 
of training samples at the edges of class distributions (Belousov et al. 2002; Marjanovic et al. 
2011). These samples represent support vectors while all other training samples are 
effectively excluded from the learning process (Foody et al. 2006). The classification function 
is given by (Marjanovic et al. 2011), 

f (x) = sign (∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖(𝑥𝑥𝑖𝑖 ∙ 𝑥𝑥) + 𝑏𝑏𝑛𝑛
𝑖𝑖=1 )    (Eq. 6) 

In order to handle non-linearity of classification problem, the initial space is mapped to a 
higher dimension feature space using non-linear functions (∅). This allows a transformation 
of the non-linear case in a manner that aids the definition of a linear hyper-plane (Borges et 
al. 2004). Kernel functions (given by k(x,y) = ∅(𝑥𝑥) ∙ ∅(𝑦𝑦) ) such as polynomial kernels and 
radial basis function are used for this transformation (Borges et al. 2004; Marjanovic et al. 
2011).  Using these functions equation 5 becomes 

f (x) = sign (∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑘𝑘(𝑥𝑥𝑖𝑖 ∙ 𝑥𝑥) + 𝑏𝑏𝑛𝑛
𝑖𝑖=1 )   (Eq. 7) 

The SVM classification was implemented using Orfeo Toolbox (Image analysis) available in 
QGIS (QGIS Development Team 2017). Here the Radial Basis Function (Gaussian RBF) kernel 
type was used because it addresses non-linear problems and is popular for practical use 
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(Keerthi and Lin 2003). The cost parameter (C) and gamma for the kernel were set at 500 and 
1 respectively. The parameter settings were made with consideration to prevailing literature 
(Momeni et al. 2016) and some heuristics. 

2.3.4.2 Random Forest (RF) 

The Random Forest classifier is an ensemble learning algorithm which presents many 
advantages for remote sensing applications (Rodriguez-Galianon et al. 2012). The algorithm 
assigns input vectors (independent and identically distributed random vectors) to the most 
frequent classes based on single vote contributions from each classifier within the ensemble 
(classification trees) (Breiman 2001). Individual classification trees making up the algorithm 
are grown from different subsets of training data selected through bootstrap aggregation or 
bagging, while using the Gini index as a measure for attribute selection (Pal 2005). Thus for a 
particular training set (T), assigning pixels selected at random to a class (𝐶𝐶𝑖𝑖) expresses the Gini 
index as: 

∑∑j ≠ i (f (Ci, T)/|𝑇𝑇|)∙(f (Cj, T)/ |𝑇𝑇|)   (Eq. 8) 

Where f (Ci, T)/|𝑇𝑇| is the probability that the selected case belongs to class Ci (Pal 2005; 
Rodriguez-Galianon et al. 2012). 

The number of classification trees and the number of samples used in each node are the two 
parameters that must be defined to create a prediction model. Here, default values of 100 
trees and 10 samples in each node were selected for implementation. The RF classification 
was implemented using Orfeo Toolbox (Image analysis) available in QGIS (QGIS Development 
Team 2017). 

2.3.5 Validation and Accuracy Assessment 

A common validation and accuracy assessment approach was adopted for all land cover 
classification outputs in order to allow a direct comparison of classification methods at the 
different spatial resolutions. An independent validation data was collected using very high 
resolution WorldView 3 scene as reference image. A dense point-based checking was 
employed and land cover classes beneath these points were recorded by visual interpretation 
in conformity with the classification scheme. Further, field visits were undertaken between 
April 18, 2017 and May 2, 2017 to ascertain the veracity of validation datasets. The same point 
locations were used for all classified map outputs, thus ensuring that results were directly 
comparable. Accuracy assessment of the six output land cover maps was implemented using 
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the Semi-automatic Classification Plugin (SCP) available in QGIS (QGIS Development Team 
2017). 

The error matrix has been recommended as a standard approach to represent map accuracy 
(Congalton 1991; Foody 2002). Thus error matrices were generated to elicit the 
correspondence between reference data and classification output, allowing for the 
computation of individual class accuracies (i.e. user’s accuracy and producer’s accuracy), 
overall map accuracy and Kappa statistic. A mathematical representation of the error matrix 
and calculation of these accuracy measures are illustrated herewith. Assuming each pixel to 
be classified belongs to one of four mutually exclusively defined classes (k), let 𝑛𝑛𝑖𝑖 𝑗𝑗 represent 
the number of pixels classified into category i in the classification output (i.e. rows, where i = 
A, B, C, D) and independently to category j in the reference dataset (i.e. columns, where j = A, 
B, C, D) (see table 3.4). 

 

 

Table 2. 3 Error matrix for classification accuracy assessment (after Congalton 1991) 

 A B C D Total (𝑛𝑛𝑖𝑖 +) 

A 𝑛𝑛𝐴𝐴 𝐴𝐴 𝑛𝑛𝐴𝐴 𝐵𝐵 𝑛𝑛𝐴𝐴 𝐶𝐶  𝑛𝑛𝐴𝐴 𝐷𝐷 𝑛𝑛𝐴𝐴 + 

B 𝑛𝑛𝐵𝐵 𝐴𝐴 𝑛𝑛𝐵𝐵 𝐵𝐵 𝑛𝑛𝐵𝐵 𝐶𝐶 𝑛𝑛𝐵𝐵 𝐷𝐷 𝑛𝑛𝐵𝐵 + 

C 𝑛𝑛𝐶𝐶 𝐴𝐴 𝑛𝑛𝐶𝐶 𝐵𝐵 𝑛𝑛𝐶𝐶 𝐶𝐶 𝑛𝑛𝐶𝐶 𝐷𝐷 𝑛𝑛𝐶𝐶 + 

D 𝑛𝑛𝐷𝐷 𝐴𝐴 𝑛𝑛𝐷𝐷 𝐵𝐵 𝑛𝑛𝐷𝐷 𝐶𝐶  𝑛𝑛𝐷𝐷 𝐷𝐷 𝑛𝑛𝐷𝐷 + 

Total (𝑛𝑛+ 𝑗𝑗) 𝑛𝑛+ 𝐴𝐴 𝑛𝑛+ 𝐵𝐵 𝑛𝑛+ 𝐶𝐶  𝑛𝑛+ 𝐷𝐷 𝑛𝑛 
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Overall accuracy can be calculated as: OA = ∑ 𝑛𝑛𝑖𝑖 𝑖𝑖𝑘𝑘
𝑖𝑖=1
𝑛𝑛

     (Eq. 9) 

Producer’s accuracy can be calculated as: PA = 𝑛𝑛𝑖𝑖 𝑖𝑖
𝑛𝑛𝑖𝑖+

    (Eq. 10) 

User’s accuracy can be computed as: UA = 
𝑛𝑛𝑗𝑗 𝑗𝑗

𝑛𝑛+ 𝑗𝑗
    (Eq. 11) 

Kappa statistic can be calculated as: K = 
𝑛𝑛∑ 𝑛𝑛𝑖𝑖 𝑖𝑖− ∑ 𝑛𝑛𝑖𝑖+𝑛𝑛+ 𝑗𝑗

𝑘𝑘
𝑖𝑖=1

𝑘𝑘
𝑖𝑖=1
𝑛𝑛2−∑ 𝑛𝑛𝑖𝑖+𝑛𝑛+ 𝑗𝑗

𝑘𝑘
𝑖𝑖=1

  (Eq. 12) 

Comparison of classification methods is an integral component of this study. Therefore a 
rigorous approach for testing the statistical significance of differences in classification outputs 
was adopted. Here the two sample z test was performed on all pairs of Kappa values for land 
cover maps (Foody 2004; Foody et al. 2006). The z test is the standard normal statistic (z) and 
is calculated as: 

z = 
𝐾𝐾𝑖𝑖− 𝐾𝐾𝑗𝑗

�𝜎𝜎
2𝐾𝐾𝑖𝑖
𝑛𝑛 + 

𝜎𝜎2𝐾𝐾𝑗𝑗
𝑛𝑛

    (Eq. 13) 

Where 𝐾𝐾𝑖𝑖 represents Kappa value for land cover map i, 𝐾𝐾𝑗𝑗 represents Kappa value for land 
cover map j, 𝜎𝜎2 is standard deviation of Kappa coefficient and n is the number of samples. 
The standard deviation of Kappa coefficient is calculated as (Cohen 1960): 

𝜎𝜎2𝐾𝐾  = �𝑂𝑂𝐴𝐴(1−𝑂𝑂𝐴𝐴)
(1−𝐸𝐸𝐴𝐴)2

           (Eq. 14) 

Where OA is the observed accuracy and EA is the expected accuracy. 

2.3.6 Gradient Analyses 

A simple vertical differentiation approach was adopted to analyze the distance-dependence 
of classification accuracy along the urban-rural gradient. Here, multiple extents of the whole 
urban-rural transect was generated at five kilometers interval from the urban to rural region. 
The five-kilometer vertical zonation was arbitrarily defined. Even so, this ensured a uniform 
segregation of the rural-urban transect. Further, the analysis was augmented by the spectral 
variability assessment conducted within the each of the five kilometers extents along the 
urban-rural gradient to reinforce understanding of changes in classification accuracy. 
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2.3.7 Land-cover heterogeneity assessment 

2.3.7.1 Assessment of land-cover spectral variability 

An assessment of spectral variation was conducted to aid the interpretation and evaluation 
of classification results along the gradient. Thus the spectral characteristics of land cover types 
within each five kilometers distance was evaluated to identify the spectral complexity of 
surface materials along the urban-rural gradient using ENVI 5.1 (Exelis Visual Information 
Solutions 2014). The process is summarized in figure 2.6.  

An automated endmember extraction approach using the Sequential Maximum Angle Convex 
Cone algorithm (SMACC) (Gruninger et al. 2004) was adopted. Thus endmember spectra from 
Sentinel 2A scenes were collected along the urban-rural gradient. Extracted endmembers 
were visually identified from high resolution WorldView 3 scene and grouped according to 
their corresponding land surface material. Lastly, the spectral separability of extracted 
endmembers belonging to the same land cover type was computed using Jefferies-Matusita 
distance. 

 

Figure 2. 6 Steps for spectral variability assessment 

 

2.3.7.2 Assessment of land-cover spatial variability 

The spectral variability assessment along the gradient was further augmented by quantifying 
the spatial composition and configuration of the rural-urban landscape. Thus four landscape 
metrics were selected and calculated using Fragstats- a spatial analyst program for categorical 
maps (McGarigal and Marks 1995). The selected landscape metrics were Patch Density (PD), 
Landscape Shape Index (LSI), Contagion Index (CONTAG) and Shannon’s Diversity Index (SHDI). 
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The PD, LSI and CONTAG metrics quantifies the spatial configuration of all land cover types 
within the rural-urban landscape while SHDI provides information on landscape composition. 

Patch Density (PD) provides a general perspective of spatial heterogeneity of an entire 
landscape (McGarigal et al. 2002) and is calculated as: 

PD = 𝑁𝑁
𝐴𝐴

 (10,000)(100),    (Eq. 15) 

where N is the number of patches in the landscape and A is the total landscape area. The 
Patch Density of a landscape is expressed as the number of patches per 100 hectares. 

Landscape Shape Index (LSI) is an expression of the configuration of a landscape in terms of 
the extent of edges present in the landscape compared to a completely compact landscape of 
the same size with a squared shape (McGarigal et al. 2002). The LSI increases with an 
increasing edge length within the landscape and is expressed as: 

LSI = 𝐸𝐸
min𝐸𝐸

,    (Eq. 16) 

where E is the total length of edge and min E is the minimum total length of edge in the 
landscape (McGarigal et al. 2002). 

Contagion Index (CONTAG) is based on raster cell adjacencies and indicates the overall 
clumpiness within a landscape (McGarigal et al. 2002). CONTAG is inversely related to LSI and 
ranges between 0 and 100, signifying maximally disaggregated patches and maximally 
aggregated patches within a landscape respectively. CONTAG is given by: 

 

CONTAG = 1 + �
∑ ∑ �(𝑃𝑃𝑖𝑖)�

𝑔𝑔𝑖𝑖𝑘𝑘
∑ 𝑔𝑔𝑖𝑖𝑘𝑘
𝑚𝑚
𝑘𝑘=1

��∗�𝑖𝑖𝑛𝑛 (𝑃𝑃𝑖𝑖)�
𝑔𝑔𝑖𝑖𝑘𝑘

∑ 𝑔𝑔𝑖𝑖𝑘𝑘
𝑚𝑚
𝑘𝑘=1

��𝑚𝑚
𝑘𝑘=1

𝑚𝑚
𝑖𝑖=1

2ln (𝑚𝑚)
� ∗ 100   (Eq. 17) 

 

where 𝑃𝑃𝑖𝑖  is landscape proportion occupied by patch type i, m is number of patches in the 
landscape and 𝑔𝑔𝑖𝑖𝑖𝑖 represents the number of adjacencies between pixels of i and k patch types 
(McGarigal et al. 2002). 
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Shannon’s Diversity Index (SHDI) is meaningful as a relative index and quantifies the amount 
of information (i.e. in this case, in terms of patches) present in a given landscape (Shannon 
and Weaver 1949). The SHDI is given by: 

SHDI = −∑ (𝑃𝑃𝑖𝑖 ∗ 𝑙𝑙𝑛𝑛𝑃𝑃𝑖𝑖)𝑚𝑚
𝑖𝑖=1    (Eq. 18) 

where 𝑃𝑃𝑖𝑖  is landscape proportion occupied by patch type i and m is number of patches in the 
landscape. 
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3. Results 

3.1 Training Data Collection 

3.1.1 Urban, Suburban and Rural Areas 

The regional differentiation is shown in Figure 3.1. From Table 3.1, areas with more than 50 
% built-up pixels were classified as urban whereas areas with 10-50 % and 0-10 % built-up 
pixels were defined as suburban and rural regions respectively (Angel et al. 2012). 

 

Figure 3. 1 False color composite of urban, suburban and rural regions from Sentinel 2A scene 

 

Overall, a greater proportion of the transect (48 % = 120 km2) was defined as rural while 14 % 
(45 km2) and 38 % (95 km2) were suburban and urban respectively. The rural region is 
predominantly composed of agricultural land use with patches of tree cover and a few 
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scattered human settlements. The suburban region represents a transition between rural and 
urban regions with almost even share of built-up areas and agricultural lands. Unlike the rural 
and suburban regions, the urban region is largely composed of heavily built-up areas 
interspersed with patches of tree cover (urban green) and lakes scattered from the north to 
south. 

Table 3. 1 Cross-matrix of systematic grid cells and thematic classes showing relative proportions of 
class pixels based on Landsat 8 image 

THEMATIC 
CLASSES 

RELATIVE PROPORTION OF PIXELS (%) 

a b c d e f g h i j k l m n 

Built-up 0.03 0.01 0.02 0.05 0.01 0.02 0.05 0.11 0.30 0.49 0.64 0.62 0.60 0.87 

Water 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.12 0.04 0.02 0.00 0.01 0.00 

Agriculture 0.85 0.86 0.82 0.78 0.79 0.65 0.58 0.36 0.15 0.15 0.16 0.12 0.11 0.02 

Tree cover 0.01 0.04 0.09 0.07 0.09 0.14 0.17 0.18 0.20 0.23 0.15 0.25 0.27 0.11 

Other 0.11 0.08 0.05 0.10 0.11 0.19 0.19 0.35 0.23 0.09 0.03 0.01 0.00 0.00 

Labels ‘a’ to ‘n’ denote systematic grid cells from rural to urban area shown in Appendix III. 

 

3.1.2 Semi-variance Analysis 

Semi-variograms from the NIR band of Landsat 8 scene were derived separately for each 
regional subdivision (urban, suburban and rural: Figure 3.2) considering the apparent spatial 
and spectral variation along the urban-rural gradient. This was aimed at avoiding spatially 
auto-correlated samples for class training. Accordingly, the range parameters from the 
exponential variogram model-fit (Table 3.2) were implemented in the collection of training 
samples. It is assumed that using a range parameter derived from the coarser resolution 
imagery (Landsat 8) would effectively prevent auto-correlated samples across the finer 
resolution scenes (Sentinel 2A) due to the larger distance between pixel values. 
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Figure 3. 2 Semi-variograms calculated from NIR band of Landsat 8 scene for urban, suburban and 
rural regions 

Figure 3.2 shows that semi-variances increase with increasing spatial lag or distance. The semi-
variograms reaches the sill more rapidly in the suburban region followed by the urban region, 
whereas in the rural region the sill is reached at a higher range (Table 3.2). Further, a 
comparison of the slopes of semi-variograms at various distances for the different regions 
shows the relative degrees of auto-correlation of pixel values, decreasing from rural to the 
urban region. Semi-variance for all regions increases rapidly at smaller distances, even so, as 
the lag distance increases the rate at which semi-variance increases is gradually reduced. 

 

 

Table 3. 2 Semi-variogram parameters from exponential model-fit for urban, suburban and rural 
regions 

Region Sill Range Kappa 

Urban  122220.1 2116.233 0.5 

Suburban  97533.44 948.7916 0.5 

Rural  94517.51 2619.741 0.5 
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3.1.3 Class Training 

A total of 11,273 and 105,900 training pixels from 809 polygons were collected for Landsat 8 
and Sentinel 2A images respectively (Table 3.3). Mather (1999) recommended a minimum of 
10p training pixels for each land-cover class, where p represents the number of image spectral 
bands. This translates to a minimum of 70 pixels and 100 pixels per thematic class for Landsat 
8 and Sentinel 2A data respectively. The training samples collected for each thematic class in 
the Sentinel 2A image were considerably larger than the minimum recommended. However, 
only 30 training pixels were collected for Reservoir class from Landsat 8 image data. This is 
largely because only single pixels could be collected, for the large Landsat 8 pixel size. 

 

Table 3. 3 Number of training pixels for each class at 30 m and 10 m resolution 

THEMATIC CLASS 
NUMBER OF TRAINING PIXELS 

Landsat 8 Sentinel 2A 

Built-up 1899 19934 

Tree cover 835 7308 

Grassland 75 746 

Reservoir 30 347 

Lake 1827 16249 

Fallowland 4281 39585 

Cropfield 1782 16522 

Barren land 544 5209 

 

3.1.4 Training Class Spectral Separability 

Jeffries-Matusita (JM) distance was used to quantify the degree of spectral discrimination 
between training samples of the different land-cover types. The separability scores for the 
different resolution images are presented as a matrix in Table 3.4. The JM distances generally 
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highlight a high degree of spectral separability. Nonetheless, low separability thresholds 
(highlighted in Table 3.4) were observed between Cropfields and Fallowland for both Landsat 
8 and Sentinel 2A data and between Cropfields and Grassland for Sentinel 2A training data. 
Additionally, Barren land and Fallowland in Sentinel 2A training samples had a low separability 
score. 

Table 3. 4 Matrix of JM distance values for spectral separability between training samples of 
different land-cover classes (2= complete dissimilarity, 0= complete similarity) 

LANDSAT 8 
 Built-up Tree cover Grassland Reservoir Lake Fallowland  Cropfield 

Tree cover 1.99       

Grassland  1.98 1.79      

Reservoir 1.91 1.99 1.99     

Lake 1.99 1.99 1.99 1.89    

Fallowland 1.93 1.96 1.81 1.87 1.99   

Cropfield  1.96 1.83 1.88 1.83 1.99 1.47  

Barren-land 1.71 1.96 1.89 1.97 1.99 1.63 1.96 

SENTINEL 2A 

 Built-up Tree cover Grassland Reservoir Lake Fallowland  Cropfield 

Tree cover 1.99       

Grassland  1.98 1.88      

Reservoir 1.99 1.99 1.99     

Lake 1.99 1.99 1.99 1.99    

Fallowland 1.95 1.99 1.75 1.99 1.99   

Cropfield  1.99 1.69 1.08 1.99 1.99 1.49  

Barrenland 1.95 1.99 1.98 1.99 1.99 1.34 1.95 
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3.2 Classification Results 

Results of thematic land-cover classification from the different feature extraction strategies 
at the rural-urban interface are shown in figure 3.3 and 3.4 for Lansat 8 and Sentinel 2A images 
respectively. Noticeable differences can be observed in the outputs of land-cover 
classification with reference to raw image scenes, particularly for the lower resolution Landsat 
8 maps. 

 

 

Figure 3. 3 Landsat 8 thematic maps from different classification methods (a = Unmixing #1, b = 
Unmixing #2, c = NAPCA, d = PCA, e = Orignal, f = Landsat 8 image) 

 

a b
 

c
 

d
 

e f 
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Figure 3. 4 Sentinel 2A thematic maps from different classification methods (a = Unmixing #1, b = 
Unmixing #2, c = NAPCA, d = PCA, e = Orignal, f = Sentinel 2A image) 

 

A visual appraisal of the accuracy of land-cover maps in figure 3.3 (a to e) relative to the to 
the satellite scene (figure 3.3 f) clearly shows the dominance of unmixing-based feature 
extraction methods for land-cover classification. Conversely, the results from standard 
feature extraction methods (i.e. NAPCA and PCA) looks very noisy with obvious 
misclassification, especially within the suburban zone of the transect. This is also in 
resonance with the results of quantitative accuracy assessment (figure 3.8) and accuracy 
changes (figure 3.9) along the rural-urban transect. On the other hand, the differences in 
classified finer resolution Sentinel 2A image in figure 3.4 are rather subtle among the 
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different classification strategies. Thus emphasizing the relevance of spectral unmixing of 
coarser spatial resolution images.  

 

3.2.1 Influence of Spatial Resolution on Classification Accuracy at the Rural-Urban 
Interface 

Spatial resolution is a key consideration for minimizing spectral confusion among different 
land cover types and poses great consequences for image classification accuracy at the rural-
urban interface. In this study, the influence of spatial resolution on classification accuracy was 
assessed using 30 m and 10 m Landsat 8 and Sentinel 2A satellite images respectively. Figure 
3.5 shows the results of spatial resolution effects on land cover mapping at the rural-urban 
interface. In figure 3.5, the user’s accuracy represents the proportion of all land surface 
features classified into a specific class, and which corresponds to the same class in the 
independent reference sample. Further, the producer’s accuracy shows the proportion of 
reference areas of a particular land cover class that was correctly classified.  

For most of the classes, accuracy of classification was higher at the finer spatial resolution (10 
m). This trend was observed for all land cover classes in terms of producer’s accuracy. A similar 
tendency was true for user’s accuracy of all land cover classes except Grassland. In essence, 
the coarser resolution (30 m) proved slightly superior (i.e. averagely 4.5 %) with regards to 
areas correctly classified as Grassland from map user’s perspective (figure 3.5). The user’s 
accuracy for the Built-up and Fallow-land classes were high at both spatial resolutions (i.e. on 
average 81 % and 87 % respectively across all resolutions), with averagely 3 % and 5 % 
dominance of 10 m resolution over 30 m resolution respectively. The producer’s accuracy for 
the Built-up and Fallow-land classes on the other hand shows a remarkable reduction in 
accuracy (i.e. on average 12 % and 28 % reduction respectively) across all spatial resolutions. 
For the Built-up class, producer’s accuracy at 10 m resolution showed 15 % better 
classification accuracy than at 30 m resolution, whereas the superiority of 10 m over 30 m 
resolution was 6 % for the Fallow-land class. The results of user’s and producer’s accuracies 
at the different spatial resolution for the remaining classes can be inferred from figure 3.5. 
Overall, figure 3.5 reveals the importance of fine resolution imagery for land cover mapping 
at the rural-urban interface. This finding is further emphasized in figure 3.7 which shows the 
overall accuracy and Kappa statistics at the different spatial resolutions. For both overall 
accuracy and Kappa coefficients, classification accuracy reduced by approximately 10 % from 
10 m to 30 m spatial resolution. Nonetheless, the results of two sample z test showed no 
significant differences at p<0.05 (z critical = 1.96) between the Kappa coefficients of the 
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different spatial resolutions (Table 3.5). Further, the result of overall disagreement between 
pairs of image classification outputs is shown in figure 3.6, indicates a much higher difference 
(i.e. 39 %) in classification results from the different resolution images. 

 

Table 3. 5 Matrix of two sample z test showing the statistical significance between Kappa values of 
classification pairs 

 SVM RF 

10 m 30 m 10 m 30 m 

SVM 
10 m     

30 m 1.036    

RF 
10 m 0.564 0.473   

30 m 1.692 0.648 1.125  

 

Figure 3. 5 user’s and producer’s accuracies of Support Vector Machines and Random Forest 
classifications at 10 m and 30 m resolution 
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Figure 3. 6 Binary map showing the agreement between classification results at different spatial 
resolutions (i.e. 10 m and 30 m). The dark areas show pixels assigned to different classes (39%) 

while the green areas show pixels assigned to the same class (61%) 

 

 

Figure 3. 7 Overall accuracy and Kappa coefficients of Support Vector Machines and Random 
Forest classifications at varying spatial resolutions 
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3.2.2 Comparison of Selected Non-Parametric Classifiers on Classification Accuracy at the 
Rural-Urban Interface 

Non-parametric classifiers are widely recognized for their ability to handle complex 
classification problems (Breiman 2001; Melgani and Bruzzone 2004; Pal 2005; Rodriguez et al. 
2012; Momeni et al. 2016). Evaluation of Support Vector Machine (SVM) and Random Forest 
(RF) classifiers was conducted to test their influence on classification accuracy at the rural-
urban interface. The comparative performance of SVM and RF classifiers is presented in figure 
3.7 showing a similar marginal difference in Kappa coefficients at different spatial resolutions. 
According to the results, SVM was 4.9 % and 5.7 % superior to RF at 10 m and 30 m spatial 
resolutions respectively. Even so, the z test showed no significant differences between the 
two classifiers both within and between the different spatial resolutions (Table 3.5). 
Additionally, the performance of SVM and RF classifiers was evaluated using the user’s and 
producer’s accuracies (Figure 3.5). In terms of user’s accuracy, RF classifier proved only slightly 
better for the classification of areas identified as Built-up, Grassland and Reservoir at 10 m 
spatial resolution, with 2 %, 1 % and 2.3 % improvement in classification accuracy respectively. 
Similarly, only marginal differences in user’s accuracy was observed for areas identified as 
Tree cover, Lake, Fallow-land, Cropfields and Barren-land (i.e. 0.7 %, 2 %, 1.5 %, 8 % and 6 % 
respectively) in favor of SVM classifier at 10 m spatial resolution. Reminiscent of user’s 
accuracy at 10 m spatial resolution, user’s accuracy at 30 m spatial resolution exhibited 
comparable differences between the two classifiers (Figure 3.5). With regards to producer’s 
accuracy, the SVM classifier was superior at both spatial resolutions, for all thematic classes, 
except areas identified as Barren-land. In essence, the RF classifier improved the producer’s 
accuracy of areas identified as Barren-land by 9.7 % and 7.2 % respectively for 10 m and 30 m 
spatial resolutions. 

3.2.3 Performance of Unmixing-Based Feature Extraction at the Rural-Urban Interface 

The feasibility of spectral unmixing for feature extraction was evaluated by comparison of a 
sum-to-unity constrained spectral unmixing (Figure 2.4) and partial unmixing (Figure 2.5) 
strategies with standard feature extraction transformations (4 components PCA and NAPCA). 
Hence three groups of input features (unmixing-based, original and reduced) were considered 
and built from the Landsat 8 and Sentinel 2A images prior to classification with Support Vector 
Machine (SVM). Figure 3.8 shows the results of overall accuracy and Kappa of the different 
feature extraction methods for Landsat 8 and Sentinel 2A images. It can be noticed that the 
unmixing sequences outperforms PCA and NAPCA transformations for both 30 m and 10 m 
resolution images (i.e. Landsat 8 and Sentinel 2A data respectively). Overall, the partial 
unmixing sequence (Unmixing #2) using Mixture-Tuned Match Filtering (MTMF) resulted in 
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the best classification accuracy results for both images (Figure 3.8), but was only marginally 
superior to the standard spectral unmixing sequence (Unmixing #1). Nevertheless, no 
statistically significant differences were observed between results of the different feature 
extraction methods at 95 % confidence level (z critical = 1.96) using two sample z test (Table 
3.8).  

At the level of map user’s and map producer’s accuracies the unmixing-based feature 
extraction strategies gave considerable accuracies in mapping areas identified as Built-up, 
Tree cover, Lakes, Fallow-lands and Cropfield, relative to original and reduced input features, 
particularly at finer spatial resolution (see Tables 3.6 and 3.7). Generally, areas identified as 
Grassland, Reservoir and Barrenland were poorly classified. 

 

Figure 3. 8 Overall accuracy and Kappa of different feature extraction methods on Landsat 8 and 
Sentinel 2A images 
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Table 3. 6 User’s and producer’s accuracies for the different feature extraction methods 
(Unmixing-based, NAPCA, PCA and original) applied to Landsat 8 image 

Class  

Unmixing #1 Unmixing #2 NAPCA PCA Original 

PA 
(%) 

UA 
(%) 

PA 
(%) 

UA 
(%) 

PA 
(%) 

UA 
(%) 

PA 
(%) 

UA 
(%) 

PA 
(%) 

UA 
(%) 

Built-up 0.68 0.77 0.63 0.78 0.35 0.80 0.72 0.77 0.63 0.80 

Tree-cover 0.49 0.56 0.54 0.50 0.41 0.55 0.53 0.49 0.49 0.51 

Grassland 0.19 0.18 0.12 0.20 0.08 0.15 0.06 0.09 0.17 0.16 

Reservoir 0.50 0.06 0.68 0.24 0.65 0.09 0.34 0.12 0.47 0.16 

Lake 0.88 0.67 0.87 0.70 0.74 0.57 0.82 0.59 0.85 0.63 

Fallow-
land 

0.61 0.83 0.63 0.82 0.55 0.82 0.61 0.85 0.59 0.82 

Cropfield 0.69 0.42 0.74 0.43 0.77 0.35 0.65 0.40 0.70 0.38 

Barrenland 0.34 0.16 0.36 0.21 0.55 0.08 0.35 0.14 0.40 0.15 
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Table 3. 7 User’s and producer’s accuracies for the different feature extraction methods 
(Unmixing-based, NAPCA, PCA and original) applied to Sentinel 2A image 

Class  

Unmixing #1 Unmixing #2 NAPCA PCA Original 

PA 
(%) 

UA (%) 
PA 
(%) 

UA 
(%) 

PA 
(%) 

UA 
(%) 

PA 
(%) 

UA 
(%) 

PA 
(%) 

UA 
(%) 

Built-up 0.80 0.84 0.79 0.85 0.73 0.81 0.73 0.85 0.79 0.83 

Tree-cover 0.56 0.68 0.58 0.65 0.48 0.65 0.55 0.64 0.55 0.68 

Grassland 0.16 0.12 0.16 0.12 0.20 0.08 0.23 0.11 0.22 0.11 

Reservoir 0.48 0.16 0.53 0.16 0.39 0.09 0.41 0.16 0.53 0.20 

Lake 0.93 0.85 0.89 0.83 0.88 0.92 0.88 0.83 0.90 0.87 

Fallow-land 0.65 0.90 0.65 0.90 0.61 0.91 0.67 0.90 0.62 0.91 

Cropfield 0.77 0.46 0.76 0.47 0.66 0.45 0.69 0.49 0.74 0.47 

Barrenland 0.53 0.22 0.54 0.22 0.60 0.15 0.61 0.16 0.55 0.19 
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Table 3. 8 Matrix of two sample z test showing statistical differences between accuracies of different 
feature extraction methods for Landsat 8 and Sentinel 2A images 

LANDSAT 8 

 Unmixing #1 Unmixing #2 NAPCA PCA 

Unmixing #2 0.09    

NAPCA 1.27 1.36   

PCA 0.01 0.07 1.29  

Original 0.26 0.36 1.00 0.28 

SENTINEL 2A 

 Unmixing #1 Unmixing #2 NAPCA PCA 

Unmixing #2 0.015    

NAPCA 0.73 0.74   

PCA 0.28 0.29 0.44  

Original 0.19 0.20 0.54 0.09 

 

3.2.4 Classification Accuracy Changes along the Rural-Urban Gradient 

Given the apparent heterogeneity in land surface features from rural to urban areas, an 
assessment of the distance dependence of land cover classification accuracy was carried out 
to exhibit how accuracy changes along the rural-urban gradient. This was based on an 
equidistant (five kilometers) vertical divisions of the rural-urban transect in terms of output 
thematic maps and accompanying validation data. Figure 3.9 shows the trend in land cover 
classification accuracy (Overall accuracy and Kappa) at five-kilometer intervals from the very 
rural to the very urban area along the transect for Landsat 8 and Sentinel 2A images and 
different classification approaches. The overall classification accuracy increased marginally for 
the first 10 kilometers from the very rural area and thereafter decreased steadily through the 
remaining parts of the rural area and suburban area, reaching a lowest threshold at 
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approximately 11 kilometers away from the very urban area (figure 3.9). The remaining 
stretch of the urban area showed a sharp increase in classification accuracy and the maximum 
along the gradient. A similar tendency was observed for all classification approaches. As 
indicated in figure 3.8, the dominance of unmixing-based feature extraction strategies along 
the rural-urban gradient is also shown in figure 3.9. Interestingly however, the reduced input 
features (i.e. the PCA and NAPCA transformations) proved inferior to the original whole 
dimension image datasets at the finer spatial resolution (i.e. 10 m resolution Sentinel 2A 
image). At the coarser spatial resolution (i.e. 30 m resolution Landsat 8 image) however, the 
performance of PCA was comparable to the unmixing-based strategies particularly in the 
urban area (Figure 3.9). Yet NAPCA transformation remained the least favorable in terms of 
classification accuracy enhancement along the rural-urban gradient. 

 

Figure 3. 9 Trend in classification accuracy changes along the rural-urban gradient for different 
classification approaches and spatial resolution 
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3.3 Land-cover Heterogeneity 

3.3.1 Spectral Heterogeneity along the Rural-Urban Gradient 

Assessment of spectral heterogeneity in land surface features was executed within each five-
kilometer block along the rural-urban gradient using the Sequential Maximum Angle Convex 
Cone (SMACC) algorithm for endmember collection (see figure 2.6). Thus the degree of 
heterogeneity was measured as the number of endmembers returned by the SMACC 
algorithm.  

 

Figure 3. 10 Spectral heterogeneity along the rural-urban gradient 

Figure 3.10 shows the pattern of change in degree of spectral heterogeneity in land surface 
features for every five kilometers along the rural-urban gradient. The number of endmembers 
varied considerably within each five-kilometer block from rural to urban region. Essentially, 
heterogeneity in land-cover increased steadily from 27 to 38 endmembers for the first 25 
kilometers and reduced to 32 endmembers within the following 11 kilometers. Nonetheless 
block seven (11 kilometers from the very urban area) exhibited the highest degree of spectral 
heterogeneity (41 endmembers) while block eight (five kilometers from the very urban area) 
was the least heterogeneous (24 endmembers). 

 Among the eight identified land-cover types, the built-up class was the most spectrally 
heterogeneous (42 % of endmembers) along the gradient. 
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3.3.2 Spectral Variation within Land-cover Classes 

Spectral separability analysis based on Jeffries-Matusita distance was used in the assessment 
of spectral variation in the same land-cover class along the rural-urban gradient. The results 
of per-class spectral differences between the different five-kilometer blocks along the rural-
urban gradient are presented in figure 3.11. The different five-kilometer bocks are labeled 
from reg 1 to reg 9 (i.e. region 1 to region 9) indicating the distance differentiation from rural 
to urban region. Thus reg 1 and reg 9 represents the first and last five-kilometer blocks in the 
very rural and very urban regions respectively. The computation of spectral separability was 
based on the mean spectra of endmembers within each five-kilometer block that were visually 
identified and categorized under the same land-cover class. In essence, spectral separability 
of land surface features belonging to the same land-cover class was compared along the rural-
urban gradient. 

Overall, endmember spectra for land-cover classes namely; Built-up, Tree cover, Reservoir 
and Barren land were encountered in all nine five-kilometer blocks while spectra for Cropfield 
class were encountered in only two blocks mainly in the rural landscape (within 22 km from 
rural to urban area). Further, spectra for Grassland and Fallow land were recorded in seven 
five-kilometer blocks, with Grassland spectra mainly within urban and sub-urban landscapes 
whereas Fallow lands stretched from rural to sub-urban landscapes. Additionally, six blocks 
had endmember spectra from the Lake category. 

The highest spectral distances were recorded within the Built-up and Barren-land classes with 
Jeffries-Matusita distances of 1.2 (between block 1 and 8) and 1.4 (between block 8 and 9) 
respectively while Cropfields showed no spectral differences along the gradient. Although the 
results of Jeffries-Matusita distance generally shows low separability thresholds, it is 
instructive to note that the Built-up but also the Barren land spectra in the very rural areas 
differed most from those in the very urban areas. 
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Figure 3. 11 Per-class spectral differences between the different 5 km blocks along the rural-urban 
gradient  
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3.3.3 Spatial Heterogeneity along the Rural-Urban Gradient 

Figure 3.12 shows the results of spatial composition and configuration of land-cover types 
along the rural-urban gradient. The computed landscape metrics indicates varying spatial 
heterogeneity with distance from rural to urban areas at different spatial resolutions. 
Reminiscent of the results of spectral heterogeneity along the gradient, maximum spatial 
heterogeneity was observed at approximately 11 kilometers from the very urban area for all 
spatial metrics. Further, the results indicate a high sensitivity of PD and LSI to spatial 
resolution. 

 

Figure 3. 12 Spatial composition and configuration from selected landscape metrics along the rural-
urban gradient at different spatial resolutions 
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Figure 3. 13 Spatial distribution of land-cover classes classified Sentinel 2A image, (a = Built-up, b = 
Tree cover, c = Grassland, d = Reservoir, e = Lake, f = Fallowland, g = Cropfield, h = Barrenland) 
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4. Discussion 

4.1 Effects of Spatial Resolution on Classification Accuracy at the Rural-Urban 
Interface 

The results indicate that classification accuracy is influenced by image spatial resolution 
independent of the type of classification rule employed (figure 3.7). This general phenomenon 
was also observed by Huiping et al. (2003) when using pixel-based and object oriented 
classification approaches in their analysis of the relationship between classification accuracy, 
segmentation scale and image resolution. Similar findings have been reported in Ponzoni 
(2002), Ming et al. (2011), Suwanprasit and Srichai (2012). Generally, classification accuracy 
was approximately 10 % higher at the finer spatial resolution (i.e. 10 m). This result is 
consistent with Suwanprasit and Srichai (2012), who recorded a slight superiority in overall 
classification accuracy of THEOS with 15 m resolution over Landsat-5TM with 30 m resolution 
(i.e. 90.65 % and 89.00 % respectively). It could be inferred that the proportion of mixed pixels 
in the 10m Sentinel 2A image was sufficiently less than that of the 30m Landsat 8 image, and 
resulted in similarly less misclassified pixels. Irons et al. (1985) investigated the difficulty in 
classifying mixed pixels and demonstrated that percentage accuracy decreases by an average 
of 21 % from pure pixels. Further, this is in resonance to Rashed and Jürgens (2010)’s theory 
that, unique spectral signals can only be detected when spatial resolution is sufficiently fine 
enough to denote land surface features as pure pixels. However, contrary to the expected 
degree of superiority, the difference was rather insignificant at p<0.05 (table 4.5). To further 
analyze the spatial resolution effect on classification accuracy, the classified maps for the 
different resolution images were compared by generating a categorical binary image 
difference map (figure 3.5). Pixels assigned to different thematic classes in both images were 
reclassified as ‘0’s while matching pixels in both maps were reclassified as ‘1’s. From figure 
3.5, the magnitude of overall disagreement between thematic maps at different spatial 
resolutions was found to be higher than when restricting the comparison to just overall 
accuracies or Kappa coefficients. For instance only ~10 % difference between overall 
accuracies and Kappa coefficients was observed for the classified maps of different spatial 
resolutions, yet, as much as 39 % same-class pixels were in disagreement when comparing 
the two thematic maps. The relatively high per-pixel disagreement points to the fact that 
overall accuracy or Kappa coefficients may not capture the spatial resolution effects on 
classification accuracy results in its entirety. According to Chen et al. (2004), a greater 
proportion of error in classification results at different spatial resolutions is concealed by the 
overall accuracy.  
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Individual class user’s accuracies was highest for Built-up and Fallowland categories. 
Nonetheless, the producer’s accuracies showed that Built-up and Fallowland categories were 
on average 12 % and 28 % over classified respectively. Further, the results showed only 3 % 
and 5% better results for the 10 m Sentinel 2A image over the 30 m Landsat 8 image 
respectively for these categories in terms of user’s accuracy. The unique spectral features of 
the Built-up and Fallow-land classes was well represented in both satellite images, and in 
terms of user’s accuracy, allowed for a more accurate classification results. Even so, the 
producer’s accuracies revealed more dominance when using 10 m resolution image for the 
classification of areas identified as Built-up and Fallowlands. For areas identified as grassland, 
user’s accuracy was higher in the 30 m resolution Landsat 8 image than the 10 m Sentinel 2A 
image. Similarly, Huiping et al. (2003) found that unlike small area classes like arbor which had 
a high accuracy when mapped from fine resolution image, large area classes like grassland 
had high accuracy when extracted from coarser resolution images. Generally, Hsieh and Lee 
(2000), Huiping et al. (2003), Chen et al. (2004) and Alshehri (2010), cautions that finer 
resolution images may not necessarily result in higher classification accuracy and that land 
cover classes exhibit different classification accuracies from different image resolutions even 
within the same landscape. Chen et al. (2004) recommends finer resolution images for more 
fragmented landscapes, while Huiping et al. (2003) iterates that different classes require 
different image resolutions for mapping. Ultimately, the results of this study show the suitable 
spatial resolution for land cover mapping at the rural-urban interface. 

4.2 Comparison of Selected Non-Parametric Classifiers on Classification Accuracy at 
the Rural-Urban Interface 

The outcome of two-sample z test (Table 3.5) showed no significant differences between 
classification accuracy results of SVM and RF classifiers at both spatial scales. Nonetheless the 
SVM classifier proved superior to the RF classifier with even a relatively bigger margin at the 
coarser spatial resolution. The overall dominance of SVM over RF classifier under the study 
conditions is in agreement with claims that SVM classifier is best at handling complex 
classification problems (Burai et al. 2015; Momeni et al. 2016). Moreover the result is 
consistent with previous studies. For example Raczko and Zagajewski (2017) recorded a 
similar magnitude of dominance of SVM over RF for tree species classification. Even so, some 
studies (e.g. Ghosh et al. 2014) report similar performance for SVM and RF classifiers or even 
better results for RF classifier (Li et al. 2016) in different contexts. On the level of individual 
class mapping, RF classifier slightly (margin of 1 % to 2.3 %) improved user’s accuracies of 
areas identified as Built-up, Grassland and Reservoirs while SVM was better for classifying 
Tree cover, Lakes, Fallowlands, Cropfields. The RF classifier seems to have a good capability 
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of delineating land-cover classes with high inherent spectral heterogeneity (Figure 3.11) thus 
resulting in slightly better results in terms of user’s accuracy. This could possibly be attributed 
to the collection of multiple tree classifiers functioning on random subsets of training samples 
(Breiman 2001; Li et al. 2016). However the SVM classifier leveraged improved user’s accuracy 
results for Tree cover, Lakes, Fallowlands and Cropfields with total dominance in terms of class 
producer’s accuracies and translated into better overall accuracy and kappa coefficient. 

4.3 Performance of Unmixing-Based Feature Extraction at the Rural-Urban Interface 

Mixed pixels pose a great challenge to image classification (Li et al. 2010). This is particularly 
true at the rural-urban interface where the landscape is characterized by a mosaic of different 
land cover types emanating from diverse land use scenarios (Stokman et al. 2008).  Thus the 
potential of spectral mixture analysis for feature extraction prior to classification of Landsat 8 
(30 m) and Sentinel 2A (10 m) images was evaluated by comparison with results from the 
original image data and standard dimensionality reduction methods (i.e. PCA and NAPCA 
transformations). The partial unmixing sequence using Mixture-Tuned Match Filtering was 
implemented due to the computational complexity and the difficulty of estimating 
endmembers using the standard sum-to-unity constrained linear unmixuing approach (Plaza 
et al. 2009). Moreover, the partial unmixing sequence offered the guarantee that highly 
representative endmembers were used since it incorporates information from the already 
defined classes. The spectral unmixing strategies improved classification accuracy at both 
spatial resolutions relative to the results from PCA, NAPCA and original image data, even 
though the differences were not significant at p<0.05. More specifically, the partial unmixing 
sequence (Unmixing #2) outperformed all tested approaches indicating that in a supervised 
endmember collection, focusing on spectrally pure signals may not be as important as 
collecting representative signatures for the predefined land cover classes (Dópido et al. 2011). 
For the 30 m resolution Landsat 8 image, PCA prior to classification gave the next best 
accuracy results after both unmixing sequences, followed by results from the full dimension 
image data and then NAPCA. However at 10 m spatial resolution, the standard dimensionality 
reduction approaches made a zero contribution to improving classification accuracy contrary 
to reported accuracy enhancing feature of PCA and NAPCA transformations (Howley et al. 
2006; Underhill et al. 2007; Dópido et al. 2011; Dang et al. 2016). Further, the dominance of 
unmixing-based feature extraction methods reduced at 10 m resolution. Even so, a further 
study is required to ascertain the performance of image dimensionality reduction approaches 
at varying spatial resolutions. The accuracy enhancing feature of the unimixing-based 
strategies could be a function of the Minimum Noise Fraction (MNF) transformation within 
the processing chains (Green et al. 1988). Moreover incorporating information on the mixed 
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nature of pixels by means of abundance images improved the interpretability during class 
training leading to more accurate results (Dópido et al. 2011). Essentially, the tested unmixing 
sequences could provide alternatives for PCA and NAPCA transformations. Overall, areas 
identified s Grassland, Reservoir and Barrenland were the most poorly classified. This is 
explainable by the spectral confusion evident from the spectral separability assessment (table 
3.4). Grasslands were largely misclassified as Cropfields while Barrenland was confused for 
Fallowland. This misclassification could also be a function of the size of class training samples 
or in combination with spectral similarity. The case of Resevoir could likely be attributed to its 
relatively scanty training sample size. 

4.4 Effects of Land Cover Heterogeneity on Classification Accuracy along the Rural-
Urban Gradient 

General characteristics of landscapes such as varying spectral properties and land-cover 
heterogeneity have been hypothesized to hasten misclassification of pixels during image 
classification (Congalton 1991; Smith et al. 2002; Smith et al. 2003; Congalton and Green 
2008). Thus a key part of this study was to evaluate image classification accuracy beyond the 
error matrix by examining pixels in the context of landscape characteristics. Landscape 
heterogeneity was assessed along the rural-urban gradient, spectrally using the SMACC 
endmember collection algorithm and spatially by quantifying landscape composition and 
configuration based on selected landscape metrics (i.e. PD, LSI, CONTAG and SHDI). 
Interestingly, there seem to be a considerable correlation between the results of spectral 
heterogeneity and spatial heterogeneity. As such more fragmented and spatially diverse 
landscapes were comparably more spectrally diverse along the rural-urban gradient. It can be 
inferred from the results that land-cover heterogeneity has a remarkable influence on 
classification accuracy. The rural and urban ends of the transect are primarily composed of 
agricultural lands (i.e. Fallowlands and Cropfields) and built-up surfaces respectively and were 
relatively more homogeneous in terms of the spectral and spatial metrics. The PD, LSI and 
CONTAG metrics showed the very rural and urban landscapes as having more contiguous and 
less fragmented patches with many liked cell adjacencies (McGarigal et al. 2002; Lechner et 
al. 2009) and relatively lower diversity based on SHDI. Similarly the SMACC algorithm returned 
relatively fewer endmembers for these areas which indicated less spectral heterogeneity. A 
high degree of landscape heterogeneity was observed in the peri-urban region at 
approximately 11 kilometers from the very urban area. This trend is also apparent from the 
distribution of land-cover types along the gradient (figure 3.13) where the peri-urban region 
(approximately 11 kilometers from the very urban area) is composed of a mixture of all land-
cover types. Generally, the tendencies in accuracy changes along the rural-urban gradient are 
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explainable by the results from heterogeneity assessment. For example the region 11 
kilometers from the very urban area had the highest degree of heterogeneity and the lowest 
classification accuracy. Typically the findings indicate that landscapes with high PD, LSI, SHDI 
and low CONTAG have lower accuracy while homogeneous and less fragmented landscapes 
have higher accuracy (Smith et al. 2003; Lechner et al. 2009; Tran et al. 2014). 
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5. Conclusions and Recommendations 

5.1 Conclusions 

This study examined the influence of spatial resolution, spectral unmixing techniques and 
land-cover heterogeneity on accuracy of land-cover mapping at the rural-urban interface in 
the Indian megacity of Bangalore. Analyses were performed on Landsat 8 and Sentinel 2A 
satellite images centered on a 50 km (vertical) by 5 km (horizontal) northern transect 
extending from rural to the urban center.  

The results indicate that image spatial resolution plays an important role in determining the 
accurate classification of pixels irrespective of classification rule employed. As spatial 
resolution increases, the proportion of mixed pixels decreases and overall classification 
accuracy is enhanced. However the level of gains in classification accuracy depends on 
landscape composition and the method of classification applied. For example homogenous 
and large area classes like grassland can be mapped with a higher accuracy even at coarser 
spatial resolution. Moreover, classification accuracy was enhanced when using SVM classifier 
in comparison with RF classifier.   

Further, spectral unmixing techniques for feature extraction prior to classification with SVM 
considerably improved classification accuracy relative to well-known PCA and NAPCA 
transformations. The unmixing sequences further indicates that in supervised endmember 
collection for spectral unmixing, representative spectral signatures from predefined land 
cover classes may be more important than focusing on pure signatures. Additionally, the 
results show that dimensionality reduction prior to classification plays little or no role in 
enhancing classification accuracy at finer spatial resolution. Nonetheless, this finding is 
subject to further investigations. 

Finally, the results indicate the importance of landscape characteristics in explaining 
classification accuracy changes. Classification accuracy along the rural-urban gradient is 
inversely related to Patch Density (PD), Landscape Shape Index (LSI) and Shannon’s Diversity 
Index (SHDI), and, directly related to Contagion Index (CONTAG). Specifically, as the degree of 
fragmentation and spatial diversity within a landscape increases, classification accuracy 
reduces. Overall, the findings from the study suggest that spatially heterogeneous landscapes 
exhibit high spectral variability, signaling the need to integrate spatial landscape 
characteristics in accuracy assessment of land-cover maps. 
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5.2 Recommendations 

1. The major bottleneck in this study was related to computer processing of satellite 
images which restricted the analyses to only Landsat 8 and Sentinel 2A images leaving 
out the very high resolution World View 3 image. Therefore we recommended a 
similar study that incorporates very high resolution imagery (e.g. Worldview3) to 
further analyze and ascertain the influence of spatial resolution on classification 
accuracy at the rural-urban interface, especially in the wake of conflicting reports in 
available literature. 

2. We proffer further studies on the effect of spatial resolution on image dimensionality 
reduction in terms of classification accuracy. Knowledge of this may help to design or 
select the optimal combination of image dimensionality reduction method and spatial 
resolution to enhance classification accuracy.  

3. Changes in thresholds of the spatial metrics along the rural-urban gradient particularly 
in relation to the scale at which they are derived require to be further investigated. 
This study derived different spatial metrics along the rural-urban gradient and found 
that unlike Contagion Index (CONTAG) and Shannon’s Diversity Index (SHDI), Patch 
Density (PD) and Landscape Shape Index (LSI) are very sensitive to spatial resolution. 

4. Classification within individual 5-kilometer blocks along the rural-urban gradient gave 
promising results than when considering the overall transect. Thus it is recommended 
that where possible, image classification in similarly complex landscapes be restricted 
to more homogeneous micro-conditions. 
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APPENDICES 

Appendix I Error matrices for Landsat 8 thematic maps 

A. Error matrix for unmixing sequence 1 

 

B. Error matrix for unmixing sequence 2 

 

C. Error matrix for NAPCA transformation 

 

Class 1 2 3 4 5 6 7 8 Totals PAs
1 4152 714 77 486 46 131 258 215 6079 0.683007
2 723 1782 208 42 22 334 377 100 3588 0.496656
3 152 135 150 33 11 110 56 138 785 0.191083
4 20 7 3 61 14 2 10 3 120 0.508333
5 6 8 2 9 204 0 2 0 231 0.883117
6 124 104 173 190 3 6559 3052 437 10642 0.616332
7 40 343 153 13 2 652 2771 26 4000 0.69275
8 136 36 26 59 0 50 33 181 521 0.347409

Totals 5353 3129 792 893 302 7838 6559 1100 25966
UAs 0.77564 0.569511 0.189394 0.068309 0.675497 0.836821 0.422473 0.164545

OA 0.610799 kappa 0.494822

PREDICTED LABELS

RE
FE

RE
NC

E L
AB

EL
S

Class 1 2 3 4 5 6 7 8 Totals PAs
1 3847 1130 40 116 36 439 265 206 6079 0.632834
2 594 1961 119 4 30 255 541 84 3588 0.546544
3 134 221 100 3 11 156 65 95 785 0.127389
4 8 6 3 82 4 0 15 2 120 0.683333
5 13 8 0 7 201 0 2 0 231 0.87013
6 149 137 129 104 1 6748 3053 321 10642 0.634091
7 32 334 80 11 0 535 2995 13 4000 0.74875
8 123 52 21 14 1 89 29 192 521 0.368522

Totals 4900 3849 492 341 284 8222 6965 913 25966
UAs 0.785102 0.509483 0.203252 0.240469 0.707746 0.820725 0.430007 0.210296

OA 0.621043 kappa 0.503206

RE
FE

RE
NC

E L
AB

EL
S

PREDICTED LABELS

Class 1 2 3 4 5 6 7 8 Totals PAs
1 2151 717 55 314 77 320 472 1973 6079 0.353841
2 363 1475 52 54 31 244 1049 320 3588 0.411093
3 55 127 64 15 4 145 154 221 785 0.081529
4 11 6 1 78 1 2 16 5 120 0.65
5 6 6 1 36 172 0 7 3 231 0.744589
6 22 48 126 292 5 5884 3902 363 10642 0.552904
7 3 236 98 41 1 473 3110 38 4000 0.7775
8 47 36 5 22 6 57 59 289 521 0.554702

Totals 2658 2651 402 852 297 7125 8769 3212 25966
UAs 0.809255 0.556394 0.159204 0.091549 0.579125 0.825825 0.354658 0.089975

OA 0.509243 kappa 0.382105

PREDICTED LABELS

RE
FE

RE
NC

E L
AB

EL
S
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D. Error matrix for PCA transformation 

 

E. Error matrix for full dimension image 

 

F. Error matrix for RF classification 

  

Class 1 2 3 4 5 6 7 8 Totals PAs
1 4386 788 12 134 63 252 246 198 6079 0.7215
2 667 1907 26 54 37 196 639 62 3588 0.531494
3 181 167 54 23 8 110 141 101 785 0.06879
4 14 31 1 41 12 6 8 7 120 0.341667
5 12 17 0 8 191 0 2 1 231 0.82684
6 189 190 304 39 4 6512 2728 676 10642 0.611915
7 21 661 189 3 2 456 2630 38 4000 0.6575
8 163 54 3 29 2 48 36 186 521 0.357006

Totals 5633 3815 589 331 319 7580 6430 1269 25966
UAs 0.778626 0.499869 0.091681 0.123867 0.598746 0.859103 0.40902 0.146572

OA 0.612609 kappa 0.496428

RE
FE

RE
N

CE
 LA

BE
LS

PREDICTED LABELS

Class 1 2 3 4 5 6 7 8 Totals PAs
1 3840 887 111 159 49 308 289 436 6079 0.631683
2 586 1770 225 35 35 299 522 116 3588 0.493311
3 108 144 138 19 6 142 84 144 785 0.175796
4 16 7 5 57 15 2 17 1 120 0.475
5 13 6 4 8 197 0 2 1 231 0.852814
6 61 95 189 60 4 6308 3520 405 10642 0.592746
7 23 505 127 7 3 481 2832 22 4000 0.708
8 102 56 25 10 2 79 38 209 521 0.401152

Totals 4749 3470 824 355 311 7619 7304 1334 25966
UAs 0.808591 0.510086 0.167476 0.160563 0.633441 0.82793 0.387733 0.156672

OA 0.591196 kappa 0.471146

PREDICTED LABELS

RE
FE

RE
N

CE
 LA

BE
LS

Class 1 2 3 4 5 6 7 8 Totals PAs
1 3598 478 12 310 40 340 612 689 6079 0.591874
2 566 1590 35 92 26 99 1055 125 3588 0.443144
3 129 92 48 40 3 73 243 157 785 0.061146
4 9 27 1 41 10 5 23 4 120 0.341667
5 6 19 0 10 188 0 6 2 231 0.813853
6 105 123 113 83 2 5477 4123 616 10642 0.514659
7 27 747 96 11 3 301 2789 26 4000 0.69725
8 109 23 4 20 1 57 60 247 521 0.474088

Totals 4549 3099 309 607 273 6352 8911 1866 25966
UAs 0.790943 0.513069 0.15534 0.067545 0.688645 0.862248 0.312984 0.132369

OA 0.538319 kappa 0.413639

PREDICTED LABELS

RE
FE

RE
N

CE
 LA

BE
LS
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Appendix II Error matrices for Sentinel 2A thematic maps 

A. Error matrix for unmixing sequence 1 

 

B. Error matrix for unmixing sequence 2 

 

C. Error matrix for NAPCA transformation 

 

Class 1 2 3 4 5 6 7 8 Totals PAs
1 4848 416 64 183 2 170 215 191 6089 0.8
2 495 2023 124 54 1 107 760 29 3593 0.56
3 127 69 122 16 2 146 226 78 786 0.16
4 11 8 1 58 33 1 2 6 120 0.48
5 0 3 0 12 217 0 1 0 233 0.93
6 105 61 458 31 1 6954 2394 667 10671 0.65
7 14 395 226 8 0 261 3095 9 4008 0.77
8 138 8 11 2 0 55 30 277 521 0.53

Totals 5738 2983 1006 364 256 7694 6723 1257 26021
UAs 0.844894 0.678176 0.121272 0.159341 0.847656 0.903821 0.46036 0.220366

OA 0.676146 kappa 0.578989

RE
FE

RE
NC

E L
AB

EL
S

PREDICTED LABELS

Class 1 2 3 4 5 6 7 8 Totals PAs
1 4827 493 109 186 3 155 129 187 6089 0.79
2 463 2101 146 47 1 114 691 30 3593 0.58
3 126 80 128 20 2 147 210 73 786 0.16
4 5 8 0 64 33 5 2 3 120 0.53
5 2 1 0 21 208 0 1 0 233 0.89
6 121 79 440 36 4 6949 2373 669 10671 0.65
7 11 429 212 9 0 267 3056 24 4008 0.76
8 127 23 16 7 0 53 15 280 521 0.54

Totals 5682 3214 1051 390 251 7690 6477 1266 26021
UAs 0.849525 0.653703 0.121789 0.164103 0.828685 0.903641 0.471823 0.221169

OA 0.676876 kappa 0.580339

PREDICTED LABELS

RE
FE

RE
NC

E L
AB

EL
S

Class 1 2 3 4 5 6 7 8 Totals PAs
1 4455 215 136 337 1 131 171 643 6089 0.73
2 564 1742 212 97 1 121 786 70 3593 0.48
3 122 59 157 10 1 104 178 155 786 0.2
4 24 6 1 47 16 2 2 22 120 0.39
5 3 8 0 17 205 0 0 0 233 0.88
6 180 51 863 14 0 6554 2129 880 10671 0.61
7 34 597 486 1 0 210 2652 28 4008 0.66
8 100 5 21 8 0 47 27 313 521 0.6

Totals 5482 2683 1876 531 224 7169 5945 2111 26021
UAs 0.81266 0.649273 0.083689 0.088512 0.915179 0.914214 0.446089 0.148271

OA 0.619692 kappa 0.515108

RE
FE

RE
N

CE
 LA

BE
LS

PREDICTED LABELS
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D. Error matrix for PCA transformation 

 

E. Error matrix for full dimension image 

 

F. Error matrix for RF classification 

 

Class 1 2 3 4 5 6 7 8 Totals PAs
1 4422 350 180 186 3 167 107 674 6089 0.73
2 459 1971 185 30 1 161 732 54 3593 0.55
3 102 65 177 5 1 127 159 150 786 0.23
4 17 8 1 49 35 3 1 6 120 0.41
5 3 4 0 21 205 0 0 0 233 0.88
6 90 51 742 11 1 7132 1865 779 10671 0.67
7 14 604 359 0 0 255 2756 20 4008 0.69
8 108 9 19 5 0 43 21 316 521 0.61

Totals 5215 3062 1663 307 246 7888 5641 1999 26021
UAs 0.847939 0.643697 0.106434 0.159609 0.833333 0.904158 0.488566 0.158079

OA 0.654395 kappa 0.554368

PREDICTED LABELS

RE
FE

RE
N

CE
 LA

BE
LS

Class 1 2 3 4 5 6 7 8 Totals PAs
1 4837 460 144 146 3 135 110 254 6089 0.79
2 520 1987 219 30 2 96 699 40 3593 0.55
3 145 61 171 15 2 122 170 100 786 0.22
4 8 13 0 63 25 6 1 4 120 0.53
5 1 3 0 18 210 0 1 0 233 0.9
6 169 34 698 34 0 6651 2317 768 10671 0.62
7 32 355 357 1 0 267 2975 21 4008 0.74
8 133 9 21 11 0 46 15 286 521 0.55

Totals 5845 2922 1610 318 242 7323 6288 1473 26021
UAs 0.82754491 0.680014 0.106211 0.198113 0.867769 0.908234 0.473123 0.194162

OA 0.660236 kappa 0.562248

RE
FE

RE
N

CE
 LA

BE
LS

PREDICTED LABELS

Class 1 2 3 4 5 6 7 8 Totals PAs
1 4450 134 20 26 4 203 558 694 6089 0.730826
2 382 1644 46 8 1 124 1366 22 3593 0.457556
3 133 45 103 4 2 122 247 130 786 0.131043
4 19 6 1 47 31 1 9 6 120 0.391667
5 5 4 0 13 210 0 1 0 233 0.901288
6 153 31 433 8 0 6512 2218 1316 10671 0.610252
7 17 577 271 0 0 275 2848 20 4008 0.710579
8 87 3 7 2 0 56 29 337 521 0.646833

Totals 5246 2444 881 108 248 7293 7276 2525 26021
UAs 0.848265 0.672668 0.116913 0.435185 0.846774 0.892911 0.391424 0.133465

OA 0.620691 kappa 0.512942

RE
FE

RE
N

CE
 LA

BE
LS

PREDICTED LABELS
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Appendix III Initial land-cover map for determining degree of urbanness based on 
Landsat 8 image. 
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