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Abstract 

Thermal pre-treatment of cellulose rich biomass for biogas production 

Pauline Demetriades 

 

Anaerobic digestion is one possible method to produce bioenergy from cellulose 

rich materials but the process techniques still need refinements to facilitate the 

production process. In this work the biogas potential from six different plant 

materials was evaluated and what effect a thermal pre-treatment had on this 

potential. The biogas production was determined in a batch experiment model 

with small biogas reactors. The tested substrates were oat straw, meadow grass, 

aspen, spruce and wet grain residue from two different ethanol production plants 

in Sweden, all of which were thermally pre-treated with one or two pre-treatment 

setups and compared in production with untreated materials. Results show that 

thermal pre-treatment does have an effect on the biogas production but that 

different materials need different thermal pre-treatment parameters. The 

experiment also showed that the particle size of the plant material can have an 

equally large effect on the biogas production as the thermal pre-treatment. Smaller 

particles give rise to a higher methane production. Of the tested materials the 

untreated wet grain residue from spirits production showed both the highest 

degradation rate and total biogas production whereas the thermally pre-treated 

spruce had the lowest production. 

 

Keywords: biogas production potential, degradation rate, degradation potential, 

thermal pre-treatment, steam explosion, autohydrolysis, cellulose, lignin, oat 

straw, meadow grass, aspen, spruce, wet grain residue, batch experiment 
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Sammanfattning 

Termisk förbehandling av cellulosarika material för biogasproduktion 

Pauline Demetriades 

 

Rötning ett sätt att producera bioenergi från cellulosarika växtmaterial men 

rötningsteknikerna behöver fortfarande finjusteras för att underlätta 

nedbrytningsprocessen. I denna studie undersöks biogaspotentialen från sex olika 

växtmaterial och vilken effekt en termisk förbehandling har på denna potential. 

Biogasproduktionen bestämdes i batchförsök med småskaliga biogasreaktorer. 

Substraten i undersökningen var havrehalm, ängsgräs, asp, gran och drank från två 

etanolproduktionsindustrier i Sverige. En eller två termiska förbehandlingar 

testades för varje substrat och förbehandlat substrat jämfördes mot obehandlat. 

Resultaten visade att termisk förbehandling har en effekt på både 

biogasproduktionen och nedbrytningshastigheten men att olika material behöver 

olika termiska förbehandlingar. Undersökningen visade även att växtmaterialets 

partikelstorlek också spelar roll för biogasproduktion och nedbrytningshastighet. 

Av de undersökta substraten visade obehandlad drank från starksprittillverkning 

högst nedbrytningshastighet och total biogasproduktion medan gran hade de 

lägsta produktionsnivåerna. 

 

Nyckelord: biogaspotential, rötning, nedbrytningshastighet, nedbrytningspotential, 

termisk förbehandling, ångexplosion, autohydrolys, cellulosa, lignin, havrehalm, 

ängsgräs, asp, gran, drank, drankvatten, batch experiment 
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Populärvetenskaplig sammanfattning 

Termisk förbehandling av cellulosarika material för biogasproduktion 

Pauline Demetriades 

 

En av de globalt största utmaningarna för världens länder är att uppnå en hållbar 

utveckling både ekonomiskt, ekologiskt och socialt. Målet med en hållbar 

utveckling är basen i både Brundtlandrapporten (1987) och en av huvudpunkterna 

i FN:s Rio-deklaration (1992). Ett stort gemensamt mål är att bryta de ohållbara 

konsumtionsmönstren av ändliga resurser, såsom den massiva användningen av 

råolja för produktion av fordonsbränsle, kemikalier och plaster. Istället bör 

konsumtionen styras över till nyttjandet av förnyelsebara energikällor vilket bland 

annat kan göras genom utvecklandet av teknik för produktion och användning av 

biobränslen. En total helhetslösning med basen i en enda råvara, såsom är fallet 

med råoljan, är sannolikt inte möjlig inom en relativt nära framtid. Mer trolig är då 

en utbyggnad av flera infrastrukturer med olika biobränslen. En sådan utveckling 

står för flera tekniska utmaningar. Dels krävs det stora investeringar i den fysiska 

infrastrukturen och dels krävs det utveckling och förfining av tekniker för 

produktion och konsumtion.  

För att kunna mäta sig med råoljan behöver biobränslena kunna produceras billigt 

och i stora mängder. Den mest tillgängliga och billiga förnyelsebara råvaran för 

biobränsleproduktion är växtmaterial. Många växter är relativt enkla att hantera i 

storskalig jordbruksproduktion där grödor för mat- och foderproduktion kan 

kombineras med energigrödor. Växter producerar globalt årligen ca 100 miljarder 

ton biomassa där stora mängder energi binds i cellulosa genom fotosyntesen. 

Cellulosan i växtbiomassa är samtidigt ett problem då den har en kompakt kemisk 

struktur som gör den bundna energin svår att utnyttja.  

Biogas består till största del av metangas och koldioxid och är en restprodukt som 

bildas då flera olika grupper av mikroorganismer bryter ned organiskt material i 

syrefria miljöer. Denna nedbrytningsprocess förekommer naturligt i bland annat 

tarmkanalen hos gräsätare och termiter, i sjöbottensediment samt i mossar och 

kärr. Biogas kan även produceras under industriella former och processen kallas 

då ofta för rötning. Det är metangasen som är det energibärande ämnet i biogas 

och det som används för att producera el, värme och som fordonsbränsle.  

Utvinning av biogas genom rötning är ett av de mest effektiva sätten att ta tillvara 

på energin i cellulosa men för att kunna göra detta på ett tillräckligt effektivt sätt 

behöver växtmaterialet ofta förbehandlas. Växterna kan till exempel finfördelas, 

behandlas med het ånga i tryckkammare eller blötläggas i syra eller lut. Det är 

vanligt att man kombinerar flera av dessa förbehandlingar. Syftet är dock alltid att 

öka hastigheten på biogasproduktionen genom att bryta upp den fysiska 



 
 

strukturen. Detta gör näringen mer lättåtkomlig för mikroorganismerna i 

biogasprocessen vilket ökar både nedbrytningshastigheten och den totala 

nedbrytningsgraden.  

I denna studie genomfördes experiment för att utröna effekten av en termisk 

förbehandling med het ånga och högt tryck på ett antal växtmaterial med avseende 

på biogasproduktion. Undersökningen genomfördes på behandlade och 

obehandlade växtmaterial i småskaliga biogasreaktorer.  

Resultaten från undersökningen visade att termisk förbehandling kan ha en positiv 

effekt på biogasproduktionen från cellulosarika växtmaterial men att olika 

material reagerar olika på samma behandling. Specifika förbehandlingar behöver 

därför utvecklas för enskilda växtmaterial. Undersökningen visade också att 

storleken på partiklarna av det enskilda växtmaterialet spelar roll för den totala 

biogasproduktionen och att mindre partiklar ger ett högre utbyte. 

Partikelstorleken kan ha lika stor effekt som en termisk förbehandling.  

Vidare undersökningar behövs för att klargöra om termisk förbehandling är 

lönsam för specifika substrat och för att optimera termisk förbehandling på olika 

växtmaterial.  
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1. Introduction 
 

The most alarming of all man’s assaults upon the environment is 

the contamination of air, rivers, and sea with dangerous and even 

lethal materials.  

The clear-sighted words above were written by Rachel Carson in her famous book 

‘Silent spring’ (1962) that is said to have been the starting point of the global 

environmental awareness. The nations of the world started to realize that the 

unbridled consumption of the natural recourses must change to a more sustainable 

one. Environmental questions quickly became a prioritised issue and the United 

Nations (UN) started their work by gathering over 100 countries to the so called 

Stockholm conference in 1972 (SFN, 2008). Twenty years later, in 1992, the next 

global event was held in Rio de Janeiro which resulted in three main documents – 

the Rio-declaration on Environment and Development, the Convention on Climate 

Change and the Convention on Biological Diversity. The Rio-declaration contains 

27 fundamental principles about human rights and responsibilities and the 8th one 

about sustainable development reads: 

To achieve sustainable development and a higher quality of life for 

all people, States should reduce and eliminate unsustainable 

patterns of production and consumption and promote appropriate 

demographic policies (UN, 1992). 

 

One of the main unsustainable patterns of consumption is the use of petroleum for 

vehicle fuel, chemicals and plastics. The heavy dependence on petroleum for these 

different uses has been pointed out as the main source of greenhouse gas 

emissions thus causing global warming (IPCC, 2007). To break this dependency 

should be prioritised and there are several possible alternatives. The development 

of the technologies for biofuel is one important strategy. In the near future biofuels 

such as ethanol, biodiesel and biogas and techniques for minimising fuel 

consumption with hybrid engines and batteries will be of great importance 

(Börjesson & Mattiasson, 2007). The transportation sector has historically 

favoured liquid fuels (Yang & Wyman, 2007). However the production of 

bioethanol, biodiesel and DME alone lacks somewhat in resource efficiency in 

comparison to a more developed system where more of the raw material is used in 

several steps (Börjesson & Mattiasson, 2007). Development of biogasification 

techniques to use the ethanol by-products further seems to be a part of the 

solution where the wet grain residues can be used as biogas production substrate.  

The government has made large investments in the biogas infrastructure the past 

years and both production and use is increasing in Sweden.  
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Biogas is formed when organic material is decomposed under anaerobic 

conditions (Hobson, 1982). The gas has many applications and can be used to 

produce heat, electricity or vehicle fuel. Different materials are decomposed to 

different extent and also produce different amounts of biogas. Biogas production in 

Sweden was from the beginning a way to reduce the volume of wastewater 

treatment plant sludge that went to landfills (Börjesson & Mattiasson, 2007). For 

the time being the current production from household and industrial wastes, 

energy crops and wastewater treatment plants is enough to satisfy the biogas 

market in Sweden. To make use of the full capacity of biogas production methods 

to utilize biogas from cellulose-rich materials must however be developed. The 

most inexpensive and abundant renewable substrate for biofuels is lignocellulosic 

biomass (Yang & Wyman, 2007). All plants on Earth produce approximately 100 

billion tonnes of biomass annually (Campbell & Reece, 2005). Many plant materials 

can easily be produced in large quantities and are possible to integrate with 

several crop systems (Yang & Wyman, 2007).  

In the biogas process, the decomposition of cellulose rich materials is often the 

limiting step in the biogas production. By breaking up the complex structure of the 

cellulose in a pre-treatment step the biogas process can be speeded up (Yang & 

Wyman, 2007). There are several possible pre-treatments that have been 

investigated in other studies (Bougrier et al., 2008; Hongzhang et al, 2005; 

Mshandete et al, 2006, Yang & Wyman, 2007). In general there are four different 

categories: biological, chemical, physical and thermal pre-treatments (Yang & 

Wyman, 2007).  

Thermal pre-treatment can be economically unviable because the vast amounts of 

energy needed to heat the water used in the process. However, this depends on the 

system the steam-explosion is applied to. If the production unit has access to 

excess heat that can be re-circulated, this heat can be used for thermal pre-

treatment of the substrates without compromising the economical viability. Pre-

treatments in general do not always give more in exchange from the substrate 

compared to the invested energy and the total energy balance must be taken into 

consideration before applying a method. Compared to other pre-treatment 

methods steam explosion has a low energy requirement and is considered to be 

very cost effective (Sun & Cheng, 2001). 

Thermal pre-treatment is often a combination of steam explosion after the 

material has been soaked in acid. This is a common practice for example in ethanol 

production. According to the substitution principle in the EU decree for 

Registration, Evaluation, Authorization of Chemicals no. 1907/2006 (REACH) and 

the precautionary principle in Swedish environmental legislation (SFS 1998:808 

Miljöbalk 2:3 §) everyone who manages operations involving actions that might 

inflict harm or damage on people’s health or the environment should use the best 

available technology to minimise the risks of the operation. Cambi AS is a 
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Norwegian company with subsidiaries in a number of countries worldwide. They 

have developed a method for re-circulating steam in the steam-explosion process. 

While this technical solution makes the biogas production more cost-efficient it 

still needs to be optimised for cheap and abundant substrates. Furthermore, 

developers at Cambi AS have constructed a method for thermal pre-treatment 

which is solely a steam-explosion process. Because the chemicals have been 

excluded in the process this method can be considered more environmentally 

friendly than the more commonly used method with acid. 

Cambi AS’s thermal pre-treatment has previously been evaluated on different 

industrial and municipal wastewater treatment plant sludge with good results. In 

this study the effects of thermal pre-treatment will be tested on six different 

cellulose-rich substrates to evaluate the effect of thermal pre-treatment. The 

materials in question are spruce, oat straw, meadow grass, aspen wood chips and 

distillers waste from two different ethanol production plants.  

1.1 Hypotheses 

Thermal pre-treatment with steam explosion is a treatment that breaks up the 

crystalline structure of cellulose and thus makes it more available for biological 

degradation. This should potentially generate more biogas.  

1.2 Purpose 

One of the overall purposes for the MicroDrivE-project is to optimize biogas 

production from cellulose rich materials. The purpose of this study was to evaluate 

if and which of the tested thermal pre-treatment is the better one and to determine 

the potential for the tested substrates. 
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2. Background 

2.1 Biogas – situation in Sweden 

The biogas industry in Sweden developed in the 1950-1970’s when the technology 

was used to sanitize and reduce volume of sewage sludge (Nordberg, 2006).  

During the following decades many experiences were made, household recycling 

was introduced and large scale facilities for decomposition of a variety of different 

organic wastes were set up. Biogas production has now become the primary 

objective of several companies and production of agricultural crops solely for this 

production has also begun to spread. There are around 220 biogas facilities in 

Sweden and the production has been on a stabile level of 1.5 TWh/year the last ten 

years (Nordberg, 2006). The main part of the production is used as vehicle fuel and 

local heating. The substrates that contribute for the main body of the production of 

biogas in Sweden are sewage sludge, municipal organic wastes, biowaste and 

process wastage from food industries, agricultural crops and animal manure 

(Nordberg, 2006). If the full potential of these substrates was used the energy 

production would tote up to 15 TWh/year (Linné et al, 2008). 

This production and the production from ‘first generation’ biogas substrates, such 

as different energy crops, will be enough to fill the need of biogas for the next ten 

years (Börjesson & Mattiasson, 2007). However, in the long run new sources for 

biofuel production must be found. One potential source is the ‘second generation’ 

substrates, such as lignocellulosic plant materials. However, these substrates and 

the technologies to ferment them are still novel techniques and need further 

research to become fully commercially viable. Lignocellulosic materials are the 

major group that counts as the ‘second generation’ substrates. For the full potential 

to be calculated and made use of the industry must find ways to process substrates 

such as straw and wood. Including the potential from lignocellulosic materials 

from forestry this figure changes to about 74 TWh/year where the lignocellulosic 

materials constitute for 80 % (Linné et al, 2008).  

2.2 Biogas – formation and microbiology 

2.2.1 Biogas 

There are several kinds of gasses that are used for energy purposes over the world 

(Gasföreningen, 2008). These energy gasses have renewable or ending origins. 

Biogas is a renewable gas formed under anaerobic conditions when organic 

material is degraded by microorganisms. It consists mainly of methane (CH4) and 

carbon dioxide (CO2) and to some small extent of other gasses, for example 

hydrogen sulphide (H2S) and nitrogen gas (N2) (Svenska biogasföreningen, 2006).  

Biogas formation occurs naturally for example in marshes, river beds and in the 

guts of herbivores (Hobson, 1982; Wall [1], 2008). It can also be produced under 

controlled conditions in biogas plants with the same kind of microbial cultures. 
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The basics of this technology have been known for over 80 years and the primary 

use in Sweden has been to reduce sludge volume and pollution from sewage sludge 

and municipal wastes (Nordberg, 2006). In other countries, for example China and 

India, the gas has been used to heat stoves and burnt in lanterns (Levén, 2006). 

Wastewater treatment plants are the largest producers of biogas in Sweden and 

biogas from these operations are mostly used for heat and light within the facility 

(Wall [1], 2008). Major investments are now made in the infrastructure for 

production and distribution of biogas as a vehicle fuel and estimations show that 

approximately 1000 GWh will be used as vehicle fuel by 2010 (Nordberg, 2006). 

Examples of recourses for commercial biogas production are industrial 

wastewaters from food processing, breweries, distilleries, beverages, pulp and 

paper production (Wall [1], 2008). Great potential is also found in the organic 

fraction of municipal solid wastes.  

2.2.2 Microbiological background 

Four main groups of microorganisms are involved in the biogas process – 

hydrolytic and fermenting bacteria, acetate-forming bacteria and methanogens, the 

later belonging to the domain of Archea (Gerardi, 2003; Wall [2], 2008). These 

groups of microorganisms perform the four main steps of the methane formation 

process (figure 1). In the first step the degradation of organic material starts when 

bacteria that is able to perform hydrolysis of complex organic materials (for 

example polymers of cellulose) with extracellular enzymes break up the material 

into smaller pieces (monomers like for example glucose).  The fermenting bacteria, 

of which not all are able to perform hydrolysis, degrade the monomers into mainly 

short fatty acids, alcohols, hydrogen gas and carbon dioxide in the second part of 

the biogas process. The products from the fermenting bacteria then become 

substrate for the acetate-forming bacteria which perform the third part of the 

biogas process. The products previously produced during the fermentation are 

degraded further by these bacteria and acetate, carbon dioxide and hydrogen gas is 

formed as their decay products. Together the fermenting and acetate-forming 

steps of the biogas process are sometimes called acidogenesis. 

These components from the acidogenesis make up the substrate for the 

methanogens in the fourth and last step of the biogas process (Gerardi, 2003; Wall 

[2], 2008). The methanogens use acetic acid, carbon dioxide as a carbon source and 

hydrogen to obtain energy while methane, carbon dioxide and water are the final 

products. Acetate-forming bacteria and methanogens live in a mutualistic 

symbiotic relationship where both parties benefit from the other. The 

methanogens compete with sulphate-reducing bacteria which also can be found in 

anaerobic environments (Gerardi, 2003; Rivard & Grohmann, 1991). Which of the 

two that wins the competition for living space depends on the ratio between 

accessible substrate and sulphate in the ingoing substrate.  
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The methane formed in the process is a waste product and methanogens are the 

only known organisms that form methane (Gerardi, 2003). Methanogens are found 

in both aquatic and terrestrial environments and are highly sensitive to oxygen. On 

a cellular level they differ from other microorganisms in their cell membrane 

composition and soft cell wall.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The four main steps of the biogas formation process, from top to bottom: hydrolysis of the 
complex organic material polymers, fermentation of the monomers, acidogenesis of the intermediate 
products to acetic acid  and methanogenesis from H2, CO2 and acetic acid to biogas (Gerardi, 2003). 
 

2.3 Control parameters of the biogas process 

To successfully control the biogas process proper monitoring of some crucial 

parameters have to take place. Some substrates can for example contain or form 

inhibitory compounds which will disturb the microorganisms. To ensure good 

process efficiency and protect the process from collapsing some of the following 

measurements can be performed (Nordberg, 2006). 
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2.3.1 pH 

The different microorganisms that interoperate have different pH-optima which 

mean that they thrive under different conditions (Nordberg, 2006). The acid 

forming step of the methanogenesis can cause an accumulation of volatile fatty 

acids (VFA’s) if the methanogens cannot keep up, which can lower the pH-level. 

The optimal pH in a biogas process is 7-8.5 and if the pH gets below or above this 

interval the process can be inhibited.  

2.3.2 Temperature 

In nature anaerobic digestion takes place within three temperature intervals 

(Nordberg, 2006). These temperature ranges are called the psycrophilic (0-20°C), 

mesophilic (15-45°C) and the thermophilic (45-75°C). The names refer to the 

Greek words for ‘cold’-, ‘medium’- and ‘hot’- liking respectively. In conventional 

biogas digesters there are commonly two temperature intervals in use, the 

thermophilic at 50-60°C and the mesophilic at 30-40°C. A fluctuation of more than 

1-3°C can be crucial to the microorganisms and what temperature that should be 

used depends on what options there are to insulate the digester and how long 

duration of stay that is acceptable. Which temperature that is suitable for each 

plant depends of many factors. A higher temperature results in a better sanitation 

and killing off pathogens within the process but also costs more energy to keep 

warm. The process runs faster and more gas can be produced in a shorter time 

span but the thermophilic process is also more sensitive to temperature 

fluctuations and inhibitory compounds. The mesophilic temperature span is 

slower in production rate than the thermophilic but on the other hand commonly 

more stabile. Also, a reactor run at mesophilic levels needs less heating and thus 

has lower operational costs.  

2.3.3 Nutrient content in the substrate 

The basic nutritional needs for the microorganisms are carbon, nitrogen and 

phosphorous and micronutrients and vitamins for their growth (Nordberg, 2006). 

The microorganisms cannot just have any amount of nutrients in the substrate. 

The overall composition does have an impact on the growth of the 

microorganisms. A common measurement is the relation between carbon and 

nitrogen, commonly more know as the C/N-ratio. The microorganisms need 10-30 

times more carbon than nitrogen. However it is not only the carbon- or nitrogen 

content of the ingoing substrate that matters for production rate (Osman et al., 

2006). A single substrate can be limited regarding its content of micronutrients 

and studies have shown that co-digestion of for example lignocellulosic materials 

and animal manure can enhance production with more than 50 % than digestion of 

a single substrate. 

2.3.4 Water content 

Water is the solvent of the nutrients in the substrate and also work as contact 

medium between the microorganisms and the substrate (Nordberg, 2006). The 
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water content should optimally be between 60-95 %. Degradation of organic 

material can be done at different water content levels at the ingoing material. 

Water is normally added to reach adequate levels as well as inoculums of already 

degraded material to shorten the start-up time for the biogas process. When the 

water content is above 90 % the process is called a wet process while a process 

with 60-75 % water content is considered a dry one.  

2.3.5 Hydraulic retention time 

The time the substrate or an element spends in the process is expressed with the 

measure of Hydraulic Retention Time, also called HRT (Nordberg, 2006). Under 

mesophilic conditions the process of degradation demands at least 10-30 days 

while thermophilic conditions need a somewhat shorter time span.   

2.3.6 Organic loading rate 

When a biodegradation process functions and is stabile it needs new organic 

material in a steady slow (Nordberg, 2006). This new addition is defined as 

Organic Loading Rate (OLR) and is in a biogas process commonly expressed as kg 

volatile solids (VS) per m3 and day. Sometimes the term COD (Carbon Oxygen 

Demand) is used instead. Both VS and COD have limitations and advantages. In this 

study VS is used as a measure of organic content. 

2.4 Operating techniques 

2.4.1 One- or two-step process 

The four steps of the biogas process are performed by three different organism 

groups which require somewhat different conditions to work optimally (Nordberg, 

2006). In a one-step process all the reactions take place in the same digester. A 

two-step process is divided with the hydrolysis and acidification in the first 

digester and the methane-forming step in the second digester with the two steps 

optimized for the different microorganisms for the two steps.  

2.4.2 Batch wise or continuous process  

In a batch wise process the reactor tank is filled and emptied completely before 

and after each treatment of a particular substrate (Nordberg, 2006). This method 

is easy for the handling of the substrate but result in a great variation in biogas 

production both in quality and quantity of the biogas. On the other hand the batch 

wise process can allow as much as 100 % degradation of the ingoing organic 

material. The variations for a biogas plant using a batch wise process can be 

lowered some by starting reactors at different times and running them in parallel 

(Nordberg, 2006). In a continuous process addition of substrate is done at the 

same time as biogas reactor residue is taken out of the reactor. The reactor can be 

fed continuously, often between 1-8 times per day, which results in a more even 

gas production. With the continuous process the substrate is never fully degraded 

because of the parallel continuous outtake. A normal degradation degree can vary 



23 
 

between 50-70 %. The continuous process requires a higher initial investment 

compared with the simpler batch process. 

2.5 Cellulose and cellulose rich materials 

Plant materials, such as woods of different kinds, have three main component 

groups: cellulose (40-50 %), hemicellulose (20-25 %) and lignin and other 

extractives (5 %) of the total mass (Duff & Murray, 1995).  

Cellulose is an organic compound found in the cell walls of plants and in its 

smallest parts consists of β-1-4-glucose linked together in long chains (figure 2) 

(Campbell & Reece, 2005). The cellulose-molecules attach to each other with 

hydrogen bonds and coil together in a tight structure called a microfibril. It is these 

microfibrils that build up the plant cell walls. This compact structure makes the 

cellulose resistant to chemical and biological attacks (Taherzadeh & Karimi, 2008).  

While cellulose has a rigid and crystalline form hemicelluloses have a more 

amorphous and randomly branched structure (Taherzadeh & Karimi, 2008). 

Hemicellulose surrounds the cellulose microfibrils and glues them together (Duff & 

Murray, 1995). The basic sugars in hemicellulose differ between different woods, 

especially between soft- and hardwoods.  

 

Figure 2. The structure of cellulose: cellulose is found in the plant cell walls where the molecules of β-1-4-
glucose form long chains and attach together in a tight crystalline structure called a microfibril (Modified 
after model from the U.S. Department of Energy, 2008). 
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The third compound in plants is lignin (Campbell & Reece, 2005). Lignin is made 

out of aromatic units called phenylpromande and the most difficult component 

plant material for microorganisms to degrade.  

2.6 Pre-treatment methods 

There are several possible pre-treatment techniques for lignocellulosic materials 

used for biogas production. The purpose of all pre-treatments on cellulose rich 

materials is to make them more digestible for the microorganisms in the biogas 

process. A pre-treatment thus results in an increased total accessible surface area 

and improved levels of available sugars (figure 3) (Taherzadeh & Karimi, 2008). A 

good pre-treatment should also avoid formation of inhibitory by-products and 

makes the production more cost-efficient by increasing the biogas yield (Sun & 

Cheng, 2002).  

 

Figure 3. Pre-treatment of lignocellulosic materials takes place prior to biogas production to increase 
the biogas yield (modified after Taherzadeh & Karimi, 2008).  

 

2.6.1 Biological-, chemical- and physical pre-treatments 

In general pre-treatments are divided into four categories: biological, chemical, 

physical and thermal pre-treatments (Yang & Wyman, 2007). Biological treatment 

can include the use of brown-, white- and soft-rot fungi to degrade cellulose, 

hemicellulose and lignin. Another way is to use chemicals to pre-treat the 

substrates (Taherzadeh & Karimi, 2008). Some bases can be used, such as 

ammonia, ammonium sulphate and sodium hydroxide, but acids like sulphuric acid 

(H2SO4) and hydrochloric acid (HCl) are more common. Physical pre-treatments 

are the most used on cellulose-rich materials. The treatment can be to grind, mill 

or in any other way comminute the substrate.  

2.6.2 Thermal pre-treatment 

Thermal pre-treatment is a method where water-containing substrates are 

subjected to heating under pressure (Liu et al. 2002; Taherzadeh & Karimi, 2008). 

During the initial state of the treatment organic acids are formed from the acetyl 

groups in the substrate (Duff & Murray, 1995). These acids catalyze the hydrolysis 

of the hemicellulose in the material.  The material is then rapidly discharged into 

normal atmospheric pressure which causes an explosion of the macromolecules 

(Liu et al. 2002; Taherzadeh & Karimi, 2008). This breaks up the structure of the 

cellulose, removes most of the hemicellulose and increases the total surface area 

Lignocellulosic 
materials

Pre-treatment

1. Hydrolysis
2. Acidogenesis
3. Acetogenesis
4. Methanogenesis

Biogas
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and therefore making it more accessible for the microorganisms in the biogas 

process. Another name for thermal pre-treatment is steam pressure disruption or 

steam explosion which perhaps gives a more precise description of what is done to 

the substrate.  

Four main factors decide the effect of the thermal pre-treatment: residence time, 

temperature, particle size and moisture content (Sun & Cheng, 2002; Taherzadeh 

& Karimi, 2008). For an efficient treatment it is important that the optimal 

conditions are chosen. Furthermore, a too harsh treatment of lignocellulosic 

materials may result in lower methane yield and longer retention time. The reason 

behind this is that when lignin is broken up, in for example a pre-treatment, it 

forms so called furfurals (Rivard & Grohmann, 1991). These aromatic structures 

are known to inhibit many fermenting microorganisms, including the ones in the 

biogas process (Negash et al, 1997; Rivard & Grohmann, 1991). In general, 

softwoods contain higher amounts of lignin than hardwoods and other plant 

residues (Taherzadeh & Karimi, 2008). In Sweden most of the available biomass 

for biofuel production is softwoods (Hahn-Hägerdal et al., 2006). This is why the 

appropriate pre-treatment of cellulose rich biofuel substrates needs to be 

optimized.  Pre-treatments can also be combined in several steps (Taherzadeh & 

Karimi, 2008). Thermal pre-treatment is for example often combined with addition 

of sulphuric acid to further improve the recovery of cellulose and hemicellulose 

and sulphuric acid have been shown to be an effective catalyst for the 

hydrolyzation of carbohydrates (Sassner et al, 2005; Tahersadeh & Karimi, 2008).   
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3. Material and methods 

3.1 Substrates 

The substrates tested in this study were spruce, oat straw, meadow grass, aspen 

wood chips and wet grain residue (WGR) from two ethanol production plants in 

Sweden. Both ethanol production plants use cereals as substrate whereas one is 

producing spirits and the other one is producing ethanol for vehicle biofuel 

purposes from cereals. Some of the characteristics of the tested materials are 

shown in table 1 below. WGR was in the form of a thick liquid where the untreated 

WGR had a light beige colour and the steam exploded WGR was a liquid which had 

a very dark brown colour. The aspen was grinded to powder, the average size of 

the untreated meadow grass was approximately 1 mm and the thermally pre-

treated meadow grass was approximately 2 cm while the average size of the 

spruce wood chips was 1 to 5 cm in length. The untreated oat straw was 

investigated in two size fractions, finely grinded powder, approximately 1 mm, and 

coarsely chopped, approximately 2 cm, because previous studies have shown that 

the substrate particle size does have an impact on the biogas production rate 

(Mshandete, 2006). Coarsely chopped oat straw was used in both thermal pre-

treatments of oat straw.  

3.2 Thermal pre-treatment 

The first pre-treatment consisted of a steam explosion where the substrate was 

put through a steam gun at 190°C for 10 minutes. Then the pressure was 

drastically lowered by opening the valve and the material was collected. This 

treatment will be referred to as T1.  

The second pre-treatment consisted of a steam explosion where the substrate was 

put through a steam gun at 200°C for 5 minutes after which the pressure was 

drastically lowered by opening the valve and the material was collected. This 

treatment will be referred to as T2.   

Both the T1 and T2 pre-treatments were tested on the oat straw, meadow grass 

and aspen wood chips. For both the WGR only the T1-treatment was tested and for 

the spruce only the T2-treatment was evaluated. 

3.3 Experiment layout 

3.3.1 Batch experiment  

The substrates and inoculums dry 

substance (DS) and volatile solids (VS) 

content were determined before the start of 

the experiment using a standard method 

(APHA/AWWA/WEF, 1995). DS% is the 

amount of a sample that is left after drying Figure 4. The bottles in the batch experiment 
during incubation in a constant temperature 
room on a shake table. 
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the sample in 105°C for at least twelve hours compared to the total mass of the 

sample before drying. VS% is a measure of the organic content of a sample and is 

measured by weighing in a dry sample before and after heating to 550°C for at 

least six hours. The remaining ash corresponds to the mineral content of the 

substrate. Each substrate was investigated in triplicate samples. Table 1 below 

shows the DS- and VS-measurements of the tested substrates.  

Table 1. Dry substance (DS%) and volatile solids (VS%) in percent of the actual sample of all the 
ingoing substrates in this study (spruce, oat straw, meadow grass, aspen, wet grain residue from 
spirits production and biofuel production). The inoculums DS% and VS% content were also measured 
before the start of the experiment to adjust the amount added in the bottles. 

Substrate DS% ± Se VS% ± Se Ash% c 
Spruce, untreated 54 ± 2.5a 54 ± 2.5a 0.3 
Spruce, T2 29 ± 0.4b 29 ± 0.4b 0.1 

Oat straw, untreated 95 ± 0.3a 88 ± 0.4a 6.7 
Oat straw, T2 33 ± 2.1b 31 ± 2.1b 2.3 
Oat straw, T1 15 ± 0.2b 14 ± 0.3b 1.3 

Meadow grass, untreated 94 ± 0.2a 89 ± 0.0a 4.7 
Meadow grass, T2 19 ± 0.0b 18 ± 0.1b 0.7 
Meadow grass, T1 16 ± 1.3b 15 ± 1.3b 1.0 

Aspen, untreated 96 ± 0.3a 96 ± 0.2a 0.8 
Aspen, T2 28 ± 1.0b 28 ± 0.8b -0.1 
Aspen, T1 11 ± 0.4b 11 ± 0.4b 0.2 

WGR spirits, untreated 8.4 ± 0.3b 7.9 ± 0.3b 0.5 
WGR spirits, T1 4.8 ± 0.0b 4.4 ± 0.0b 0.4 

WGR biofuel, untreated 23 ± 0.0b 20 ± 0.6b 2.8 
WGR biofuel, T1 9.9 ± 0.0b 8.8 ± 0.6b 1.1 

Inoculum, old, 2008-08-25 3.8 ± 1.1b 2.4 ± 1.1b 1.4 
Inoculum, old, 2008-10-10 3.8 ± 0.0b 2.2 ± 0.1b 1.5 

Inoculum, new, 2008-10-17 4.4 ± 0.0b 3.0 ± 0.0b 1.4 
a. % from dry sample weight 
b. % of wet sample weight 
c. Ash% corresponds to the estimated DS%-VS% 

Determination of the biogas potential and methane production rate was done 

using a batch method (Hansen et al, 2004). Each 1120 ml-bottle was loaded with 3 

g VS from each respective substrate and triplicate bottles were started for each 

substrate. The bottles where then flushed with N2-gas while filled with the 

adjusted amount inoculum. The added amount of inoculum toted up to ⅔ of the 

loaded total VS-amount in each bottle. Subsequently each bottle was filled with 

tap-water up to a volume of 700 ml. The inoculums used in this study came from 

the VAFAB biogas plant in Västerås, Sweden, and were collected at two separate 

occasions. DS- and VS-measurements for the inoculum at different age stages can 

be found in table 1 above. The first collected inoculum, ‘inoculum, old’, was used in 

the batch experiment used for evaluation of the pre-treatment as well as in a later 

control experiment (see below). The second collection, ‘inoculum, new’, was only 

used in a control experiment. Controls with only inoculums and no added 

substrate were started in each set. The data with accumulated methane production 
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was adjusted so that the background production of the inoculum was taken into 

consideration in the analysis.  

In the batch method the inoculum is not put into the experiments at once but has 

to be degassed during incubation at 37°C for at least 4-5 days. The old inoculum 

was approximately 2 months old at the beginning of the experiments and still 

active as gas still was produced from endogenous organic material. Sets with 

groups of test bottles were started with a 2-3 week interval to even out the 

methane sampling workload. In total three experiment sets and one control 

experiment were started. The bottles were incubated at 37°C on shake tables 

running at 130 rpm. 

The gas pressure in the batch bottles was measured with a digital pressure meter 

(Testo 512, Testo AG, Lenzkirch, Germany) and gas samples for measurement of 

methane concentration (CH4) were taken at the same time. Gas samples of 2 ml 

were withdrawn from the test bottle with a syringe and inserted in a glass vial (23 

ml) that was pre-sealed with an aluminium cap and a rubber stopper. Methane 

concentration was determined later with gas chromatography. The batch bottles 

were then depressurized to atmospheric pressure and the excess gas was collected 

with a gas bag. Sampling was conducted depending on the expected gas production 

over time, which means that samples were taken more often in the beginning of 

the set and more seldom after 1-2 weeks of incubation.  

3.3.2 Control experiment 

Hashimoto (1989) have shown that there is a correlation between the inoculum- 

and VS-load. To further investigate the affecting parameters of the batch method 

(Hansen et al, 2004) a control experiment was designed to evaluate the effect from 

inoculum age and VS-load, with the same batch experiment layout as for the 

thermally pre-treated materials.  In addition the possible effect of using tap water 

as dilution medium was investigated by using reduced media instead of tap water 

in one test series (Schnürer et al, 1996).  

The new inoculum was approximately 1 week old, inoculum, new, 2008-10-17 in 

table 1, while the older inoculum was approximately 4 months old at the start of 

the control experiment, listed as Inoculum, old, 2008-08-25 in table 1. All the 

bottles were fed with 3 g VS of coarsely chopped oat straw except the controls with 

only inoculum. The experimental layout can be seen in table 2 below. 
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Table 2. The control experiment layout showing which inoculum, proportions between inoculum and 
substrate load, dilution media and substrates that were used. The inoculums load was made on VS-
basis in proportion to the VS-content of the oat straw (coarsely chopped). 

Experimental 
name 

Inoculum 
Proportion of 

inoculums and 
substrate load 

Dilution 
medium 

Substrate 

N1 New 1:1 Tap water Oat straw 
N2 New 2:1 Tap water Oat straw 
N4 New 4:1 Tap water Oat straw 
NR New 2:1 Reduced media Oat straw 
O2 Old 2:1 Tap water Oat straw 

 

3.4 Data analysis 

3.4.1 Methane analysis 

Analysis of methane content was preformed with a gas chromatograph 

(PerkinElmerARNEL Clarus 500) with helium as the carries gas at a flow rate of 31 

ml per minute. The column used was a 7’ HayeSep N 60/80, 1/8” SF, and the 

injection temperature was set to 60°C using a Headspacesampler Turbo Matrix 

110. Methane was detected using a flame-ionization detector which operated at a 

temperature of 250°C. The injected gas sample volume in each glass vial was 2 ml.  

3.4.2 Degradation rate 

The gas production in each test bottle was analyzed and processed in Excel 2007 

so that the mean accumulated methane yield in ml per gram VS over time could be 

read as seen in the example in figure 5 below. The daily methane production, in ml 

CH4/g VS · day, was also calculated and the maximum production per day was used 

as a comparative value between the different substrates and treatments. Both the 

figures of daily production rates and accumulated methane production can be used 

to estimate the period of high production which in turn can be used to predict 

when the production peak from a certain substrate will occur. In two cases bottles 

behaved strange and were excluded from the data analysis. One bottle in the T2-

treated oat straw showed distinct leakage from the rubber stopper after one 

month’s incubation time and was excluded for this reason. Another bottle that was 

excluded was from the untreated aspen where the production of biogas after one 

month’s time doubled compared to the other two bottles for no obvious reason. 

One explanation could be that a knob of endogenous material came into the bottle 

and broke after four weeks time, resulting in the increased biogas production.  
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Figure 5. Comparison between ml accumulated methane (with standard errors) for untreated and 
coarsely chopped oat straw and T1-treated aspen. The accumulated methane production differs both 
after 30 and after 60 days even though the highest mean methane production is approximately the 
same. 

 

3.4.3 Statistical analysis 

The statistical analysis was performed in Excel 2007 and Minitab 15. 

Measurements from the experiments were used to estimate the methane 

production rate. The gas production results from the different treatments (X1, 

X2,...Xn) were assumed to be a random samples from a normal distribution with a 

N-1 degrees of freedom (df), different df depending on the number of treatments 

for each substrate. σ was estimated from the standard deviation and a 95 % 

confidence interval was used.  

One-way-ANOVA was used to test if there were any significant differences in 

production for the different substrates. Since time is not an independent factor in 

the batch experiment layout ANOVAs were executed for the specific time of 

interest, after 30 days and 60 days accumulated biogas production as well as for 

the finishing day of incubation of each bottle. In addition a post hoc test (Tukey 

test) was performed on all ANOVAs to compare the different treatments against 

each other for each substrate.  
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4. Results  
 

A summary of the degradation rates and accumulated methane production after 30 

days, 60 days and at the last day of degradation can be seen in table 3 below. The 

degradation rates are illustrated with the maximum mean methane production in 

ml per g VS and day. The strength of the p-values from the ANOVA is general low 

due to the low number of replicates in this study. There is no fundamental 

hindrance to use an ANOVA with a low number of replicates. However, the low 

strength of the analysis limits the usefulness of the p-values.  

 

4.1 Degradation potentials 

The mean maximum production and production potential from a substrate are not 

always connected and both are of interest to evaluate the possible use in 

commercial biogas production. To compare the degradation potentials for the 

different substrates the accumulated methane production in ml methane per gram 

volatile solids (ml CH4/g VS) after 30 and 60 days incubation as well as at the total 

potential is used. The total potential was assumed to have been reached when the 

methane production had levelled out and the background production from the 

control was equal with the experiment bottles over at least two measuring points.  
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Table 3. The highest measured degradation rate for the different substrates over the period with 
exponential growth rate, measured as the mean methane production in ml per g VS and day (A). Also 
the mean accumulated methane yield per gram VS at 30 and 60 days as well as the total potential of 
each substrate at the end of the experiment is shown in this table, all with standard deviation (C). The 
total potential was assumed to have been reached when the accumulation of methane had levelled out 
and the highest measured value of accumulated methane was considered to be the total potential. 
After levelling out in methane production the bottles were terminated from the experiment. The oat 
straw and meadow grass were terminated after 141 days; aspen, WGR from spirits production and the 
WGR from biofuel production were terminated after 130 days and the spruce were terminated after 95 
days.  

Substrate treatment A B 
C 

30 days ± Se 60 days ± Se Tot. pot. ± Se 
Aspen untreated 43 27 76a ± 1 126 ± 3 166 ± 6 

Aspen T2 49 27 121a ± 13 215 ± 2 249 ± 4 

Aspen T1 62 39 140a ± 4 277 ± 6 309 ± 4 

Meadow grass untreated 88 32 180 ± 2 232 ± 2 270 ± 10 

Meadow grass T2 107 32 221 ± 5 254 ± 4 285 ± 4 

Meadow grass T1 100 32 204 ± 4 234 ± 3 262 ± 9 

Oat straw coarse untreated 61 32 129 ± 1 162 ± 1 208 ± 0 

Oat straw fine untreated 75 32 156 ± 7 199 ± 10 248 ± 13 

Oat straw T2 80 32 153 ± 6 204 ± 6 252 ± 7 

Oat straw T1 90 32 185 ± 6 220 ± 5 263 ± 5 

Spruce untreated 9 32 23a ± 11 52 ± 14 102 ± 17b 

Spruce T2 12 25 34a ± 5 53 ± 9 78 ± 30b 

WGR spirits untreated 203 27 412c ± 4 479 ± 3 511 ± 4 

WGR spirits T1 188 27 379c ± 28 429 ± 31 445 ± 32 

WGR biofuel untreated 156 25 332b ± 50 370 ± 50 375 ± 49 

WGR biofuel T1 147 25 310b ± 27 388 ± 50 389 ± 4 
A. Highest mean CH4-production (ml CH4/g VS · day) 
B. Day of production peak after the start of incubation 
C. Accumulated methane (ml acc. CH4/g VS) and standard errors (±Se) 

a Extrapolated value from mean values between samples taken on day 29 and 32 of incubation. 
b Total potential could not be determined within the time frame of the study; value after 95 days 
incubation. 
c Extrapolated value from mean values between samples taken on day 27 and 31 of incubation. 
 

 

The highest accumulated amount of methane was observed in the WGR from 

spirits production, 412 ml CH4/g VS after 30 days, which was higher than the T1-

treated WGR from the spirits production that reached a production of 379 ml 

CH4/g VS during the same time (figure 6). After 60 days the accumulated methane 

production had reached 479 ml CH4/g VS for the untreated WGR from spirits 

production and 429 ml CH4/g VS for the T1-treated WGR from spirits production. 

The statistical analysis showed that there was no significant difference between 

the untreated and the T1-treated WGR from spirits production after 30 days (p = 

0.163) nor after 60 days (p = 0.061). Untreated WGR from biofuel production 

accumulated 332 ml CH4/g VS in 30 days and the T1-treated WGR from biofuel 
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production gave rise to 310 ml CH4/g VS in 30 days (figure 7). After 60 days both 

WGR from biofuel production had given rise to 388 ml CH4/g VS. No significant 

differences between the production potential of untreated and T1-treated WGR 

from biofuel production after 30 days was found (p = 0.672) nor after 60 days (p = 

0.568). At the end of incubation of the bottles the untreated WGR from spirits 

production had given rise to 511 ml CH4/g VS in 130 days while the T1-treated 

WGR from spirits production had given rise to 445 ml CH4/g VS in 130 days. The 

total potential was found to be significantly different between the untreated and 

T1-treated WGR from spirits production (p = 0.023). Untreated WGR from biofuel 

production was terminated after 95 days and had given rise to 375 ml CH4/g VS at 

that time and T1-treated WGR from biofuel production gave rise to 389 ml CH4/g 

VS in 95 days. The total potential of the untreated and T1-treated WGR from 

biofuel production was not found to be significantly different (p = 0.636). 

 

 

Figure 6. Accumulated methane production (with standard errors) from WGR from spirits production. 
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Figure 7. Accumulated methane production (with standard errors) from WGR from biofuel production.  

 

The untreated meadow grass gave rise to 180 ml CH4/g VS, the T1-treated meadow 

grass to 204 ml CH4/g VS while the T2-treated meadow grass gave rise to 221 ml 

CH4/g VS in accumulated methane after 30 days of incubation (figure 8). After 60 

days the accumulated methane levels had reached 232 ml CH4/g VS from the 

untreated meadow grass, 234 ml CH4/g VS from the T1-treated meadow grass and 

254 ml CH4/g VS from the T2-treated meadow grass. Methane production differed 

significantly between the untreated, T2-treated and T1-treated meadow grass after 

30 days (p = 0.000) as well as after 60 days (p = 0.000). At the end of the study the 

total potential for the untreated meadow grass was determined to 270 ml CH4/g 

VS and the total potential for the T1-treated meadow grass was determined to 262 

ml CH4/g VS whereas the T2-treated meadow grass was determined to 285 ml 

CH4/g VS. There was a significant difference in total potential, after 106 days, 

between the untreated meadow grass and the T2-treated meadow grass (p = 

0.071) as well as between T2-treated meadow grass and T1-treated meadow grass 

(p = 0.020). 

The T1-treated oat straw gave rise to 185 ml CH4/g VS in 30 days which is almost 

the same amount as given from the untreated meadow grass for the same time 

(figure 9). After 60 days the T1-treated oat straw had given rise to 220 ml CH4/g 

VS. T1-treated oat straw gave rise to a significantly difference in the amount of 

methane in 30 days compared to the T2-treatment (p = 0.040) and the difference 

was still significant after 60 days (p = 0.046). There was no significant difference 
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between the finely grinded untreated oat straw and the T2-treated oat straw after 

30 days (p = 0.234) nor after 60 days (p = 0.604). They accumulated 156 ml CH4/g 

VS and 153 ml CH4/g VS in 30 days and 199 ml CH4/g VS and 204 ml CH4/g VS in 

60 days respectively. The coarsely chopped oat straw resulted in an accumulated 

methane yield of 129 ml CH4/g VS in 30 days which was significantly less than for 

the T2-treated oat straw (p = 0.001). After 60 days the coarsely chopped oat straw 

had given rise to 162 ml CH4/g VS, which still was significantly less than the T2-

treated oat straw gave rise to (p = 0.001). The total potential for all the oat straw 

treatments was determined after 106 days of incubation. The total potential for the 

T1-treated oat straw was determined to 263 ml CH4/g VS while the T2-treated oat 

straw in total had given rise to 252 ml CH4/g VS. There was no significant 

difference in total potential between the T2-treated oat straw and the T1-treated 

oat straw (p = 0.110). The total potential for finely grinded oat straw was 

determined to 248 ml CH4/g VS and total potential for the coarsely chopped oat 

straw was determined to 208 ml CH4/g VS. There was no significant difference in 

total potential between T2-treated oat straw and finely grinded oat straw (p = 

0.758). However, the total potential of the coarsely chopped untreated oat straw 

was found to be significantly lower than for the finely grinded untreated oat straw 

(p = 0.006). 

 

 

Figure 8. Accumulated methane production (with standard errors) from meadow grass. 
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Figure 9. Accumulated methane production (with standard errors) from oat straw. 

 

 

 

Figure 10. Accumulated methane production (with standard errors) from aspen. 
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The T1-treated aspen resulted in 140 ml accumulated CH4/g VS after 30 days 

incubation which was significantly more than the T2-treated aspen which 

accumulated 121 ml CH4/g VS during the same time (figure 10). There was 

however no significant difference between the T1- and the T2-treated aspen after 

30 days (p = 0.103). Untreated aspen reached 96 ml CH4/g VS after 30 days which 

was significantly less than the T2-treated aspen (p = 0.020) and the T1-treated 

aspen (p = 0.002). After 60 days the methane production was significantly different 

between all three treatments (p = 0.000). The T1-treated aspen gave rise to 277 ml 

CH4/g VS in 60 days while the T2-treated aspen gave rise to 215 ml CH4/g VS and 

the untreated aspen gave rise to 126 ml CH4/g VS in 60 days. After 130 days the 

methane production from the three aspen-treatments was found to have levelled 

out and the total potential of the aspen was determined. The total potential for 

untreated aspen was determined to 166 ml CH4/g VS and for T2-treated aspen to 

249 ml CH4/g VS and the difference in total potential was significant (p = 0.000). 

There was also a significant difference in total potential between the T1-treated 

aspen, which gave rise to 309 ml CH4/g VS, and the T2-treated aspen (p = 0.000). 

Most modest in production was the T2-treated spruce which accumulated 23 ml 

CH4/g VS in 30 days and 52 ml CH4/g VS in 60 days, while the untreated spruce 

gave rise to 34 ml CH4/g VS in 30 days and 53 ml CH4/g VS in 60 days (figure 11). 

There was no significant difference in methane production between the untreated 

and T2-treated spruce after 30 days (p = 0.224) nor after 60 days (p = 0.901). The 

total potential for spruce could not be determined within the time frame for this 

study. The untreated spruce had at the end of the study given rise to 102 ml CH4/g 

VS after 95 days and the T2-treated spruce had given rise to 78 ml CH4/g VS after 

95 days which was not found to be significantly different (p = 0.292). 

 

Figure 11. Accumulated methane production (with standard errors) from spruce. 
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4.2 Degradation rate 

The highest mean methane production rate was observed in the untreated WGR 

from spirits production, which gave rise to 203 ml CH4/g VS · day (figure 12). T1-

treated WGR from the spirits distillery gave rise to the second highest methane 

production, 188 ml CH4/g VS · day. Both the WGRs from the spirits production had 

their production peak after 27 days and the production levels could not be 

statistically separated (p = 0.128). The WGR from the biofuel production both 

peaked after 25 days and reached a maximum mean methane production of 156 ml 

CH4/g VS · day for the untreated and 147 ml CH4/g VS · day for the T1-treated 

(figure 13). However, the difference in mean methane production rate was not 

statistically significant (p = 0.592).  

 

 
 
Figure 12. Methane production rates (ml CH4/ g VS · day) and standard errors from the digestion of 
untreated and T1-treated WGR from spirits production. 

0

50

100

150

200

250

0 20 40 60 80 100 120 140

m
l 

C
H

4
/

 g
 V

S
· d

a
y

Time (days)

WGR from spirits production

Untreated T2



39 
 

 
Figure 13. Methane production rates (ml CH4/ g VS · day) and standard errors from the digestion of 
untreated and T1-treated WGR from biofuel production. 
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occurred after 32 days for all the treatments of meadow grass (figure 14) and 
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treated meadow grass reached a maximum mean production of 100 ml CH4/g VS · 
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The T1-treated oat straw resulted in a maximum mean production rate of 90 ml 
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T1-treated and T2-treated oat straw (p = 0.031). T2-treated oat straw and finely 

grinded untreated oat straw differed little in maximum production rate; they 
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Figure 14. Methane production rates (ml CH4/ g VS · day) and standard errors from the digestion of 
untreated and T2- and T1-treated meadow grass. 

 

 
Figure 15. Methane production rates (ml CH4/ g VS · day) and standard errors from the digestion of 
untreated coarsely chopped and finely grinded, T2- and T1-treated oat straw. 
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T1-treated aspen gave rise to a maximum production rate of 62 ml CH4/g VS · day 

(figure 16). However, the production peaked after 39 days which is 12 days later 

than the untreated aspen and T2-treated aspen which peaked in production after 

27 days. The untreated aspen and T2-treated aspen reached, after 27 days, a 

maximum production rate of 43 ml CH4/g VS · day and 49 ml CH4/g VS · day 

respectively which was not a significant difference (p = 0.077).  

The earliest production peak was observed in the T2-treated spruce, which peaked 

after 25 days (figure 17). However, the maximum production rate of T2-treated 

spruce reached only 12 ml CH4/g VS · day. The untreated spruce reached a 

maximum production of 9 ml CH4/g VS · day and peaked in production after 32 

days. No significant differences were found either in 25 days (p = 0.096) or in 32 

days (p = 0.324). 

 

 
Figure 16. Methane production rates (ml CH4/ g VS · day) and standard errors from the digestion of 
untreated, T2- and T1-treated aspen. 
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Figure 17. Methane production rates (ml CH4/ g VS · day) and standard errors from the digestion of 
untreated and T2-treated spruce. 

 

4.3 Control experiment 

A summary of the results from the control experiment are found in table 4 below. 

The control experiment showed that there was a significant effect on both the 

degradation rate and the total potential within 30 days of incubation, depending 

on the age of the inoculum used for digestion and the inoculum load. 
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was no significant difference between the N2- and NR-treatments (p = 0.221).  
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In the NR-treatment, where the inoculums- and substrate load were the same as in 

the N2-treatment but where the water was exchanged for reduced medium, the 

production rate reached 108 ml CH4/g VS · day and had after 30 days accumulated 

279 ml CH4/g VS. The N2-treatment had the same substrate load and inoculums 

load as the batch experiment and reached a maximum production rate of 94 ml 

CH4/g VS · day and gave rise to 274 ml CH4/g VS after 30 days. After 60 days the 

N2-treatment had given rise to 303 ml CH4/g VS and the NR-treatment had given 

rise to 287 ml CH4/g VS after 60 days. The NR- and N2-treatments could not be 

statistically differentiated after 30 days (p = 0.556) nor after 60 days (p = 0.090). 

At the day of termination of the batch bottles, after 72 days, the N2-treatment had 

given rise to 300 ml CH4/g VS and the NR-treatment had given rise to 289 ml 

CH4/g VS. 

In the N1-treatment, which had equal proportions between inoculum and 

substrate in VS-load, the maximum production reached 59 ml CH4/g VS · day and 

the mean accumulated methane yield had reached 193 ml CH4/g VS after 30 days 

and 226 ml CH4/g VS after 60 days. This was significantly lower than for the N2-

treatment (p = 0.003) and for the NR-treatment (p = 0.001) but significantly higher 

than for the O2-treatment (p = 0.007 after 30 days). After 60 days the N1-

treatment was found to be significantly lower than the N2-treatment (p = 0.001) 

and the NR-treatment (p = 0.000) but significantly higher than the O2-treatment (p 

= 0.002). The total potential of the N1-treatment was determined to 237 ml CH4/g 

VS after 93 days which was significantly higher than from the O2-treatment (p = 

0.004) but significantly lower than the NR-treatment (p = 0.000). 

The lowest production was observed in the O2-treatment where the treatment 

gave rise to 137 ml CH4/g VS after 30 days and the maximum production reached 

22 ml CH4/g VS · day at most. After 60 days the O2-treatment had given rise to 185 

ml CH4/g VS and the total potential was determined to 205 ml CH4/g VS after 93 

days. The O2-treatment had the same VS-load and inoculums load as the N2-

treatment. The production peaked at the same time, after 18 days, for the N1-, N2-, 

N4- and NR-treatments and after 29 days for the O2-treatment. 
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Table 4. Results from the control experiment the highest mean methane production per day (A), day of 
production peak (B), accumulated methane production after 30 and 60 days of incubation as well as 
the total potential at the end of the experiment (C). The total potential was assumed to have been 
reached when the accumulation of methane had levelled out and the highest measured value of 
accumulated methane was considered to be the total potential. After levelling out in methane 
production the bottles were terminated from the experiment. The bottles N2, N4 and NR were 
terminated after 72 days incubation. The bottles N1 and O2 were terminated after 93 days. 

Experimental 
name 

A  B  
C  

30 days ± Se 60 days ± Se Tot. pot. ± Se 

N1 59 18 193 ± 19a 226 ± 7 237 ± 4 
N2 94 18 274 ± 14a 303 ± 11 300 ± 11 
N4 125 18 334 ± 13a 320 ± 15 321 ± 15 
NR 108 18 279 ± 6a 287 ± 6 289 ± 5 
O2 22 29 137 ± 8b 185 ± 7 205 ± 8 

A. Highest mean CH4- production (ml CH4/g VS · day)  
B. Day of production peak after the start of incubation 
C. Mean accumulated methane (ml acc. CH4 / g VS) 
  a. Extrapolated value from mean values between samples taken on day 29 and 35 of incubation. 
  b. Extrapolated value from mean values between samples taken on day 29 and 37 of incubation. 

 

 
Figure 18. Methane production rates (ml CH4/ g VS · day) and standard error from the digestion in the 
control experiment where the substrate load and inoculums age differed. 
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Figure 19. Accumulated methane production and standard errors in the control experiment. 
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5. Discussion 
The purpose of this study was to evaluate if a thermal pre-treatment process 

would have an effect on the biogas production from cellulose rich substrates and if 

so, to evaluate which of the two thermal pre-treatments tested that were the better 

one compared to untreated cellulosic biomass. Also the total potential of the tested 

substrates was of interest to reveal. 

5.1 Effect of thermal pre-treatment 

Does thermal pre-treatment result in a higher biogas yield? This question gets 

different answers depending on several factors. In this study the main focus has 

been the substrate and the treatment of the different substrates. For aspen, oat 

straw and meadow grass the thermal pre-treatments seems to make the substrates 

more degradable for the microorganisms in the biogas process which therefore can 

produce more biogas. However, steam explosion does not seem to increase the 

methane yields for pre-treated WGR from spirits production or WGR from biofuel 

production.   

The experiment results for the oat straw show that a physical treatment with finely 

grinded oat straw gives the same methane yield as the T2-treated oat straw both 

after 30 and 60 days of incubation. This could be because the T2-treated oat straw 

had the same particle size as the coarsely chopped, untreated oat straw 

(approximately 2 cm). If the finely grinded oat straw had been thermally pre-

treated instead of the coarsely chopped oat straw it is likely that the methane yield 

per gram VS would be higher from the T2-treatment. The thermal pre-treatment 

clearly had an effect on the oat straw. However, the same increase in methane yield 

was also achieved by grinding the oat straw. This effect of grinding is in line with 

the results of a previous study by Mshandete et al (2006). They showed that there 

is a correlation between increasing methane production with decreasing particle 

size of sisal fibre in anaerobic digestion. A comparison of the results between the 

coarsely chopped and finely grinded untreated oat straw show significant 

differences in both maximum production rates and potential methane yield, which 

also is in line with the results of Mshandete et al (2006). Thus, pre-treating the oat 

straw in some way, either by comminuting or by steam explosion, generates a 

higher biogas yield than putting the oat straw in the biogas process entirely 

untreated. It is also reasonable to draw the conclusion that thermal pre-treatment 

of small lignocellulosic particles will give rise to higher amounts of methane than 

larger thermally pre-treated lignocellulosic particles will do during the same 

incubation time.  

Results for the meadow grass show that the T2-treatment gave rise to a 

significantly higher amount of methane than both the T1-treatment and the 

untreated meadow grass. This is not in line with prior studies which have shown 

that a harsh thermal pre-treatment may result in lower methane yields than a mild 

one (Taherzadeh & Karimi, 2008). The meadow grass gave rise to higher methane 
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yields with the harsher treatment in this study. When choosing between the two 

thermal pre-treatments tested on meadow grass in this study, the T2-treatment 

should be the better choice from a production point of view. 

Aspen showed the largest difference between treatments where the T1-treatment 

generated more biogas compared to both the T2-treated aspen, which was second 

best, and the untreated aspen. After 30 days the differences in methane production 

between the two thermal pre-treatments were not significant which could possibly 

be explained by the relatively high age of the inoculum used, three months old, for 

the aspen-batch. The high inoculum age resulted in a longer lag-phase. However, 

after 60 days the differences in methane production were highly significant 

between all three treatments.  For the spruce the methane production was initially 

lower from the pre-treated material compared to the untreated. One reason for the 

lower production of methane in the T2-treated spruce compared to untreated 

spruce could be that the pre-treatment released inhibitory compounds such as 

furfurals (Rivard & Grohmann, 1991). Spruce, being a softwood species, contains a 

higher amount of furfural-forming lignin than aspen (Taherzadeh & Karimi, 2008). 

This could be one explanation for the differences between the two wood species in 

this study. Furfurals are known to be inhibitory to the biogas process and 

according to literature the methanogens can only partly transform this compound 

(Negash et al, 1997; Rivard & Grohmann, 1991). Some studies have shown that 

furfurals can be degraded to acetate by the sulphate-reducing bacteria that 

compete with the methanogens for the living space (Rivard & Grohmann, 1991). 

These results suggest that the degradation of furfurals in the digester slurry 

depend on the relation between methanogens and sulphate-reducing bacteria. 

Commonly the sulphate concentration is not elevated in biogas processes why the 

sulphate-reducing bacteria in low sulphate processes are outcompeted by the 

methanogens. Therefore it is not likely that furfurals can be completely degraded, 

if produced in the process. Another explanation between the differences in 

methane production between untreated aspen and untreated spruce could be that 

the particle size differed significantly. The particle size of untreated aspen was 

approximately 1 mm particles while the untreated spruce pieces were 1-5 cm in 

length. 

Thermal pre-treatment of WGR from both spirits and biofuel production did not 

show any significant effect on the methane production. WGR contains less cellulose 

and hemicellulose and a larger proportion of proteins than the other tested 

materials in this study. A thermal pre-treatment in this case does perhaps not 

increase the total amount of available sugars for the microorganism to a level 

where a significant increase in methane production can be measured.  

5.2 Degradation rate and biogas potential 

There was not always a clear connection between a high degradation rate and a 

high methane yield per input unit of substrate. One example could be the 
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comparison between untreated, coarsely chopped oat straw and T1-treated aspen 

which both had a maximum production rate of approximately 61 ml CH4/g VS · 

day. However, T1-treated aspen gave rise to 277 ml CH4/g VS in 60 days while 

coarsely chopped, untreated oat straw gave rise to only 162 ml CH4/g VS after 60 

days (figure 5). When the easily digested sugars have been consumed by the 

microorganisms their production rate levels out as they then have to use the less 

available sugars, i.e. the cellulose and hemicellulose, in the substrate. Thus, the 

differences in accumulated production cannot be explained by only comparing the 

maximum production rates. Instead, the reason for the different accumulated 

methane yields is that the number of days at peak production rates differs between 

the substrates (compare for example figure 15 and 16). While the coarsely 

chopped, untreated oat straw give rise to maximum production rates during 

approximately 3-4 days the T1-treated aspen gave rise to the same production 

rates for approximately 6 days which results in a higher methane accumulation 

over time. Furthermore, the final potential is also dependent on the total amount 

degradable organic nutrients available in the substrate. However, the degradation 

rates are still of interest from a production point of view.  

When comparing the total potential for the different substrates in this study the 

untreated WGR from spirits production gave rise to the highest methane 

production. No positive effect of thermal pre-treatment could be demonstrated for 

WGR from either ethanol production plants. Pre-treating the WGR is likely to be 

economically unviable when considering the extra effort and energy cost put into 

the pre-treatment. A perhaps surprisingly strong effect of thermal pre-treatment 

was determined for the T1-treated aspen compared both to the T2-treated and 

untreated aspen. It is of interest to make further investigations on this substrate 

based on the results from this study since the total potential for aspen was almost 

twice as high in the T1-treated compared to the untreated material; 309 ml CH4/g 

VS and 166 ml CH4/g VS respectively. A positive effect of thermal pre-treatment on 

the total potential was also found for both meadow grass and oat straw. The 

largest difference in total potential was found between the untreated and the T2-

treated meadow grass and between the coarsely chopped untreated oat straw and 

the T1-treated oat straw. T2-treated meadow grass gave rise to approximately 20 

ml CH4/g VS more than the untreated meadow grass whereas the T1-treated oat 

straw gave rise to approximately 60 ml CH4/g VS more than the coarsely chopped 

untreated oat straw. Depending on the availability of oat straw and meadow grass 

and extra cost for pre-treating these materials steam explosion could be of interest 

to increase the methane yield. However, further calculations are needed.  

Several factors determine if a cellulose rich substrate is interesting for commercial 

biogas production such as degradation rate, production peak and the total 

potential. The picture gets more complicated when taking into consideration that 

most biogas plants are run with co-digestion of several substrates. Co-digestion 

generally gives a higher biogas yield than if digesting a substrate alone, as have 
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been done in this study. A common problem with anaerobic digestion of plant 

materials is that lignocellulosic substrates have low amounts of nitrogen, which 

results in to high C/N-ratios (Osman et al, 2006). Studies of co-digestion of 

lignocellulosic materials together with manure have shown higher biogas yields 

compared to the digestion of both substrates alone. Having in mind that the results 

in this study applies more on batch wise and single substrate processes the highest 

production was obtained from the WGR from spirits production. However, the 

biogas potential from WGR differs depending on its origin and the process it was 

produced in. The WGR from biofuel production gave a slightly lower production of 

biogas than the WGR from spirits production which could be due to the use of 

sulphate in the biofuel production process (Stenströmer Moglia, 2008). WGR is a 

cellulose rich substrate which contains a higher amount of proteins than the other 

lignocellulosic materials in this study and this is probably the reason why it was 

digested at a higher rate and reached its production peak earlier than the other 

substrates. 

5.3 Control experiment and method development 

There are many methods for determination of biogas potential which all have 

different approaches, inoculums of different origin, and different amounts of 

inoculums load, VS-load, batch- or continuous setups under different conditions 

(Bougrier et al, 2008; Hansen et al, 2004; Hongzhang et al, 2005; Mshandete et al, 

2006; Osman et al, 2006). This makes comparisons of gas production between 

studies very difficult.  

In addition to the thermal pre-treatment study a control experiment was 

conducted to further evaluate the method used in this study. The control 

experiment showed that the age of the inoculum used has a significant effect on the 

degradation rate in the batch digestion process. However, it appears like the 

methane production potential remains unaffected of the inoculum age and that 

complete degradation of the substrate just is a matter of time. Methane production 

rates peaked after 18 days with the new inoculum regardless of dilution medium 

and inoculum/substrate-ratio, while with the old inoculum the methane 

production rate peaked after 29 days. A correlation has earlier been found 

between the inoculum/substrate-ratio (Hashimoto, 1989) and was also seen in 

this study where the total methane production increased with increased inoculums 

load.  

The control experiment also showed that the initial lag phase was shortened in the 

batch bottle experiment with an increased inoculums load as the methane 

production accelerated faster in the beginning of the experiment in the N4-

treatment, which had twice the amount of inoculum as for example the N2-

treatment. There did not seem to be a lack of micronutrients as no difference was 

found in the production rates from the NR-treatment and N2-treatments, which 

differed only in dilution media.  
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During the final stage of the batch study the N4-, N2- and NR-treatment in the 

control experiment showed a decrease in the accumulation of methane. It is likely 

that when the inoculum receives a substrate which contains sugars which are 

more available for the microorganisms those sugars will be consumed first 

(Stenströmer Moglia, 2008). This will in turn cause the biogas process to run faster 

and thus generating more methane. In the control the inoculum was not fed with 

any substrate and the background production of methane was caused by the 

endogenous material present in the inoculum. This endogenous material contains 

sugars that are less available for the microorganisms than the sugars in the added 

substrate. This causes the degradation process in the inoculum to run slower and 

producing biogas at a slower rate in the beginning of a batch study than in the 

batch fed with a substrate. However, the microorganisms in the unfed inoculum 

control will produce extra cellular enzymes to gain access to the sugars in the 

endogenous material and the background methane production rate will be higher 

from the control inoculum than from the substrate fed inoculum at the end of the 

batch study. 

This study shows that the batch method used in these experiments needs further 

development where the age of the inoculum is taken more into consideration. It is 

crucial that the origin and age of the inoculum is known and noted as it has a major 

impact on the results of the degradation rates in the batch experiments. A fresh 

inoculum will produce biogas at levels closer to the levels in a biogas plant where 

the reactor material is maintained to be highly active. 

5.4 Concluding discussion 

The effect of the thermal pre-treatments can still be evaluated; regardless the 

results from the control experiment. However, the results from the control 

experiment make it difficult to make any clear statements about the degradation 

rate in the thermal pre-treatment study.  

It is obvious that the degradation rates measured in this study will not be the same 

as in a large scale operation. Partly because most plants run their processes with 

co-digestion of several substrates, which in most cases generates a higher methane 

yield. This has also been shown by Osman et al (2006) where co-digestion gives 

higher biogas yields than single substrate degradation. Another reason that the 

degradation rates will differ in large scale operations is because many biogas 

plants run their production in a continuous process and will therefore not find a 

lag phase in the biogas production as seen in the beginning of a batch process. It is 

also likely that inoculums from different operations respond different and different 

biogas plants will experience different methane production levels from the same 

substrates. Plant specific microorganism cultures develop in the reactor tanks 

depending on the substrates fed to the process. A biogas process that is regularly 

fed with lignocellulosic materials is likely to become more efficient in degrading 

the cellulose-rich substrate than a biogas process that is not fed with 
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lignocelluloses as often. However, the substrates tested in this study differ 

between each other in regards of hydraulic retention time needed for efficient 

degradation in a biogas reactor. In a large scale operation spruce, aspen and oat 

straw will most likely need longer time to be degraded than the WGR and meadow 

grass. To make more certain statements of degradation rate for a particular 

substrate in a particular biogas plant the substrate in mind must be tested with the 

inoculum from the biogas plant planning to use the particular material. Also the 

same temperature and load as in the commercial process should be used in the 

tests.  

Developing and applying the technologies for producing biogas from 

lignocellulosic materials raises the issue of how to allocate the available natural 

recourses. Even though plant materials are renewable as an energy source there is 

still a limit for how much is can be used for different purposes. Current and 

planned uses collide with possible new uses and the authorities must make a 

levelling of how the available land most efficiently, economically and 

environmentally safe should be used. Instead of becoming biogas, raw material 

from forest production might have a greater value as woodworks or for pulp and 

paper production. Straw, cereals and meadow grass might be of greater value in 

dairy and meat production. WGR is for example today often used as forage to 

cattle. The figures that are presented of the total biogas potential or the total 

bioethanol potential of Sweden are based on the same production figures and 

could only become a reality if solely one biofuel would be used on the market 

(Johansson, 2007; Nordberg, 2006). This cannot be considered as a realistic 

development. There is a need for coordination within the responsible authorities 

to prioritize and control the production. However, this kind of data is important to 

make these kinds of considerations.  

5.5 Future studies and possibilities 

The results in this study show that there still are many issues to address both 

concerning the thermal pre-treatment of cellulose rich materials and in the 

refinement of the methodology of the experiments. It would also be of interest to 

further investigate the effect on biogas production of different particle sizes of 

different materials in the digestion. Another interesting topic is to investigate the 

aging of the inoculum and the effects on production peak and the degradation rate 

for different materials.    
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6. Conclusions 
 

 Thermal pre-treatment can have a positive effect on the biogas production from 

cellulose rich materials. However, this effect cannot be expected on all materials.  

 

 Different materials need different thermal pre-treatments to give rise to maximum 

biogas yields. 

 

 Particle size in the anaerobic digestion also has an effect on the biogas yield, 

sometimes just as big as the thermal pre-treatment. 

 

 The age of the inoculum used in batch bottle experiments is critical and affects 

both the methane production rate, the methane production potential and the 

methane production peak. 
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7.2 Figure references 

7.2.1 Figure 1 – Three main steps of the biogas process 

Modified after Gerardi M., 2003, The Microbiology of Anaerobic Digesters, 

Wastewater Microbiology Series, John Wiley & Sons, Inc., United States of America, 

pp. 40, figure 5.1 

7.2.2 Figure 2 – structure of cellulose 

Photographer: Pauline Demetriades, 2008-06-27, Austrian Alps  

Pictures of the schematic cell, the crystalline cellulose and the chemical structure 

of cellulose were drawn in BioDraw Ultra 11.01 and ChemDraw Ultra 11.01.  

7.2.3 Figure 3 – Pre-treatment of lignocellulosic material 

Modified after Taherzadeh M. & Karimi K., 2008, Pretreatment of Lignocelllulosic 

Wastes to Improve Ethanol and Biogas Production: A Review, International Journal 

of Molecular Sciences, 2008:9, pp. 1621-1651, figure 1 

7.2.4 Figure 4 – Batch bottles 

Photographer: Pauline Demetriades, 2008-08-30 


