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ABSTRACT
Plant  growth  promoting  rhizo-bacteria  (PGPR)  affect  plant  growth  by  producing  and 

releasing  secondary  metabolites  (plant  growth  regulators/phytohormones/biologically 

active substances), facilitating the availability and uptake of certain nutrients from the root 

environment and inhibiting plant pathogenic organisms in the rhizosphere. At the same 

time,  plants  produce  root  exudates  containing  e.g.  sugars,  amino acids,  organic  acids, 

vitamins, enzymes and organic or inorganic ions. Those substances in turn influence the 

rhizosphere microflora and also the behaviour of PGPR. In this work, I  examined the 

potential use of legume bacteria, rhizobia as PGPRs since it has been shown that rhizobia 

(legume bacteria) can function as PGPR in non-nitrogen fixing plants. 

In the present study, the interactions of nine different rhizobial strains with six different 

mixed  non-nitrogen  fixing  plant  species  were  examined  in  laboratory  and greenhouse 

experiments. Mixed botanical plant’s seeds were inoculated with same concentration of 

different rhizobial strains. Significantly increased plant biomasses indicate that rhizobia 

have naturally potential ability to promote the growth of non-nitrogen fixing plant. The 

concentration  level  of  rhizobial  inoculation  is  another  important  factor  for  seed 

germination and plant growth. In addition, linseed was inoculated with only one rhizobial 

strain of different concentrations. To complement experiments were conducted, one was 

for  rhizobial  growth  and  the  other  one  was  for  interactions  between  rhizobia  and 

pathogenic  fungi.  None of  the strains  tested prevented  in  vitro fungal  growth towards 

bacterial colonies but after some days of contact between rhizobia and fungi, some strains 

showed  a  tendency  to  dissolve  the  fungal  mycelium.  The  results  showed  that 

Sinorhizobium meliloti strains were the most effective and could be suggested to act as 

PGPR. The inoculation concentration of the rhizobial strain was crucial. A concentration 

of  104 cfu  mL-1 of  Sinorhizobium  meliloti proved  to  be  optimal  for  successful  seed 

germination and growth of linseed. 
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1. INTRODUCTION                                                                                                         

1.1 Use of plant growth promoting rhizo-bacteria

Soil-borne pathogens are well  known for  their  devastating effects  on plant  health  and 

yield. For successful disease management, it is important to find the most effective and 

economical ways to protect the plant from various pests or diseases. In recent years, the 

use of PGPR as inducers of systemic resistance in crop plants against different pathogens 

has been demonstrated under field conditions (Wei et al., 1996). The use of natural PGPR 

strains in plant frontline defence may offer a practical way to deliver immunisation. PGPR 

have  been  reported  to  increase  plant  resistance  to  fungal,  bacterial  and  viral  diseases 

(Maurhofer  et al.,  1998), insects (Zehnder  et al., 1997) and nematodes (Sikora, 1992). 

Mode of action studies have revealed that biological control by PGPR involves production 

of bacterial metabolites that reduce the population or activities of pathogens or deleterious 

rhizosphere  microflora  (Glick,  1995;  Kloepper,  1996).  These  metabolites  may include 

siderophores  that  bind  Fe,  making  it  less  available  to  certain  members  of  the  native 

pathogenic microflora (Berthelin et al., 1991; Subba Rao, 1993).

1.2 Features of plant growth promoting rhizo-bacteria 

A number of authors have reported that inoculation with plant growth promoting rhizo-

bacteria (PGPR) can result in increased germination and seedling emergence and modify 

growth and yield of various cereal and non-cereal crops (Freitas & Germida, 1992; Chen 

et al., 1994; Javed & Arshad, 1997; Biswas et al., 2000; Dobbelaere et al., 2001; Matiru 

and Dakora, 2004; Wang et al., 2007). The growth stimulation in plants by PGPR can be a 

direct  effect  of  production  of  secondary  metabolites  such  as  auxins,  IAA,  cytokinins, 

riboflavin and vitamins (Dakora, 2003). These stimulate growth of plant organs via cell 

division and expansion (Campanoni  et al.,  2003) or by improving nutrient  availability 

(Glick, 1995; Chabot  et al., 1996; Yanni  et al., 1997). They also release organic acids, 

which help to make available forms of nutrients (Biswas  et al., 2000) and often lead to 

increased plant growth through uptake of water and mineral nutrients or indirect when the 

rhizobia  inhibits  pathogens  or  deleterious  microorganisms  by  producing  siderophores, 
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HCN (Vidhayasekaran and Muthamilan, 1999; Wei  et al., 1996) and antibiotics (Glick, 

1995) in the rhizosphere (Fig 1). 

Figure 1. Spectrum of mechanisms of plant growth promotion by PGPR.

1.3 Antibiotic production

Antibiotic production is one of the most intensively studied aspects of biocontrol, but in 

many cases it is difficult to distinguish between antibiosis and competition. Several studies 

have  demonstrated  that  production  of  antibiotics  (e.g.  pyrrolnitrin,  phycocyanin,  2,4-

diacetylphloroglucinol) by microbial inocula can cause suppression of pathogens (Subba 

Rao, 1993; Glick, 1995). Glick (1995) was of the view that the most effective mechanism 

that a PGPR can employ to prevent proliferation of phytopathogens is the synthesis of 

antibiotics. 

1.4 Siderophore production

Siderophores play an important role in the biocontrol of some soil-borne plant diseases 

and  in  plant  iron  nutrition  (Loper  and  Buer,  1991).  Siderophores  are  low  molecular 

weight,  high affinity iron (III) chelators  that transport  iron into bacterial  cells (Leong, 

1986).  These  systems are  composed of  ferric-specific  ligands  (siderophores)  and their 

cognate  membrane  receptors  as  chelating  agents  in  bacteria  (Neilands,  1989). 

Subsequently,  siderophores  have  been  shown  to  be  involved  in  the  suppression  of 

Fusarium oxysporum (Baker  et  al.,  1986).  Because  siderophores  sequester  the  limited 
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supply  of  iron  (III)  in  the  rhizosphere,  they  limit  its  availability  to  pathogens  and 

ultimately  suppress  their  growth  (Schroth  et  al.,  1984).  There  are  two  strategies  for 

acquiring iron (Römheld, 1987). Strategy I is characterised by an increase in the activity 

of  a  NADPH-dependent  ‘reductase’  and  an  increase  in  H+ release.  Strategy  II  is 

characterised by enhanced release of phytosiderophores and by a highly specific uptake 

system  for  Fe  (III)  phytosiderophores.  Both  activities  are  thought  to  enhance  the 

solubilisation of Fe (III).

1.5 Phytohormone production

Plant growth hormones are organic compounds that influence the physiological processes 

in plants at extremely low concentrations. Production of phytohormones by inocula has 

been suggested as one of the most plausible mechanisms of action affecting plant growth. 

There are five classes of well-known phytohormones,  namely auxins,  IAA, cytokinins, 

ethylene and abscisic acid. Soil microbiotas, particularly the rhizosphere microflora, are 

potential sources of these phytohormones (Frankenberger & Arshad, 1995; Costacurta & 

Vanderleyden, 1995; Patten & Glick, 1996; Arshad & Frankenberger, 1998). Plant growth 

regulators  help to solublise  nutrients  so that  they can easily  be taken up by plant  via 

activate the roots and stimulate cell  division of root tissues. Solubilisation of nutrients 

such as phosphorus and iron by rhizobia makes them more readily available for plant 

uptake, as demonstrated by Belimov et al. (1995), Noel et al. (1996), Glick et al. (1998) 

and Biswas et al. (2000). They suggested that production of organic acids was the major 

mechanism of action by which insoluble phosphorus compounds were converted to more 

soluble forms. Other scientists report that rhizobia can create an acidic environment to 

promote mineral  nutrient solubilisation (Alexander,  1977).  The rhizobia influence crop 

growth and development by changing the physiological status (Glick & Bashan, 1997) and 

morphological characteristics of inoculated roots (Noel  et al., 1996; Yanni  et al., 1997), 

which favours improved nutrient uptake (Okon & Kapulnik, 1986). The ability of rhizobia 

to  solubilise  both  inorganic  and  organic  phosphate  has  been  the  subject  of  many 

investigations (Abd-Alla, 1994; Martin et al., 2002).
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1.6 Other potential mechanisms 

Other mechanisms for biological control of disease may include competition for infection 

sites and nutrients, parasitism on pathogens,  i.e. destruction of fungal pathogens by the 

action of lytic enzymes (e.g. chitinase and β-1, 3-glucanase) that degrade fungal cell walls, 

and  uncharacterised  antifungal  factors  (Fridlender  et  al.,  1993;  Kloepper,  1996; 

Velazhahan et al., 1999). Buchenauer (1998) reported various mechanisms for biological 

control such as competition for space and nutrients in the rhizosphere and spermosphere, 

lytic enzymes, HCN and many other metabolites produced by rhizobia. A consortium of 

PGPR may often have more influence on biological control and plant growth than a single 

strain (Krishnamurthy & Gnanamanickam, 1998; Bapat & Shah, 2000). However, in some 

cases, mixtures of different strains had no synergistic effect. Recent work on the broad 

spectrum of PGPR-mediated induced systemic resistance against different pathogens in 

different crops has gained importance (Ramamoorthy et al., 2001). 

The  potential  effect  and  successful  contribution  of  PGPR  strains  on  plant  growth  is 

strongly influenced by environmental factors including soil characteristics, plant species 

and  even  plant  genotypes  within  a  species,  and  other  microflora  indigenous  to  the 

rhizosphere (Nowak, 1998). Sub-optimal or unfavourable conditions may lead to little or 

no synthesis of biologically active substances in the root zone, resulting in the failure of 

PGPR to promote plant growth (Chanway & Holl, 1992). This hampers the practical use 

of PGPR, since effects are unpredictable due to varying environmental conditions. 

1.7 Characteristics of rhizobia 

Rhizobia (the fast-growing Rhizobium spp. and the slow-growing Bradyrhizobium spp.) or 

root nodule bacteria are medium-sized, rod-shaped cells, 0.5-0.9 µm in width and 1.2-3.0 

µm in length.  They do not  form endospores,  are Gram-negative,  and are mobile  by a 

single polar flagellum or two six peritrichous flagella. Rhizobia are predominantly aerobic 

chemoorganotrophs and are relatively easy to culture. They grow well in the presence of 

oxygen and utilise relatively simple carbohydrates and amino compounds. Some strains of 

rhizobia require vitamins for growth. Rhizobia are likely to lose viability rapidly in water. 
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Optimal growth of most strains occurs at a temperature range of 25-30 oC and a pH of 6.0-

7.0 but despite their usual aerobic metabolism, many strains are able to grow well under 

microaerophilic  conditions  at  oxygen  tensions  of  less  than  0.01  atm.  Generally,  most 

rhizobia produce white colonies. Fast-growing rhizobia produce an acid reaction in yeast 

mannitol medium containing bromthymol blue (pH 6.8) while slow growers produce an 

alkaline reaction.

1.8 Rhizobia as natural endophytes of legume plants

Rhizobia  form  intimate  symbiotic  relationships  with  legumes  by  responding 

chemotactically to flavonoid molecules released as signals by the legume host. These plant 

compounds induce the expression of nodulation (nod) genes in rhizobia, which in turn 

produce lipo-chito-oligosaccharide (LCO) signals that trigger mitotic cell division in roots, 

leading to nodule formation (Dakora 1995; Lhuissier et al., 2001). 

1.9 Rhizobia as plant growth promoting rhizo-bacteria of non-legumes

During legume-cereal rotations and/or mixed intercropping, rhizobia are exposed to non-

leguminous plants. A number of studies have shown that rhizobia naturally infect roots of 

rice (Yanni et al., 1997), wheat (Biederbeck et al., 2000) and oilseed rape (Lupwayi et al., 

2000). Höflich et al. (1994) obtained significant shoot dry matter yield increases (7-8%) 

by inoculating maize, spring wheat and spring barley (Hordeum vulgare L.) with strain 

R39 of  R. leguminosarum bv.  trifolii in field experiments. Yanni  et al. (1995) observed 

that certain effective wild-type strains of R. leguminosarum bv. trifolii are able to establish 

natural plant-bacterial associations that have the potential to promote growth of rice plants 

under both field and laboratory conditions, while Chabot et al. (1996) reported that field 

inoculation  of  maize  and  lettuce  significantly  increases  shoot  dry  matter  yield. 

Galleguillos et al. (2000) showed that the interaction between genetically modified (GM) 

Sinorhizobium meliloti and G. mosseae (AM) produced the highest growth effect (476% 

above the control)  in  Lactuca sativa  L.  (Table  1).  A series  of  laboratory experiments 

conducted  by  Zahir  et  al.  (2004)  on  two  wheat  cultivars  under  gnotobiotic  (axenic) 

conditions demonstrated increases in root elongation (up to 17.3%), root dry weight (up to 
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13.5%), shoot elongation (up to 37.7%) and shoot dry weight (up to 36.3%) of inoculated 

wheat seedlings. In addition, inoculation of PGPRs (Bacillus licheniformis CECT 5106 

and  Bacillus  pumilus CECT  5105)  in  forestry  nurseries  has  proved  to  be  crucial  in 

enhancing the survival of young tree seedlings when transplanted to the field. Inoculated 

seedlings with a more developed root system achieve better nutrition and survival after 

transplanting (Probanza et al., 2001). Various workers have emphasised that plant growth 

promotion by rhizobia in the field is likely to require the coordination of a cascade of 

events  affecting plant  growth promoting activity by a  variety of different  mechanisms 

(Bayliss  et  al.,  1993;  Frankenberger  &  Arshad,  1995;  Glick,  1995;  Arshad  & 

Frankenberger,  1998).  However,  the  precise  mechanism  by  which  rhizobial  strains 

stimulates plant growth need to be known in order to optimise each mechanism. 

Table 1. Summary of available data on the response of different corps to PGPR 

inoculation

Crop PGPR species Parameter

% increase 

over non-

inoculated 

control

Reference

Brassica 

campestris
Azotobacter Yield 34.4 Lifshitz et al. (1987)

Brassica napus
Pseudomonas 

brassicacearum
Shoot weight 21.2 Belimov et al. (2001)

Helianthus 

annuus L.

Rhizobium sp. 

Strain YAS34

Shoot dry 

weight
50.0 Alami et al. (2000)

Lactuca sativa
Sinorhizobium 

meliloti + AM
Biomass 476.0 Galleguillos et al.  (2000)

Oryza sativa
R. leguminosarum 

bv trifolii
Shoot weight 30.0 Biswas et al. (2000)

Solanum 

tuberosum
Azotobacter Yield 45.3 Zahir & Arshad (1996)

Triticum 

aestivum

Azospirillum 

brassilense

Plant dry 

weight

62.0 (no added 

N)
Dobbelaere et al. (2001)

Zea mays Pseudomonas Yield 18.9 Javed et al. (1998)

Zea mays
Azospirillum 

irakense

Plant dry 

weight
16.0 Dobbelaere et al. (2001)
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In addition, a number of reports have demonstrated the ability of rhizobia to colonise roots 

of non nitrogen fixing plant and localise themselves internally in tissues, including the 

xylem (Spencer  et  al.,  1994) (Figure 2).  Chabot  et  al.  (1996) showed that  Rhizobium 

leguminosarum bv.  phaseoli colonised  roots  of  lettuce  and  maize  plants.  The  co-

application of Azorhizobium caulinodans and flavonoids such as naringenin and daidzein, 

even  at  very  low  concentrations  (5x10-5 M)  significantly  enhanced  microsymbiont 

colonisation of roots and promoted localisation in the xylem of A. thaliana (Stone, 2001). 

The same flavonone was shown to enhance the colonisation of rice roots and internal 

localisation in xylem by A. caulinodans strain ORS571 (Gopalaswamy et al., 2000).

Figure 2. Scanning electron microscopy of Sakha 102 rice roots colonised by Rhizobium 

leguminosarum  bv.  trifolii strain E11. (A) Low-magnification micrograph showing a 4-

mm rootlet segment with numerous root hairs and ‘windows’ between them providing the 

opportunity  to  view the  rhizoplane  surface.  (B,  C)  Higher  magnification  micrographs 

showing  the  colonisation  of  the  epidermal  surface  by  the  bacteria.  Arrows  point  to 

localised  sites  where  the  bacteria  have  entered  small  crevices  at  junctions  between 

epidermal cells. (Source: Indicate origin of figure as Name, YEAR).
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1.10 Prerequisites for rhizobia to function as successful plant growth promoting 

bacteria

It is very important to have a good interaction between rhizobia and non-nitrogen fixing 

plants as otherwise the positive effect is not exploited. To act as PGPR with non-nitrogen 

fixing plants, rhizobia should be able to colonise and survive in the rhizosphere of these 

plants;  the  colonisation  of  roots  by  inoculated  bacteria  is  an  important  step  in  the 

interaction  between  beneficial  bacteria  and  the  host  plant.  However,  it  is  a  complex 

phenomenon influenced by many biotic and abiotic parameters.  The rhizobia may also 

have one or several of the characters attributed to PGPR, such as secondary metabolite 

production, siderophores, HCN (cyanide), antibiotic production etc (Table 2). Screening 

can be used identify strains with the maximum survival rate. The present study sought to 

identify positive relationships between some strains of  Rhizobium and some species of 

agricultural importance through N, P, Mg and dry matter (DM) analyses.

Table 2. Reported effects of plant growth promoting rhizobia in vitro, data from Antoun H. 

et al. (1998).

Rhizobial species

No. of 

strains 

tested

Cyanogensa 

(%)

Sidero-

phore 

producer

sb (%)

3-

Indoleacetic 

acid 

(IAA) prod-

ucersc (%)

P-

solubilisersd 

(%)

Arctic rhizobia 47 0 49 96 2
B.japonicum 18 0 67 33 5

R.leguminosarum bv. phaseoli 30 13 93 50 67

R.leguminosarum bv. trifolii 22 9 86 45 4

R.leguminosarum bv. viciae 82 2 91 51 71

Sinorhizobium meliloti 62 0 95 56 84

aA change  in  colour  from yellow  to  orange-brown of  filter  paper  impregnated  with  0.5% picric  acid-2% sodium 

carbonate indicates the production of cyanide (Bakker & Schippers, 1987).
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bRhizobia forming an orange halo on chrome azurol S agar plates or growing on TSA (10%) agar plates containing 50 

mg L-1 of 8-hydroxyquinoline are considered positive siderophore producers (Alexander & Zuberer 1991).
cIAA producing bacteria can be separated from organisms producing other indoles (yellow to yellow-brown pigment) by 

their characteristic pink to red colour produced after exposure to Salkowski reagent for 0.5-3 h (de Britto Alvarez, 1995).
dRhizobial colonies forming clarification halos on dicalcium phosphate agar plates are considered phosphate solubilisers 

(Goldstein, 1986).

2. OBJECTIVES                                                                                                                 

The objective of the study was to identify the rhizobial strains with the greatest and widest 

range of capacity for use as a potential growth promoter for non-nitrogen fixing plants.

3. MATERIALS AND METHODS                                                                              

3.1 Plant material 

The seeds of various non-nitrogen fixing plants were obtained from the seed company 

Impecta AB, Julita, Sweden.  Some data and characteristics of the species selected are 

presented in Table 3.

Table 3. Plant species used in the study

Common 

name
Scientific Name Variety Family

Germinatio

n rate (%)
Common uses

Chinese 

cabbage

Brassica rapa 

subsp. pekinensis
Narinosa Cruciferae 70 Leaf vegetable

Lemongrass
Cymbopogon 

flexuosus
Poaceae 25-30

Vegetable and 

ornamental

Sunflower
Helianthus  

annuus
Pacino Compositae 70

Oil, protein and 

ornamental

Linseed
Linum 

usitatissimum
Blue flowering Linaceae 85

Oil, tannin and 

medicinal
Common 

poppy
Papaver rhoeas Papaveraceae

Medicine and 

ornamental
Maize Zea mays Harlequin Gramineae Starch
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All these plant species were selected randomly as non-nitrogen fixing plants. They are of 

different  size,  shape,  structure,  colour,  taste,  odour,  growth  rate,  germination  rate, 

germination time, lifecycle, ecology and occurrence in nature.

3.2 Rhizobial strains

Eight  different  rhizobial  strains  were  obtained  from Elomestari  Ltd,  Finland,  and one 

strain (E-11) was obtained from Italy. A summary of the different strains is presented in 

Table 4.

Table 4.  Description of the nine different rhizobacterial  strains selected for use in the 

composite screening experiments

Expt. 

code

HAMB

I code
Species Other name Source

E-11 - R.leguminosarum bv.trifolii  Italy 
PAR-804 1148 Rhizobium loti Lotus corniculatus St.Petersburg
PAR-803 1126 Rhizobium loti Lotus corniculatus  

PAR-601 540 Rhizobium galegae HAMBI Finland 
PAR-401 714 R leguminosarum bv.viciae 38 HAMBI Finland 
PAR-307 - R leguminosarum bv.viciae 16HSa MTT  
PAR-207 - Sinorhizobium meliloti CXMI-105 Pushkin St.Petersburg
PAR-201 - Sinorhizobium meliloti Mel2 HAMBI Finland 
PAR-102 461 R leguminosarum bv.trifolii 503 173C HAMBI Finland 

Most of these strains have already been tested or examined regarding their potential for 

both  leguminous  and  non  nitrogen  fixing  plants.  The  important  characteristics  of  the 

Rhizobium strains are described below.  

3.3 Growth medium 

Growth medium was obtained from the company Askania AB, Sweden. The medium is 

completely sterilised sandy soil and the commercial product name is ‘Silversand 55’. The 

particle size distribution is: 40% of particles are 0.35 mm, 30% 0.50 mm, 16% 0.25 mm, 
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10% 0.707 mm. The chemical composition is: 99.2% SiO2, 0.09% Al2O3, 0.058% Fe2O3 

and 0.1% loss on ignition.

3.4 Growth and development of rhizobia 

Yeast  Mannitol  Broth (YMA) growth medium for rhizobia  was prepared according to 

Somasegaran  (1994).  Briefly,  0.1  g  NaCl,  0.5  g  K2HPO4,  0.10  g  MgSO4.7H2O,  10  g 

mannitol and 0.5 g yeast extract were added to 1 L distilled water in a 2-L flask, dissolved 

under continuous stirring and the pH adjusted to 6.8 with 0.1 N NaOH. Then 15 g malt 

agar  were added and the mixture  was shaken to create  an even suspension.  This  was 

heated by microwave oven at 90oC until fully boiled and then 5 mL portions of malt YMA 

solution were transferred into each of 72 test-tubes, which were autoclaved at    121oC for 

20 min. All sterilised test-tubes were placed in a sloping stand to cool and to create a 

sloping layer of YMA. 

The nine  different  rhizobial  strains  were  taken from their  source  tube  using  sterilised 

plastic  loops,  streaked  in  zigzags  onto  the  YMA slopes  (8  replicates  per  strain)  and 

allowed to grow and develop in the dark at room temperature (25oC).   

3.5 Preparation of rhizobial inoculant 

After  one week, successfully growing and developing rhizobial  colonies  on the YMA 

media were prepared as a bacterial suspension. For this purpose, 4.5 g K2HPO4 (equivalent 

to 0.02 M K2HPO4) was dissolved in 1 L distilled water in a volumetric flask and the pH 

adjusted to 7 by adding HCL carefully before being used as cell dilution medium. Five mL 

portions of this K2HPO4  solution were transferred into sterilised glass tubes in which the 

nine different rhizobial colonies were diluted by streaking with sterilised plastic loopfuls 

collected from the pure bacterial culture in aseptic conditions. All tubes were shaken by 

electric shaker, an additional 25 mL K2HPO4  solution were added to each tube and they 

were shaken again until the bacterial cells were uniformly dispersed.
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The  concentration  of  rhizobial  suspension  of  all  different  strains  was  determined  and 

adjusted  to  105 cfu  (colony  forming  units)  mL-1 using  a  spectrophotometer.  The 

concentration  of  the  solution  was  adjusted  to  0.1  OD  (Optical  Density),  which  is 

equivalent  to  105 cfu  mL-1,  by  adding  K2HPO4  or  rhizobial  cfu  as  needed  using  the 

calculation C1V1=C2V2. The spectrophotometer wavelength was 540 nm and pure K2HPO4 

solution was used as a blank and reference sample. An additional three glass tubes were 

included, one containing only 25 mL solution K2HPO4  and the other two containing 2.5 

mL from each of the nine prepared strains.  One of these was used as a  mixed strain 

treatment and the other as a sterilisation treatment by autoclaving at 121oC for 30 min. 

Thus  there  were  12  treatments  in  total  (9  single  strains,  a  mixture  of  all  strains,  a 

sterilisation treatment and the control).

3.6 Plant inoculation 

Seed bacterisation was carried out according to the supervisor’s instructions. The design 

of the main experiment involved mixing all six types of crop plant seeds in one pot (2 

seeds per plant species) and with 6 replicates for each treatment. Thus there were 2 (seeds 

each type of plant) * 6 (replications) * 12 (treatments), equivalent to 144 seeds for each 

type of crop plant.

For seed surface sterilisation, the seeds of each individual crop species were placed in an 

Erlenmeyer  flask and treated with 1% sodium hypochlorite.  The contents  were gently 

swirled to bring the seeds and sterilant  into contact  for 2 min.  The sterilant  was then 

drained off and the seeds were rinsed six times with sterile water and dried under sterile 

conditions. Finally, the seeds placed in an Erlenmeyer flask (144 seeds per flask). 

After that, the seeds were steeped with treatments or different rhizobial suspensions and 

the flasks marked with the name of treatments. Seeds treated only with 0.02 M K2HPO4 

solution were used as the control. All flasks swirled gently to bring the seeds and rhizo-

bacteria into close contact for 30 min to obtain a uniform inoculum of 105 cfu seed-1. 
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3.7 Greenhouse experiment

The main greenhouse experiment was conducted in mid-August 2006. The treated and 

control seeds (2 per crop species) were sown immediately into plastic pots (previously 

prepared)  using  sterilised  plastic  spoons  and  placed  in  a  greenhouse  where  the  air 

temperature was 27oC and the soil temperature 30oC. Seeds were covered immediately 

with 1 cm soil after sowing. 

Seed germination started within three days and continued over the next couple of days. In 

the  second  week  after  germination,  normal  cultivation  practices  were  begun.  These 

included watering twice a week at an initial rate of 100 mL per pot, which was increased 

to 200 mL according to the growth and development of plants. One plant per pot of Zea 

mays and  Helianthus  annuus was  pruned  to  produce  a  well-balanced  distribution  of 

foliage. Liquid plant nutrient solution ( Bayer Company) containing 7.0% nitrogen, 2.2% 

phosphorus, 5.0% potassium, 0.04% sulphur, 0.01% boron, 0.02% iron, 0.01% copper, 

0.01%  manganese,  0.005%  molybdenum,  0.005%  zinc  and  0.006%  magnesium  was 

introduced after two weeks at an initial rate of 1 mL nutrient solution in 2 L distilled 

water.  The  nutrient  concentration  was  then  doubled  every  week  for  four  weeks  to  a 

constant  4 mL nutrient  solution in 2  L water,  applied during watering.  All  pots  were 

moved  after  three  weeks  to  a  greenhouse  with  average  day  temperature  25oC,  night 

temperature 22oC, light intensity 30 kLx and average relative humidity 85%. All plant 

roots were re-inoculated twice with the same treatments at the same concentration using a 

sterilised glass dropper applying the liquid to the soil surface. The first re-inoculation was 

two weeks after sowing and after the second five weeks after sowing. The position of the 

pots was rearranged every week to achieve uniform light distribution in all treatments. All 

plants ware harvested with their roots intact after 58 days (Figure 3) and soil was carefully 

removed from the plants with running water.  All cleaned plants were then labelled and 

placed in a dryer at 60oC for 48 h for determination of dry weight of biomass. Plant roots 

and shoots were separated and weighed separately by digital balance and the data were 

recorded.  
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Figure 3. Plants in the greenhouse at 58 days.

3.8  Impact  of  inoculant  density  on  germination  and  development  of  Linum 

usitatissimum 

In the first experiment, Sinorhizobium meliloti (PAR-207) strain was found to be the best 

growth  promoting  strain  tested  and  had  a  wide  range  of  growth  promotion  activity. 

Therefore a complementary greenhouse experiment was carried out to test its performance 

in winter. For this purpose, one type of plant (Linum usitatissimum) was selected as the 

host plant and strain Sinorhizobium meliloti (PAR-207) was used as the growth promoter. 

In this second experiment, there were some changes to the procedure. A total of 60 viable 

seeds  of  Linum  usitatissimum sterilised  with  1%  sodium  hypochloride  (as  described 

above) were used. 

These seeds were inoculated with increasing concentrations (CFU 103, CFU 104 and CFU 

105) of PAR-207, which were considered as different treatments. The sterilised treatment 

involved autoclaving strain PAR-207 at 121oC for 20 min and 0.02 M K2HPO4 solution 

was  used as  the  control.  The seed inoculation  procedure  was  the  same as  before and 

inoculated seeds were immediately sown in plastic pots (4 seeds per pot, 3 replicates per 

treatment and 5 treatments) previously prepared in the greenhouse and covered with 1 cm 

soil. The average temperature of the air was 20.3oC, soil temperature (5 cm depth) was 

20.6oC, light intensity was 30 kLx and relative humidity 85%. Seed germination began 

after three days. After two weeks, seedlings were again treated with previously applied 
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concentration of strain PAR-207 suspension using sterilised glass droppers. Cultivation 

operations such as watering, applying plant nutrients, rearranging the position of pots were 

carried out  as  before but  there  was  no pruning.  All  plants  were harvested  at  56 days 

(Figure 4) by carefully removing soil from the root zone through running water, dried at 

60oC for 48 h and dry weight of root and shoot biomass were determined separately using 

a digital balance.           

Figure 4.  Linum usitatissimum (linseed) in the greenhouse at 56 days.

3.9 Rhizobial growth

The growth rate of three different  rhizobial  strains was determined,  namely PAR-207, 

PAR-804 and E-11. Yeast Mannitol Broth was prepared as before (section 3.4) and added 

to 12 Erlenmayer flasks (4 treatments including control x 3 replicates). All flasks with 

YMB were then autoclaved at 121oC for 20 min. 

Five mL of 0.02 M K2HPO4 stock were added to each of three test-tubes and colonies of 

the three strains tested were streaked into the solution by sterilised plastic loops collected 

from  pure  exponential  cultures.  All  test-tubes  were  shaken  on  an  electric  shaker  for 

uniform dilution. A further 20 mL K2HPO4 stock solution were added to each test-tube 

and they were shaken well again. Sterilised YMB (300 mL) was then added to each of 12 

sterilised flasks and 5 mL strain suspension from the test-tubes was added to each of the 

nine  replicate  treatment  flasks  (the three  control  flasks  received no inoculant).  All  12 
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flasks were shaken on a mechanical shaker at a rotation rate of 112 rpm. The initial   (hour 

0) bacterial concentration of each strain (3 replicates) was measured by spectrophotometer 

(wavelength 540 µm, temperature 25oC, sterilised YMB solution as reference sample). 

The concentration of the three strains was measured in the same way at 12 h, 24 h and 48 

h of growth. The last 24 h marked the exponential phase. 

3.10 Interaction between rhizobia and pathogenic fungi

Nine  different  rhizobial  strains  and  two  types  of  fungi  (Fusarium  oxysporium and 

Rhizotania solani) were used for this purpose. The experiment was performed on YMA 

nutrient medium. The procedure is shown in Figure 5.

A small amount of pure exponential rhizobacterial colony of each of the nine strains was 

picked up with a sterile plastic loop from the pure bacterial culture tube and streaked in a 

single 8 cm line longitudinally on the upper surface of separate YMA plates. These plates 

were then kept for seven days at 25oC for growth and development.

After seven days, two types of fungal plugs of 14-day-old PDA cultures were placed at a 

distance of 2 cm from each rhizobial line (Figure 5). The plates were incubated at 25oC. 

Horizontal fungal growth towards the bacterial line was recorded daily.        

Figure 5. Inoculation of rhizobacteria by two types of fungal plugs.
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3.11 Statistical analysis of data

All plant dry biomass data were arranged by a combination process (12C2= 12*11/2*1=66) 

for the 6 replicates of each plant species and used as input in the MINITAB-14 statistical 

software.  The  means  and  standard  deviation  were  calculated  for  root  and  shoot  dry 

biomass. The analysis of variance (ANOVA) on these was determined by a basic two-

sample T-test. Significance levels were expressed at the 95% confidence limit (P<0.05).   

4. RESULTS                                                                                                                        

4.1 Seed/plant inoculation studies

Inoculation of crop seed or plant with all rhizobial strains except PAR-803 and PAR-307 

improved  shoot  and  root  dry  biomass,  as  did  the  sterilisation  treatment  (Table  5). 

However, no single rhizobial strain caused significant (P<0.05) increases in all six types of 

crop plant tested. Some strains showed a broad range of ability for biomass production and 

host range specificity, while others showed a narrow range. 

Strain PAR-207 was the best potential performer compared with other strains for biomass 

production and it also had the potential to promote growth and development of a broad 

range of  host  plant  species,  such  as  shoot  growth of  Papaver  rhoeas, root  and shoot 

growth of  Brassica rapa, root and shoot growth of  Linum usitatissimum  and root and 

shoot growth of Helianthus annuus, compared with the control and the other treatments.

Strain PAR-201 also promoted significant root growth of  Brassica rapa, root growth of 

Cymbopogon flexuosus, root and shoot growth of Linum usitatissimum and shoot growth 

of Papaver  rhoeas. Strain  PAR-401  caused  significant root  growth  of  Linum 

usitatissimum, root growth of  Papaver rhoeas  and root and shoot growth of  Zea mays. 

Strain PAR-102 showed significant root growth of  Linum usitatissimum, root and shoot 

growth of Brassica rapa and root and shoot growth of Papaver rhoeas. The mixed strain 

inoculum  led  to  significant  root  growth  of  Papaver  rhoeas,  shoot  growth  of Linum 

usitatissimum and  root  and  shoot  growth  of Zea  mays (Figure  6).  Strain  PAR-601 
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produced significant effects for root growth of  Brassica rapa, root growth of  Papaver 

rhoeas and root and shoot growth of Linum usitatissimum. Strain E-11 caused significant 

shoot growth of Papaver rhoeas and root growth of Cymbopogon flexuosus, while PAR-

804 brought about significant root growth of Papaver rhoeas (Table 5).

Figure 6. Corn root appearance after inoculation with mixed rhizobia (right) and 

uninoculated control (left). 

Overall,  strain PAR-201 was the best  for  Papaver rhoeas  and Cymbopogon flexuosus, 

whereas  PAR-207  was  best  for  Linum  usitatissimum,  Brassica  rapa  and Helianthus 

annuus.  PAR-401 was the best  for  Zea mays, considered on an individual  plant  basis 

(Table 6).  
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Table 6. Best strain for individual crop species

Plant Name Best Strain
Brassica rapa PAR-207

Cymbopogon flexuosus PAR-201

Helianthus annuus PAR-207

Linum usitatissimum PAR-207

Papaver rhoeas PAR-201

Zea mays PAR-401

4.2  Impact  of  inoculant  density  on  germination  and  development  of  Linum 

usitatissimum 
Two concentrations of bacterial suspension (105 cfu mL-1 and 104 cfu  mL-1) were found 

to significantly  increase  root  dry biomass of  Linum usitatissimum compared with the 

control (Figures 7 and 8), the sterilisation treatment and the 103 cfu  mL-1 concentration 

(Table 7). The germination rate also differed with different concentrations of rhizobial 

inoculant, with the 104 cfu  mL-1 concentration giving 100% germination, 105 cfu  mL-1 

giving  60%  and  103 cfu   mL-1 giving  25%.  These  rates  can  be  compared  with  the 

sterilisation treatment, which gave 50% germination, and the control, which gave 25%.  

Figure  7.  Inoculation  of  linseed  with  strain  PAR-207  at  104 cfu   mL-1,  (left)  and 

uninoculated control (left).
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Fig 8.  Inoculation of linseed with strain PAR-207 at 104 cfu mL-1 on shoot and root 

biomass of Linum usitatissimum at harvest (right), uninoculated control (left).

Table 7. Effect of rhizobial inoculation of  Linum usitatissimum on shoot and root dry 

weight (g) after 56 days of growth

Linum usitatissimum
Treatment Shoot DM, g Root DM, g
Control 0.29 0.03
Sterilisation 0.23 0.03

CFU 103 cells mL-1 0.37 0.04

CFU 104 cells  mL-1 0.45 0.09ab

CFU 105 cells  mL-1 0.411 0.09ab

aValues significantly higher than the control; bValues significantly different from the other strains, P < 0.05 

in both cases

4.3 Bacterial growth

The generation time or doubling time of the rhizobia differed in the different  strains 

tested. The mean generation time of PAR-804, PAR-207 and E-11 was 9.4, 10.1 and 14.1 

hours respectively in the exponential phase (Table 8 and Figure 9).

Table 8. Change in rhizobial counts (cfu  mL-1) with time and mean generation time (Gt) 

and generation number of some of the different rhizobial strains used 

Strain 0 hr. 12 hr. 24 hr. 48 hr. Gn Gt
PAR-804 3.4x103 0.7x104 0.3x105 2.3x105 2.5 9.4
PAR-207 4.3x103 2.4x104 1.0x105 5.6x105 2.4 10.1
E-11 4.0x103 1.2x104 1.0x105 3.4x105 1.7 14.1
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Figure 9. Growth curves for the rhizobial strains PAR-207, E-11 and PAR-804.
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4.4 Interaction between rhizobia and pathogenic fungi 

There was no direct inhibition of fungal growth and development close to the rhizobial 

line. In actual fact the fungal mycelium touched the bacterial line easily and successfully 

(Figure 10) but after few days of contact between rhizobia and fungi, some strains (PAE-

401, PAR-307, PAR-804, PAR-803, PAR-601, PAR-102 and E-11) showed a tendency to 

dissolve the fungal mycelium towards the fungal plug (Figure 11).     

Figure 10. Fungal mycelium touching the bacterial line.
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Figure 11. Strain PAR 401 merged with the fungal mycelium.

5. DISCUSSION                                                                                                                  
In this study, composite screening approaches were simultaneously employed to select 

the most effective potential rhizobia for non-nitrogen fixing plants. Some of the results 

presented were not statistically significant due to missing data, where some seeds did not 

germinate  or  germinated  late.  For  example,  PAR-207  did  not  show  statistically 

significance differences for both root and shoot of Zea mays or PAR-201 for root growth 

of  Papaver  rhoeas (Table  5)  although  the  mean  values  obtained  appeared  to  be 

substantially  different.  However,  PAR-207  had  the  best  overall  band  score  and  it 

demonstrated a wide range of capability to improve all the types of non-nitrogen fixing 

plants  tested  compared  with  other  treatments  or  the  control.  PAR-207  is  a  strain  of 

Sinorhizobium meliloti. PAR-201 is another strain of the same species and also proved to 

significantly improve plant growth (Table 5). In our study, it appears that S. meliloti is the 

best strain for supporting growth and development of non-nitrogen fixing plants. Most of 

Sinorhizobium meliloti based strains produces IAA (Kittell  et al., 1989), sidero-phore, 

soluble P and no produce HCN (Table-2, Antoun et al. (1998). However, the chemical 

compositions  of  exopolysaccharides (EPS)  and  lipopolysaccharides (LPS)  of 

Sinorhizobium meliloti are  different  than  other  rhizobial  stains  (Bauer, 1981). 

Galleguillos (2000) has also reported the beneficial  effects of  Shinoribium meliloti on 

lettuce. The PGPR capacity of the other bacteria used in the present experiment is not 

very clear, and according to the results, it seems not to be high. 
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It has already been demonstrated that Rhizobium leguminosarum bv trifolii strain E11 has 

a good effect in rice (Yanni, 2001) due to production of indole-3-acetic acid (Dazzo et  

al., 2000). Hilali et al. (2000) showed that Rhizobium leguminosarum bv trifolii increased 

grain yield of wheat by 18%. This bacterium is a native root endophyte of the rice from 

Egyptian  Nile delta and there is  a  natural  endophytic  association between  Rhizobium 

leguminosarum bv. trifolii and rice roots, the potential of which to promote rice growth 

has been assessed by Yanni & Rizk (1997). 

However in the present study, crop species grown alone rather than in mixtures were 

stimulated most highly by individual strains, showing highest growth and development of 

biomass  (Table  6).  The  reason  may  be  that  individual  strains  ecologically  prefer 

individual  crop species  due to different  root  exudates,  which highly attract  particular 

rhizobial strains. However, mixed plant species may affect rhizobial strains due to mixed 

or  combined  and  complex  overlapping  root  exudates  that  influence  their  growth, 

development, activities and diversity in the new ecological root zone. Most rhizobia are 

attracted toward amino acids, organic acids and sugars by a chemotactic response (Bowra 

& Dilworth, 1981). However, Rhizobium loti strains are not attracted by these compounds 

but  by a  non-agglutinating  glycoprotein  (chemotactin)  present  in  the  root  exudate  of 

Lotus corniculatus  (Troch & Vanderleyden 1996). Thus strains PAR-803 and PAR-804 

are not suitable for non-nitrogen fixing plants. Generally, different microbial strains have 

different characteristics as regards being attracted and attached to the niche non-nitrogen 

fixing plant and thus differing ability as growth promoters.  

The complementary  studies  performed showed significant  rhizobial  growth  and plant 

development  even  in  adverse  environmental  conditions.  Interestingly,  the  first 

complementary study showed that rhizobia also influenced seed germination and plant 

growth depending on their concentration (Table 7). A concentration of  104 cfu mL-1 of 

PAR-207 gave the  highest  seed  germination rate  and growth of  Linum usitatissimum 

compared  with  other  concentrations  and  strains  tested  or  the  control.  However,  this 

experiment was unable to demonstrate significant shoot growth due to lack of light and 
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temperature in the greenhouse in winter. The growth promotion mechanism could thus be 

developed  or  enhanced  by  an  inoculation  regime  based  on  the  appropriate  rhizobial 

population density. 

Rhizobial  release  of  nodulation  signals  such as  lipo-chito-oligosaccharides  (LOCs)  is 

known to stimulate seed germination in a wide range of plant species by a still unknown 

mechanism  (Matiru  &  Dakora,  2004).  For  example,  recent  findings  show  that 

lumichrome and LCOs released by rhizobia stimulate seed germination and growth of 

crop  plants  (Zhang  et  al.,  2002).  Rhizobia  influence  seeds  at  the  time  of  seed 

germination, when dormancy is broken and seeds ultimately produce and exude solutes 

or low molecular weight metabolites by biological and physiological processes (Crowe & 

Crowe,  1992).  These  compounds  subsequently  attract  potential  concentrations  of 

rhizobia. The diversity and the numbers in which they are present depend very much on 

the composition and concentration of nutrients exuded by plant roots (Hale & Moore, 

1979). 

Rhizobacterial growth rate cannot indicate precisely which plant growth promoting strain 

gives rise to the highest growth rate. No correlation was found between bacterial growth 

rate and plant growth rate, but a moderate growth rate may be better for non-nitrogen 

fixing  plants  (not  proven  by  the  data).  The  second  complementary  experiment 

(rhizobacterial  growth)  showed that  strain  PAR-804  had  a  higher  growth  rate  in  the 

exponential  phase  but  was  not  as  good  a  plant  growth  promoter  as  strain  PAR-207 

(unique finding for this study).  Rhizobial  growth depends on nutritional status  of the 

growth medium, chemical reactions and enzymatic activates. Flavonoids also enhance the 

growth rate of certain rhizobia at the time of root colonisation (Hartwing et al., 1991). In 

reality, exponential growth is only part of the bacterial life cycle, and not representative 

of the normal pattern of growth of bacteria in nature. However, a fast growth rate may be 

of benefit when colonising the root and also e.g. to counteract plant pathogens.

In the study on the interaction between rhizobia and plant pathogenic fungi, the in vitro 

experiments performed showed that none of the nine rhizobial strains tested was able to 

prevent direct growth of fungi towards the bacterial line and successful contact between 
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the two. However, after a couple of days some strains such as PAE-401, PAR-307, PAR-

804, PAR-803, PAR-601, PAR-102 and E-11 were observed to dissolve and merge the 

fungal mycelium towards the old dense mycelium (Figure 11). The severity of this effect 

varied from strain to strain and with nutrient availability in the medium. The possible 

reason and mechanism is  that  after  contact  with the fungus,  rhizobia  start  to use the 

nutritional contents of fungal mycelium which they hydrolise by enzymatic reaction for 

their  growth  and  development  and  thus  the  rhizobial  line  moves  towards  the  fungal 

mycelium line (Fridlender  et al., 1993; Kloepper, 1996). Exo-polysaccharide (EPS) of 

rhizobia binds the fungal mycelium, which protects fungal cells against desiccation (no 

previous data).

6. CONCLUSIONS                                                                                                           
Significantly  increased plant  biomasses  indicate  that  rhizobia  have  naturally  potential 

ability to promote the growth of non-nitrogen fixing plant. But the ability of performance 

depends on the proper association between rhizobial strains and non-nitrogen fixing plant 

species. The concentration level of rhizobial inoculation is another important factor for 

seed germination and plant growth.  The results  confirm earlier  studies indicating that 

certain  strains  of  rhizobia  can promote  growth  of  non-nitrogen fixing plant,  possibly 

through mechanisms that involve changes in growth physiology and root morphology. 

More rhizobial strains should be screened through laboratory and field experiments to 

exploit their potential as PGPR for sustainable plant production.  

7. REFERANCE                                                                                                                 

Abd-Alla, M.H. (1994). Use of organic phosphorus by Rhizobium leguminosarum bv. viciae phosphatises. 
Biol. Fertil. Soils  8, 216-218.

Alami,  Y.,  Achouak,  W.,  Marol,  C.,  and Heulin,  T.  (2000). Rhizosphere  soil  aggregation  and plant 
growth  promotion of  sunflowers  b  an exopolysaccharide-producing  Rhizobium sp.  strain  isolated from 
sunflower roots. Appl. Environ. Microb. 66, 3393-3398.

Alexander, M. (1977). “Introduction to Soil Microbiology” (2nd ed.). Wiley, New York, USA, p. 467. 

Alexander, D. B., and Zuberer, D. A. (1991). Use of chrome azurol S reagents to evaluate siderophore 
production by rhizosphere bacteria. Biol. Fertil. Soils 12, 39-45. 

26



Antoun,  H.,  Beauchamp,  C.  J.,  Goussard,  N.,  Chabot,  R.,  and  Lalande,  R.,  (1998). Potential  of 
Rhizobium and  Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effects 
on radishes (Rhaphanus sativus L.). Plant Soil 204, 57-67.

Arshad, M., and Frankenberger, W. T. Jr. (1998). Plant growth regulating substances in the rhizosphere: 
Microbial Production and Functions. Adv. Agron. 62, 46-151

Baker, P. A. H. M., Weisheek, P.J., and Schippers, B. (1986). The role of siderophores in plant growth 
stimulation by fluorescent Pseudomonas sp. Med. Fac. Landboucow, Rijksumiv, Gent, 51/31, 1357-1362.

Bakker. A. W., and Schippers, B. (1987). Microbial cyanide production in the rhizosphere in relation to 
potato yield reduction and Pseudomonas spp.-mediated plant growth stimulation.  Soil Biol. Biochem.  19, 
451-457.  

Bapat, S., and Shah, A. K. (2000). Biological contact of Fusarium wilt of pigeon pea by Bacillus brevis 
on wheat. Can. J. Microb. 46, 125-132.

Bauer, W. D. (1981). Infection of legumes by rhizobia. Annu. Rev. Plant. Physiol. 32, 407-449

Bayliss,  C.,  Lasby,  B.,  Wood,  J.M.,  Lifshitz,  R.,  and Brown,  G.  L.   (1993).  Mutant  derivatives  of 
Pseudomonas putida GR12-2R3 defective in nutrient  utilization or  cell  surface structures show reduce 
ability to promote canola root elongation. Can. J. Microb. 39, 1111-1119.

Belimov,  A.  A.,  Kojemiakov,  A.P.,  and Chuvarliyeva,  C.V.  (1995).  Interaction  between  barley  and 
mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria. Plant Soil 173, 29-37.  

Belimov, A. A., Safronova, V. I., Sergeyeva, T. A., Engorova, T. V., Metveyeva, A. A., Tsyganov, V. 
E., Borisov, A. Y., Tikhonovich, I. A., Kluge, C., Preisfeld, A., Dietz. K., and Stepanok, V. V. (2001). 
Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-
aminocyclopropane-1-carboxylate deaminase on nutrient status of the plant. Can. J. Microb. 47, 642-652.

Berthelin, J., Leyrol, C., Laheurt, F., and Degiudici, P. (1991).  Some considerations on the relations 
between  phosphate  solubilizing  rhizobacteria  and  their  effect  on  seedling  and  plant  growth  related  to 
phosphorus  solubilizing.  In “Growth  Promoting  Rhizobacteria:  Progress  and  Prospects”  (C.  Keel,  B. 
Koller, and G. Defago, Eds.), pp. 359-364. IOBC, Switzerland.  

Biederbeck, V. O., Lupwayi, N. Z., Haanson, K. G., Rice, W. A., and Zentner, R. P. (2000). Effect of 
long-term rotation with lentils on rhizosphere ecology and on endophytic rhizobia in wheat. Abstract of the 
17th North American Conference on Symbiotic Nitrogen Fixation. Laval University Quebec, Canada. 23-
28, July 2000. 

Biswas, J. C., Ladha, J. K., and Dazzo, F. B. (2000a). Rhizobia inoculation improves nutrient uptake and 
growth of lowland rice. Soil Sci. Soc. Am. J. 64, 1644-1650.

Biswas, J. C., Ladha, J. K., Dazzo, F. B., Yanni, Y. G., and Rolfe, B. G. (2000b). Rhizobia inoculation 
influences seedling vigor and yield of rice. Agron. J. 92, 880-886.

Bowra, B. J., and Dilworth, M. J. (1981). Motility and chemotaxis towards sugars in Rhizobium 
leguminosarum. J. Gen. Microb. 126, 231–235

Buchenauer, H. (1998). Biological control of soil-borne diseases by rhizobacteria [Review]. Z. Pflanzenk,  
Pflanzens. 105, 329-348. 

Campanoni, P., Blasius, B., and Nick, P. (2003). Auxin transport synchronizes the pattern of cell division 
in a tobacco cell line. Plant Phys. 133, 1251-1260.

27



Chabot, R., Antoun, H., Kloepper, J. W., Beauchamp, C. J. (1996). Root colonization of maize and 
lettuce by bioluminescent Rhizobium leguminosaurm biovar phaseoli. Appl. Environ. Microbiol. 62, 2767-
2772.

Chanway, C. P., and Holl, F. B. (1992).  Influence of soil biota on Douglas fir (Pseudotsuga menziesii) 
seedling growth: the role of rhizosphere bacteria. Can. J. Bot. 70, 1025-1031.

Chen, Y., Mei, R., Lu, S., Liu, L., and Kloepper, J. W. (1994). The use of yield increasing bacteria as 
PGPR in Chinese agriculture. In “Management of Soil borne diseases” (U. K. Gupta and R. Utkhede, Eds.), 
Narosa Publishing House, New Delhi, India. 

Costacurta, A., and Vanderleyden, J. (1995).  Synthesis of phytohormones by plant-associated bacteria. 
Critical Rev. Microb. 21, 1-18.

Crowe,  J.  H.,  and Crowe,  L.  M. (1992).  Membrane integrity  in  anhydrobiotic  organisms:  Toward a 
mechanism for stabilizing dry seeds. In Water and Life, G. N. Somero, C. B. Osmond, and C. L. Bolis, eds 
(Berlin: Springer-Verlag), pp. 87-103.

Dakora, F. D. (1995). Plant flavonoids: biological molecules for useful exploitation. Aust. J. Plant Physiol. 
22, 7-99.

Dakora, F. D. (2003). Defining new roles for plant and rhizobial molecules in sole and mixed plant 
cultures involving symbiotic legumes. New Phytol. 158, 39 – 49.

Dazzo, F.B.,  Yanni,  Y. G., deBruijn,  F. J.,  Rademaker,  J.,  Squartini,  A.,  Corich, V.,  Mateos,  P., 
Martines-Molina,  E.,  et  al.,  (2000).  Progress  in  multinational  collaborative  studies  on  the  beneficial 
association between Rhizobium leguminosarum bv. trifolii and rice. In “The Quest for Nitrogen Fixation in 
Rice” (J. K. Ladha and P. M. Reddy, et al., Eds.), pp. 167-189. IRRI, Los Banos, Philippines. 

de  Britto  Alvarez,   M.  A.,  Gagné  S.,  and  Antoun,  H.  (1995).  Effect  of  compost  on  rhizosphere 
microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria.  Appl. Environ. 
Microbiol. 61, 194-199.

Dobbelaere, S., Croonenborghs, A., Thys, A., Ptacek, D., Vanderleyden, J., Dutto, P., & other 
authors (2001). Response of agronomically important crops to inoculation with Azospirillum. Aus. J. Plant  
Phys. 28, 1–9.

Frankenberger, W. T. Jr., and Arshad, M. (1995).  “Phytohormones in Soil: Microbial Production and 
Function”. Dekker, New York, USA, p. 503.

deFreitas,  J.  R.,  and  Germida,  J.  J.  (1992).  Growth  promotion  of  winter  wheat  by  fluorescent 
Pseudomonas under growth chamber conditions. Soil Biol. Biochem. 24, 1127-1135. 

Fridlender, M., Inbar, J., and Chet, I. (1993). Biological control of soil-borne plant pathogens by a β-1, 
3-glucanase producing Pseudomonas cepacia. Soil Biol., Biochem. 25, 1211-1221.

Galleguillos,  C.,  Augirre,  C.,  Barea,  M. J.,  and Azcón,  R.  (2000).  Growth promoting effect  of two 
Sinorhizobium meliloti straind (a wild type and its genetically modified derivative) on a non-legume plant 
species in specific interaction with two arbuscular mycorrhizal fungi. Plant Science 159, 57-63

Glick, B. R. (1995). The enhancement of plant growth promotion by free living bacterial. Can. J. Microb. 
41, 109-117. 

Glick, B. R., Penrose, D. M., and Li, J. (1998).  A model for lowering plant ethylene concentration by 
plant growth promoting rhizobacteria. J. Theor. Biol. 190, 63-68.

28



Glick, B. R and Bashan, Y. (1997). Genetic manipulation of plant growth-promoting bacteria to enhance 
biocontrol of phytopathogens. Biotechnol. Adv.15, 353-378. 

Goldstein, A. H. (1986). Bacterial solubilization of mineral phosphates: historical perspective and future 
prospects. Am. J. Altern. Agric. 1, 51-57. 

Gopalaswamy,  G.,  Kannaiyan,  S.,  O’Callaghan,  K.  J.,  Davey,  M. R.,  Cocking,  E.  C.  (2000). The 
Xylem of rice (Oryza sativa) is colonized by Azorhizobium caulinodans. Proceedings of the Royal Society  
of London. B. 267, 103-107.

Hale, M. G., and Moore, L. D. (1979). Factors affecting root exudation. II: 1970–1978. Adv. Agron. 31, 
93–124.

Hartwing, U. A., Joseph, C. M., and Phillips, D. A. (1991). Flavonoids released naturally form alfalfa 
seeds enhance growth rate of Rhizobium meliloti. Plant Physiol. 95, 797-803.

Hilali,  A.,  Przrost,  D.,  Broughton,  W.  J.,  and  Antoun,  A.  (2000).  Potential  use  of  Rhizobium 
leguminosarum bv.  trifolii as plant growth promoting rhizobacteria with wheat.  In “Abstract of the 17th 

North American Conference on Symbiotic Nitrogen Fixation”. Laval University, Quebec, Canada, 23-28, 
July 2000.  

Höflich, G., Wiehe, W., and Kohn, G. (1994). Plant growth stimulation by inoculation with symbiotic and 
associative rhizosphere microorganisms. Experienca. 50, 897-905.

Javed, M., and Arshad, M. (1997). Growth promotion of two wheat cultivars by plant growth promoting 
rhizobacteria. Pak. J. Bot. 29, 243-248.

Javed,  M.,  Arshad,  M.,  and  Ali,  K.  (1998).  Evaluation  of  rhizobacteria  for  their  growth  promoting 
activity in maize. Pak, J. Soil Sci. 14, 36-42. 

Kittell, B. L., Helinski, D. R., and Ditta, G. S. (1989).  Aromatic aminotransferase activity and indole 
acetic acid production in Rhizobium meliloti. J. Bacteriol. 171, 5458-5466.

Kloepper, J. W. (1996). Biological control agents vary in specificity for host, pathogen control, ecological 
habitat and environmental conditions. Bio. Sci. 46, 406-409.

Krishnamurthy, K., and Gnanamanickam, S. S. (1998). Biological control of rice blast by Pseudomonas 
fluorescens strain Pf7-14: Evaluation of a marker gene and formulations. Biol. Control. 13, 158-165.  

Leong, J. (1986). Siderophores: Their biochemistry, and possible role in the biocontrol of plant pathogens. 
Ann. Rev. Phytopathol. 24, 187-209.

Lhuissier, F. G. P., de Ruijter, N. C. A., Sieberer, B. J., Esseling, J. J., Emons, A. M. C. (2001).  Time 
course of cell biological events evoked in legume root hairs by Rhizobium nod factors: state of the art. Ann.  
Bot. 87, 289-302.

Lifshitz, R., Kloepper, J. W., Kozlowksi, M., Simson, C., Carlson, J., Tipping, B., and Zaleska, I. 
(1987).  Growth  promotion  of  canola  (rapeseed)  seedling  by  a  strain  of  Pseudomonas  putida  under 
gnotobiotic condition. Can. J. Microbiol. 33, 390-395. 

Loper, J. E.,  and Buyer, J. W. (1991). Siderophores in microbial interactions on plant surfaces.  Mol. 
Plant-Microbe Int. 4, 5-13.

Lupwayi, N. Z., Rice, W. A., Clayton, G. W. (2000). Endophytic rhizobia in barley and canola in rotation 
with field peas.  In “Abstract of the 17th North American Conference on Symbiotic Nitrogen Fixation”. 
Laval University, Quebec, Canada, 23-28, July 2000.  

29



Martin, L., Peix, A., Mateos, P. F., Martinez-Molina, E., Rodriguez-Barrueco, C., and Velazquez, E., 
(2002). Mobilization of phosphorus from soil to strawberry plants by a strain of Rhizobium leguminosarum 
bv. trifolii. In First international meeting on microbial phosphate solubilization, Abstract Salamanca, Spain: 
Universidad de Salamanca, IRNA-CSIC. 

Matiru, V. N., and Dakora, F. D (2004). Potential use of rhizobial bacteria as promoters of plant growth 
for increased yield in land races of African cereal crops. African J. Biotechnol. 3, 1-7. 

Maurhofer, M., Reimann, C., Sacherer, S. P., Heebs, S., Haas, D., and Defago, G. (1998).  Salicylic 
acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic 
resistance in tobacco against necrosis virus. Phytopathol. 88, 678-684.

Neilands, J. B. (1989). Siderophore  systems of bacteria and fungi, Metal Ions and Bacteria (Beveridge, T. 
J. and Doyle, R. J., eds), pp. 141-164, Wiley, Somerset, NJ, USA.

Noel, T. C., Sheng, C., Yost, C. K., Pharis, R. P., and Hynes, M. F. (1996). Rhizobium leguminosarum 
as  a  plant  growth  promoting  rhizobacterium:  Direct  growth  promotion  of  canola  and  lettuce.  Can.  J.  
Microbiol. 42, 279-293.

Nowak, J. (1998).  Benefits of in vitro Biotization of plant tissue cultures with microbial inoculants.  In 
Vitro Cell. Dev. Biol. Plant 34, 122-130.

Okon, Y., Kapulnik, Y., (1986). Development and functions of Azospirillum inoculated roots. Plant Soil. 
90, 3-16.

Patten, C. L., and Glick, B. R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microb. 42, 
207-220.

Probanza, A., Mateos, J. L., Lucas, J. A., Ramos, B., de Felipe, M. R., and Gutierrez-Mañero, F. J. 
(2001). Effects  of  inoculation  with  PGPR  Bacillus and  Pisolitus  tinctorius on  Pinus  pinea  L.  growth, 
bacterial rhizosphere colonization  and mycorrhizal infection. Microb. Ecol. 41, 140-148

Ramamoorthy, V., Viswanathan, R., Raguchander, T., Prakasam, V., and Samiyappan, R. (2001). 
Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and 
diseases. Crop Prot. 20, 1-11.

Römheld, V. (1987). Different strategies for iron acquisition in higher plants. Phys. Plant. 70, 231-234.

Sikora, R.A. (1992). Management of the antagonistic potential in agricultural ecosystems for the biological 
control of plant parasitic nematodes. Annu. Rev. Phytopat. 30, 245-270.

Schroth, M.N., Loper, J.E. and Hildebrand, D.C. (1984). Bacteria as biocontrol agents of plant disease. 
In Current Perspectives in Microbial Ecology ed. Klug, M.J. and Reddy, C.A. pp. 362–369. Washington, 
DC: American Society for Microbiology.

Somasegaran, P., and Hoben, H. J. (1994). Handbook for Rhizobia: Methods in Legume-Rhizobium 
technology, pp. 1-6, 259-264, 333-341, 366-369. Springer, Verlag New York, Berlin, Heidelberg.  

Spencer, D., James, E. K., Ellis, G. J., Shaw, J. E., Sprent, J. I. (1994). Interactions between rhizobia 
and potato tissue. J. Exp. Bot. 45, 1475-1482.

Stone, P. J., O’Callaghan, K. J., Davey, M. R., Cocking, E. C. (2001). Azorhizobium caulinodans  
ORS571 colonizes the xylem of Arabidopsis thaliana. Mol. Plant-Microbe Interact. 14, 93-97.

30



Subba Rao, N. S., (1993). Biofertilizers in Agriculture and Forestry. Oxford and IBH Publishing Co. Pvt. 
Ltd, New Delhi 242 pp. 

Troch, P. D and Vanderleyden, J. (1996). Surface properties and motility of rhizobium and azospirillum 
in relation to plant root attachment. Microbial Ecol. 32, 149-169

Vidhyasekaran, P., Muthamilan, M., (1999). Evaluation of powder formulation of Pseudomonas 
fluorescens Pf1 for control of rice sheath blight. Biocontrol Sci. Technol. 9, 67-74.

Wang, C., Saldanha, M., Sheng, X., and others. (2007). Roles of poly-3-hydroxybutyrate (PHB) and 
glycogen in symbiosis of Sinorhizobium meliloti with Medicago sp. Microbiology 153, 388-398.  

Wei, G., Kloepper, J. W., and Tuzun, S. (1996). Induced systemic resistance to cucumber diseases and 
increased plant growth by Plant growth promoting rhizobacteria under field conditions. Phytopathology 86, 
221-224.   

Yanni, Y. G., Rizk, R. Y., El-Fattah, F. K. A., Squartini, A., Corich, V., Giacomini, A., De Bruijn, F., 
Rademaker, J., Maya-Flores, J., Ostrom, P., Vega-Hernandez, M., Hollingsworth, R. I., Martinez-
Molina, E., Mateos, P., Velazquez, E., Wopereis, J., Triplett, E., Umali Garcia, M., Anarna, J. A., 
Rolfe, B. G, Ladha, J. K., Hill, J., Mujoo, R., Ng, P. K., Dazzo, F. B. (2001). The beneficial plant 
growth-promoting association of Rhizobium leguminosarum bv trifolii with rice roots. Aust. J. Plant  
Physiol. 28, 845-870

Yanni, Y. G., Rizk, R. Y., Corich, V., Squartini, A., Corich, V., Mateos, P., Ladha, J. K., Dazzo, F. B. 
(1997). Natural endophytic association between Rhizobium leguminosarum bv trifolii and rice roots and 
assessment of its potential to promote rice growth. Plant Soil. 194, 99-114.

Yanni, Y. G., Rizk, R. Y., Corich, V., Squartini, A., and Dazzo, F. B. (1995). Endorhizosphere 
colonization and growth promotion of Indica and Japonica rice varieties by Rhizobium leguminosarum bv. 
trifolii, In Proc. 15th North American Symbiotic Nitrogen-Fixation Conference. North Carolina State 
University, Raleigh, NC. 

Zahir, Z. A., and Arshad, M. (1996). Effectiveness of Azotobacter inoculation for improving potato yield 
under fertilized conditions. Pak. J. Agri. Sci. 33, 1-8.

Zahir, Z. A., Arshad, A., and Frankenberger, W. T. (2004). Plant growth promoting rhizobacteria: 
Applications and perspectives in agriculture. Adv. Agron. 81, 97-168.

Zehnder, G., Kloepper, J. W., Yao, C., and Wei, G. (1997). Induction of systemic resistance in 
cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth-promoting rhizobacteria, 
J. Econ. Entomol. 90, 391-396.  

Zhang, S., Reddy, M. S., and Kloepper, J. W. (2002). Development of assays for assessing induced 
systemic resistance by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol. Cont. 23, 
79-86. 

31


	Hossain, Md. Shakhawat
	Master’s Thesis, 20 points				Examensarbete 151
	Swedish University of Agricultural Sciences		April 2007
	Department of Soil Sciences
	P.O. Box 7014
	SE-750 07 Uppsala
	SWEDEN


	ABSTRACT
	1. INTRODUCTION								       1-9

	2. OBJECTIVES									           9
	3.2 Rhizobial strains									         10
	1. INTRODUCTION									

	2. OBJECTIVES										
	3.2 Rhizobial strains
	Linum usitatissimum


