Undersökning av ögats brytningsförmåga i ett svenskt hästmaterial

Sofia Östberg

Handledare: Björn Ekesten
Inst. för kliniska vetenskaper
Innehållsförteckning

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Sidan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sammanfattning</td>
<td>1</td>
</tr>
<tr>
<td>Abstract</td>
<td>2</td>
</tr>
<tr>
<td>Inledning</td>
<td>3</td>
</tr>
<tr>
<td>Skiaskopi</td>
<td>4</td>
</tr>
<tr>
<td>Litteraturöversikt</td>
<td>6</td>
</tr>
<tr>
<td>Hund</td>
<td>6</td>
</tr>
<tr>
<td>Häst</td>
<td>7</td>
</tr>
<tr>
<td>Experimentell studie</td>
<td>8</td>
</tr>
<tr>
<td>Syfte</td>
<td>8</td>
</tr>
<tr>
<td>Material och metod</td>
<td>8</td>
</tr>
<tr>
<td>Försök 1, skiaskopi före och efter ackommodationspares</td>
<td>9</td>
</tr>
<tr>
<td>Försök 2, fältstudie</td>
<td>9</td>
</tr>
<tr>
<td>Statistik</td>
<td>9</td>
</tr>
<tr>
<td>Resultat</td>
<td>11</td>
</tr>
<tr>
<td>Försök 1</td>
<td>11</td>
</tr>
<tr>
<td>Försök 2</td>
<td>11</td>
</tr>
<tr>
<td>Diskussion</td>
<td>13</td>
</tr>
<tr>
<td>Litteraturförteckning</td>
<td>15</td>
</tr>
<tr>
<td>Bilagor</td>
<td>16</td>
</tr>
<tr>
<td>Bilaga 1, djurägarmedgivande till skiaskopi</td>
<td>16</td>
</tr>
</tbody>
</table>
Sammanfattning

Studien består dels av en litteraturstudie, där en sammanställning över relevanta studier på ett flertal djurslag är gjord, samt dels av en experimentell studie där 93 hästar av varierande ras, ålder och användningsområde har undersömts med avseende på brytningsförmåga. En pilotstudie har även genomförts, där vikten av ackommodationspares (cykloplegi) vid skiaskopi på häst undersöktes. Detta gjordes på 12 hästar.

Resultaten från pilotstudien visar att ingen signifikant skillnad i skiaskopiresultat finns i grupperna före och efter att cykloplegi inducerats. Följaktligen är det inte nödvändigt att inducera ackommodationspares vid skiaskopi på vuxna hästar.

Då det är ett relativt litet material som använts skulle det vara intressant att studera större grupper av hästar av olika ras, ålder och användningsområden. Vidare vore det av intresse att i framtida studier undersöka föl och unghästars brytningsförmåga.
Abstract

Skiascopy, also called retinoscopy, is a method for determining the refractive power of the eye. There are only a few, old studies made on equine refraction. The aim of this study was to investigate the refractive power in a population of Swedish horses.

The study consists of a review of relevant studies done on animals and an experimental part where the refractive power of 93 horses of different age, breed and usage was examined. A pilot study of 12 horses was performed regarding the importance of cycloplegia when doing skiascopy on horses.

The results of the pilot study show no significant difference in the skiascopy results between the group before and after cycloplegia were induced. Consequently, there is no need of inducing cycloplegia before doing skiascopy in adult horses.

The study shows that horses usually were emmetropic (normally sighted) with minor deviations toward myopia or hyperopia. There was a clear relation between age and refractive error. With increasing age, the horses became more nearsighted, myopic. Furthermore, the results suggested that refractive power was different in different breeds. Icelandic horses were more farsighted, hyperopic, and thoroughbreds were more myopic. Horses used for dressage were more myopic than horses used for other purposes.

Given that this study includes a relatively small number of horses, it would be interesting to study a larger population with respect to age, breed and usage. Furthermore, it would also be interesting to study the refractive power of foals and young horses.
Inledning

Ett öga (som inte ackommoderar, d.v.s. inte ändrar brytningspunkten för ljusstrål..) kommer in genom att ändra formen på linsen) har tre refraktiva tillstånd. Ett emmnetropöga bryter parallella strål så att de träffar precis på retina. Det är ett öga utan brytningsfel (Figur 1, B). Ett myopt öga har en för stor brytningsförmåga i förhållande till ögats längd och bryter därför parallella strål före retina och är därmed närsynt. (Figur 1, C) Ett hyperopt öga har för liten brytningsförmåga i förhållande till axellängden och bryter därför ljusträlerna vid en punkt något bakom retina och är därmed långsynt (Figur 1 A) (Davidson, 1997).
Hästar har mycket begränsadackommoderingsförmåga (Timney, 2001). Man har länge trott att hästen kompenserar för detta genom att ha olika avstånd mellan linsen och centrala respektive perifera retina (ramp-retina) och förmåga att få objekt på olika avstånd i fokus genom att höja eller sänka sitt huvud. Detta har visats felaktigt och hästen får inte några visuella fördelar av att höja och sänka sitt huvud för att se objekt på avstånd (Harman et al, 1999). Däremot kan huvudrörelserna tjäna till att flytta in föremål mer centralt i synfältet.

Skiaskopi

Skiaskopi, även kallat retinoskopi, är en metod där det refraktiva eller dioptriska stadiet, d.v.s. brytningsförmågan i ögat kan bestämmas objektivt. Undersökningsmetoden används såväl inom den humana ofthalmologin, som inom veterinärmedicinen, i det senare fallet framför allt för att utvärdera och förbättra intraokulära linsimplantat, exempelvis för patienter som genomgår kataraktoperation. (Strubbe & Gelatt, 1999). Skiaskopi av djurögon bygger på antagandet att ljusstrålar som reflekteras från retina bryts enligt samma optiska system som ljusstrålar som kommer in i ögat (Boden, 1910).

Skiaskopi utförs i ett nedsläckt rum med en assistent som håller hästens huvud. Stressretinoskopet placeras på ett uppmätt avstånd, t.ex. 50 cm, från hästens öga. Ljuset ställs in som en vertikal divergerande spalt som sedan sveps fram och tillbaka över hästens pupill. Ljuset ställs sedan om till en horisontell spalt och även den sveps över pupillen (Figur 2). Efter detta sätts en linsslist som har flera linser med olika dioptriska styrkor på 1-2 cm avstånd från hästens cornea (glasögonavstånd) och proceduren upprepas med olika linser. När ljuset sakta sveper över pupillen rör sig en skugga över fundusreflexen åt antingen samma eller motsatt håll beroende på det refraktiva stadiet hos patienten. Utan en refraktiv lins kommer skuggan att flyttas åt samma håll som ljuset sveper åt i ett emmetropiskt eller hyperopiskt öga och åt motsatt håll i ett myopiskt öga.

Om skuggan rör sig åt samma håll som ljuset placeras linser av ökande positiv dioptrisk styrka framför djurets öga till dess att skuggan rör sig åt motsatt håll mot den riktning streckretinoskopet rörs eller neutralisation uppnåtts. Neutralisation är när fundusreflexen helt lyser upp pupillen utan någon märkbar rörelse (Figur 3). Vid skugga som rör sig åt motsatt håll från ljusspalten placeras linser med ökande negativ dioptrisk styrka framför djurets öga tills skuggan rör sig åt samma håll som ljuset eller neutralisation uppnås.

Figur 3. Vid neutralisationspunkten fylls pupillen av fundusreflexen i detta människoöga.
Litteraturöversikt

Hund

De fann att både ledar- och sällskapshundar blev mer myopiska med stigande ålder. Det fanns även en ärtlig tendens för utvecklandet av myopi hos hund. Hos vissa raser var hela kullar drabbade medan andra kullar var helt fria från myopi.

Bland lederhundarna fanns en signifikant lägre andel av myopiska hundar vid jämförelse med sällskapshundarna. Skälet för detta var inte uppenbart men spekulationer gjordes om de rigorösa selektionsprocesserna som föregår lederhundsutbildningen skulle selektera bort hundar med nedsatt synförmåga (Tabell 1).

Tabell 1. Brytningsfel hos olika hundraser (från Murphy et al., 1992). Negativa brytningsfel betecknar myopi, positiva hyperopi. Notera skillnaden i genomsnittligt brytningsfel för hundar som har krav på sig att fungera väl och leda synhandikappade personer i olika miljöer (ledarhundar) med hundar av samma ras som inte selekterats för detta ändamål

<table>
<thead>
<tr>
<th>Ras</th>
<th>Antal hundar</th>
<th>Genomsnittligt brytningsfel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schäfer (ej lederhund)</td>
<td>30</td>
<td>-0,86</td>
</tr>
<tr>
<td>Schäfer (lederhund)</td>
<td>53</td>
<td>0,22</td>
</tr>
<tr>
<td>Chesapeake Bay retriever</td>
<td>5</td>
<td>0,83</td>
</tr>
<tr>
<td>Golden retriever</td>
<td>5</td>
<td>0,4</td>
</tr>
<tr>
<td>Labrador retriever</td>
<td>14</td>
<td>0,63</td>
</tr>
<tr>
<td>Blandras</td>
<td>8</td>
<td>-0,38</td>
</tr>
<tr>
<td>Rottweiler</td>
<td>14</td>
<td>-1,77</td>
</tr>
<tr>
<td>Dvärgschnauzer</td>
<td>8</td>
<td>-0,67</td>
</tr>
<tr>
<td>Shar pei</td>
<td>7</td>
<td>0,11</td>
</tr>
<tr>
<td>Springer spaniel</td>
<td>5</td>
<td>0,17</td>
</tr>
<tr>
<td>Terrier</td>
<td>17</td>
<td>-0,02</td>
</tr>
</tbody>
</table>

Vidare visades att refraktionen var oberoende av pupillens storlek och mydriasis var inte nödvändigt för undersökningen.
Häst

Huvuddelen av de undersökningar som gjorts om brytningsfel hos häst är mycket gamla, i regel från åren runt förra sekelskiftet, och det finns, vad vi känner till, inga publicerade uppgifter om läget i Sverige, varken då eller i nutid.

En undersökning av M Duval (1976) gjord i Frankrike på 150 hästar visade på att ungefär två tredjedelar av hästarna var normalsynta. Endast en liten del av hästarna i denna studie var översynta, och av dem var huvuddelen endast lindrigt hyperopa. Ungefär en tredjedel var närsynta, de flesta endast lindrigt myopa. Studien visade även att en häst kan ha flera brytningsfel, exempelvis både myopi och astigmatism, det framgår dock inte hur vanligt det är (tabell 2).

Tabell 2. Antal hästar med brytningsfel (från Duval, 1976)

<table>
<thead>
<tr>
<th>Brytningsfel</th>
<th>Antal hästar</th>
<th>Procent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emmetropi (normalsynta)</td>
<td>85</td>
<td>57 %</td>
</tr>
<tr>
<td>Hyperopi (översynta)</td>
<td>20</td>
<td>13 %</td>
</tr>
<tr>
<td>Lindrigt (+0,5-1 D)</td>
<td>12</td>
<td>60 %</td>
</tr>
<tr>
<td>Måttligt (+1,5-2,5 D)</td>
<td>6</td>
<td>30 %</td>
</tr>
<tr>
<td>Kraftigt (mer än +3 D)</td>
<td>2</td>
<td>10 %</td>
</tr>
<tr>
<td>Myopi (närsynta)</td>
<td>49</td>
<td>33 %</td>
</tr>
<tr>
<td>Lindrigt (-0,5 -1 D)</td>
<td>29</td>
<td>59 %</td>
</tr>
<tr>
<td>Måttligt (-1,5 – 2,5 D)</td>
<td>14</td>
<td>29 %</td>
</tr>
<tr>
<td>Kraftigt (mer än -3 D)</td>
<td>6</td>
<td>12 %</td>
</tr>
<tr>
<td>Astigmatiska</td>
<td>35</td>
<td>23 %</td>
</tr>
</tbody>
</table>

Duvals studie innehöll även en sammanställning av äldre studier gjorda, som alla visade att det fanns en procentuell övervikt för lindrig hyperopi hos häst (Duval, 1976).

Bayer (1906) refererar till flera äldre studier, där originalkällor ofta inte är fullständigt angivna. Resultatet av dessa studier visade på att de flesta hästar var emmetropa och att det dominerande brytningsfelet hos häst var hyperopi (Tabell 3). I den av Bayer refererade studien av Noli var merparten av hästarna hyperopa, medan knappt var sjätte häst var emmetrop.

Tabell 3. Resultatet från de äldre studierna (citerade i Bayer, 1906)

<table>
<thead>
<tr>
<th>Undersökare</th>
<th>Antal undersökta hästar</th>
<th>Emmetropi</th>
<th>Hyperopi</th>
<th>Myopi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrére</td>
<td>22</td>
<td>10</td>
<td>45,5 %</td>
<td>8</td>
</tr>
<tr>
<td>Ablaire</td>
<td>300</td>
<td>270</td>
<td>90 %</td>
<td>-</td>
</tr>
<tr>
<td>Bergés</td>
<td>656</td>
<td>502</td>
<td>76,6 %</td>
<td>68</td>
</tr>
<tr>
<td>Noli</td>
<td>211</td>
<td>37</td>
<td>17,5 %</td>
<td>146</td>
</tr>
</tbody>
</table>
Experimentell studie

Syfte

Vid Stordjurskliniken vid SLU har under de senaste åren sporadiska fall av hästar med så kraftiga brytningsfel att det kan misstänkas påverka hästens funktion undersökt. Denna studie syftar till att undersöka ett svenskt hästmaterial utan synproblem som lett till veterinärbesök för att få en uppfattning om hur vanligt förekommande brytningsfel är bland hästar av varierande raser som används till dressyr, hoppning eller annan användning. Ett ytterligare mål med studien var att få reda på om ackommodationspares behövde induceras för att genomföra undersökningen av brytningsförmågan med skiaskopi.

Material och metod

Materialet består av 93 hästar av varierande ras, ålder och användningsområde (Tabell 4). Etiskt tillstånd för att utföra försöket hade erhållits från Uppsala Djurförsöketiska nämnd. Djurägarna fick själva bedöma vilken kategori av användningsområde (dressyr, hoppning, ridhäst eller annat) deras häst passade bäst in i utifrån hur de använde den. Det ingick inga hingstar i studien, utan samtliga handjur var kastrerade.

Tabell 4. Undersökningsmaterial

<table>
<thead>
<tr>
<th>Ras</th>
<th>Antal</th>
<th>Kön</th>
<th>Ålder (år) Median</th>
<th>Min</th>
<th>Max</th>
<th>Användningsområde</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Val</td>
<td>Sto</td>
<td></td>
<td></td>
<td></td>
<td>Hoppping</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dressyr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Annat / ridhäst</td>
</tr>
<tr>
<td>Halvblod</td>
<td>38</td>
<td>24</td>
<td>10</td>
<td>4</td>
<td>27</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Fullblod</td>
<td>5</td>
<td>3</td>
<td>16</td>
<td>7</td>
<td>21</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Varmblod</td>
<td>11</td>
<td>3</td>
<td>14</td>
<td>6</td>
<td>19</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Islandshäst</td>
<td>26</td>
<td>17</td>
<td>11,5</td>
<td>4</td>
<td>26</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>Ponny</td>
<td>13</td>
<td>10</td>
<td>12</td>
<td>2</td>
<td>19</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Undersökningen utfördes i hästens box med nedsläckt rumsbelysning. En assistent höll hästens huvud, när så var nödvändigt. Arbetsavståndet för retinoskopet var 50 cm. Ljus från streckretinoskopet (Professional Combi Retinoscope, Keeler Instruments Inc, Philadelphia, USA) lystes in i hästens öga och linser med lämplig styrka placerades framför hästens öga på glasögonavstånd till dess att neutralisationspunkten uppnåtts. Om inte neutralisationspunkten hittades, söktes de två linser upp varemellan skuggan bytte rörelseriktning. Refraktionen ansågs därvid ligga mitt emellan dessa. Mätninggrannheten var följaktligen ±0,25 D, då styrkan i linserna i skiaskopilisten ändrades i halvdioptristeg.

Vid 50 cm undersökningsavstånd behövs en +2,0 D lins för att uppnå neutralisationspunkten i ett emmetropt öga. Därför subtraherades 2,0 D från det erhållna värdet. I den
Fortsatta presentationen redovisas endast hästögats egen brytningsförmåga i diopter (D), d v s med korrektionen för arbetsavståndet frändragen.

Försök 1, skiaskopi före och efter ackommodationspares
Tolv hästar användes för att studera ackommoderingens inverkan på resultatet av skiaskoperingen. Dessa hästar skiaskoperades först och sedan applicerades 1-2 atropindroppar i båda ögonen (Isopto-Atropin, 1 %, Alcon, USA) Den andra skiaskoperingen utfördes 12 timmar efter att atropindropparna applicerats och hästarna bedömdes då ha maximal mydriasis och ackommodationspares (Ward, 1999).

Försök 2, fältstudie
I detta försök ingick 93 hästar av varierande ras, ålder och användningsområde. Detta försök inkluderar även de resultat som erhölls innanackommodationspares i försök 1. Hästarna fanns i Uppsalaoområdet samt i norra Stockholm och innan hästarna undersöktes fick djurägaren ge sitt tillstånd på djurägarblankett (Bilaga 1).

Först gjordes en undersökning av ögat med fokalt ljus för att upptäcka eventuella defekter i de brytande medierna, som skulle kunna påverka skiaskopiresultatet. Då en förändring upptäcktes användes inte det ögat i studien. Efter det gjordes skiaskopi enligt tidigare nämnd metod. Två hästögon uteslöts ur studien pga förändringar i ögat.

De hästarna med brytningsfel på ±0,25 D ansågs vara emmetropa.

Statistik
Jämförelse av refraktionen före och efter induktion av ackommodationspares i det första delförsöket gjordes med Wilcoxon rank test. Varje meridian bedömdes individuellt.

En modell där refraktion som en linjär funktion av ras, ålder, kön, användningsområde, öga och meridian undersökt med hjälp av funktionen Stepwise (JMP version 6.0.3, SAS Institute, Inc., Cary, NC, USA). Parameterskattingar med p-värde>0,05 uteslöts och den slutgiltiga modellen analyserades med funktionen Standard Least Squares:

\[
\text{refraktion} = \text{intercept} + \alpha * \text{ålder} + \beta * \text{ras} + \gamma * \text{användningsområde} + \epsilon
\]

I försök två användes även Kruskal-Wallis test för att undersöka om en signifikant skillnad i ålder förelåg mellan de olika raserna. Den statistiska analysen av ålder och ras visade att det inte fanns någon signifikant skillnad i medianålder mellan de olika raserna (Figur 4).

För samtliga statistiska test bedömdes ett p-värde lägre än 0,05 vara signifikant.
Resultat

Försök 1
Det förelåg ingen signifikant skillnad i skiaskopiresultat i grupperna före och efter att cykloplegi inducerats (p>0,05; p-värden för de båda ögonen och de olika meridianerna låg mellan 0,12 till 0,88). Följaktligen är det inte nödvändigt att inducera ackommodationsspares, cykloplegi, vid skiaskopi på häst. Detta kan bero på hästens mycket begränsade ackommodationsvidd, dvs den ringa förmågan att förändra linsens form. Detta medförde att hästarna i försök 2 undersöktes utan föregående induktion av cykloplegi.

Försök 2
Studien visar att hästar är vanligtvis emmetropa med små avvikelser till närsynthet eller översynthet (Tabell 5).

<table>
<thead>
<tr>
<th>Tabell 5. Brytningsfel hos hästarna i fältstudien, 186 ögon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antal ögon</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Emmetropi (normalsynta)</td>
</tr>
<tr>
<td>Hyperopi (översynta)</td>
</tr>
<tr>
<td>Lindrigt (+0,5-1 D)</td>
</tr>
<tr>
<td>Måttligt (+1,5-2,5 D)</td>
</tr>
<tr>
<td>Kraftigt (mer än +3 D)</td>
</tr>
<tr>
<td>Myopi (närsynta)</td>
</tr>
<tr>
<td>Lindrigt (-0,5 -1 D)</td>
</tr>
<tr>
<td>Måttligt (-1,5 – 2,5 D)</td>
</tr>
<tr>
<td>Kraftigt (mer än -3 D)</td>
</tr>
<tr>
<td>Astigmatism</td>
</tr>
</tbody>
</table>

Vid jämförelse med de äldre studierna visade denna studie en mindre andel emmetropa hästar samt större andel myopa hästar. Även andelen hyperopa hästar var något mindre än i de gamla studierna (Figur 5).
Figur 5. Jämförelse mellan vår studie och äldre studier

Parametrarna öga och meridian samt kön hade p-värden >0,05 och parameterskattningarna var följaktligen inte signifikant skilda från 0, vilket gjorde att de inte togs med i den slutgiltiga modellen. Förklaringsgraden för modellen refraktion = intercept + α*ålder + β*ras + γ*användningsområde + ε var $R_{adj}^2 \approx 0,27$ (p<0,0001), vilket innebär att bara 27% av variationen i refraktion i vårt material förklaras av modellen. Interceptet var 0,26 (p=0,04), vilket skulle tala för att hästar föds något hyperopa. Vi vet inte om detta är sant, då mycket få unga hästar ingick i studien. Det förelåg ett tydligt negativt samband mellan ålder och brytningsfel (p< 0,0001). Med ökande ålder sågs alltså en större andel myopa hästar. Parameterskattningen för ålder var -0,06 per år, vilket talar för att myopin skulle öka med -0,6 D per decennium hos vuxna hästar.

Även vissa raser, Islandshästar (p<0,0001) och fullblod (p<0,0001) föll ut i den statistiska modellen. Islandshästar var i genomsnitt något hyperopa (p<0,0001). Parameterskattningen för islandshästar var positiv (0,68), vilket talar för att dessa hästar hade en tendens mot hyperopi. Fullblod hade å andra sidan en negativ parameterskattning (-0,75), vilket innebär att myopi skulle vara mer påtagligt för denna ras. De har en högre andel myopiska individer än andra raser. Parameterskattningarna för halvblod, varmblod och ponny avvek inte signifikant från 0, vilket gör att vi i detta material inte kunde påvisa en raseffekt för dessa hästraser.
För variabeln användning hade endast parameterskattningen för dressyr signifikant påverkan på modellen (p=0,029). Eftersom parameterskattningen hade negativ inverkan på modellen (-0,33) kan antas att dressyrhästar är mer myopa än hästar som används för andra ändamål.

När de olika meridianerna samt höger och vänster öga analyserades hade ingen av dem en signifikant påverkan på modellen. Det är alltså ingen betydande skillnad i brytningsfel mellan hästens högra eller dess vänstra öga, eller mellan meridianerna.

Diskussion

Resultaten talar tydligt för att hästar bli mer myopa med stigande ålder. Detta beror med all sannolikhet på åldersförändringar i linsen och den myopi som orsakas av kärnsklerosen. Under en tioårsperiod beräknas myopin öka med -0,6 D. Hästarna i denna studie var av mycket varierande ålder, men det var inga föl med och mycket få unghästar. Det vore därför av vikt att undersöka brytningsförmågan hos föl och unghästar, för att se om det positiva intercept som erhålls verkligen innebär att nyfödda föl är hyperopa. Vi bedömde att hästar med brytningsfel på ±0,25 D som emmetropa då den metod vi använde inte har större känslighet än så, samt att människor med brytningsfel i denna storlek ofta inte behöver använda glasögon.

En av de variabler som också föll ut i den statistiska modellen var ras. Fullblod visade sig vara något mer myopa än andra raser. Man kan spekulera i om detta är avelsrelaterat, då det kan vara en fördel att inte se så långt vid t ex galopptävlingar, eftersom det då kan distrahera hästen. En annan möjlighet är att brytningsförmågan skulle kunna vara kopplad till något annat anlag. Då det var ett mycket begränsat antal fullblod som undersöktes skulle detta vara intressant att studera detta vidare.

Vissa av de äldre studierna visade en generell övervikt mot hyperopi (Bayer, 1906). Islandshästar var den enda rasen som visade det i denna studie. Även här kan man spekulera i om det har med aveln att göra då islandshästar har en speciell levnads- och avelssituation. Det kan gynna hästar att vara lätt översynta då de lättare och snabbare skulle kunna upptäcka rovdjur etc i öppna landskap. Det skulle kunna vara så att vi avlar bort god synförmåga hos dagens hästar eftersom flyktinstinkt och uppmärksamhet för eventuella faror inte är önskvärda egenskaper hos våra hästar.
Vid jämförelse med Duvals studie från 1976 är inte resultatet så avvikande från vår studie. Den har dock en något högre andel emmetropa hästar. Däremot vid jämförelse av de äldre studierna från slutet av 1800-talet, Bayer (1906), fann vi att dagens hästar generellt sett ser sämre, andelen emmetropa hästar var lägre i denna studie än i de äldre studierna. Även andelen hyperopa hästar var mindre. Däremot var andelen myopa hästar större i denna studie än i de gamla studierna. Orsaken till detta kan det spekuleras i om det har att göra med hästaveln som gör att hästarna ser sämre eller om det finns helt andra orsaker till resultaten. Fortfarande är det ändå emmetropa hästar som är vanligast.
Litteraturförteckning

Bilagor

Bilaga 1, djurägarmedgivande till skiaskopi

UNDERSÖKNING AV ÖGATS BRYTNINGSFÖRMÅGA
HOS HÄST

Bakgrund
Vi har sporadiskt sett hästar som har brytningsfel (närsynta, långsynta eller astigmatiska). I enstaka fall är brytningsfelet så kraftigt, så att det kan misstänkas påverka hästens funktion. Vi vill nu undersöka en grupp svenska hästar utan kända synproblem för att få en uppfattning om hur vanligt förekommande brytningsfel är bland hästar som används för dressyr, hoppning, lektionsverksamhet och trav.

Undersökning

Undersökningsformen har även använts kliniskt under många år och ger inga kvarstående problem eller skador på ögat.

Det insamlade undersökningsmaterialet kan komma att användas i vetenskapliga publikationer. Alla resultat kommer då att redovisats utan att hästarnas eller ägarnas identitet röjs.

Kontaktpersoner
Kontaktpersoner som kan svara på frågor i samband med undersökningarna är veterinär Björn Ekesten (tfn. 018-67 29 50) och veterinärstudent Sofia Östberg (tfn. 070-7333967).

Godkännande
Jag godkänner härmed att min häst får deltaga i en undersökning av ögonens brytningsförmåga. Jag har förstått att materialet kan användas i vetenskapliga publikationer.

Uppsala, 2006-__-__

Djurägarens/vårdnadshavarens underskrift