A holistic assessment of the use of teak at a landscape level in Luang Phrabang, Lao PDR

Thongsavanh Keonakhone

Supervisors: Minh Ha Fagerström
Ingvar Nilsson
Mats Olsson
Nguyen Cong Vinh
MSc thesis

Sveriges lantbruksuniversitet
Institutionen för markvetenskap
Avdelningen för markkemi och jordmånslära
Examens- och seminariearbeten Nr 75

Uppsala 2006
ISSN 1102-1381
ISRN SLU-MLE-EXS--75-SE

Preface

This study was conducted at the Departments of Forest Soils and Soil Sciences, Swedish University of Agricultural Science (SLU), National Agriculture and Forestry Research Institute (NAFRI), Lao PDR and National Institute for Soils and Fertilizers (NISF), Vietnam. The study is a part of a project called: Sustainable Land Use Practices for the Uplands of Vietnam and Laos: Science and Local Knowledge for Food Security (LUSLOF).

My supervisors were Professor Mats Olsson, Department of Forest Soils; Professor Ingvar Nilsson, Dr. Minh Ha Fagerström, Department of Soil Sciences, SLU, and Dr. Nguyen Cong Vinh, at the National Institute for Soils and Fertilizer (NISF) Vietnam. MSc. La Nguyen and MSc. Nguyen Due Phuong gave much support during my Minor Field Study (MFS) as well as in the data analyses of this thesis work.

This report was made using data, which were gathered during the field work in 2005 by the author, as well as data from the field work carried out by the whole LUSLOF Lao team since 2003. Data on the effects of pruning and thinning on teak growth were gathered in four experimental sites in four villages from 2002 to 2004. All data presented in this thesis are published with the kind permission of the LUSLOF project through Dr. Minh Ha Fagerstrom, the LUSLOF coordinator and the LUSLOF-Lao project team.

Table of contents

1. Introduction 5
2. Background with Literature Review and Objectives 6
2.1. Teak and environment 6
2.2. Soil-plant interactions with respect to Teak
2.3. Socio-economic aspects of Teak 9
2.4. Teak management 12
3. Materials and methods. 13
3.1. Study sites 13
3.2. Methods 17
4. Results. 19
4.1. The impact of the pruning intensity on teak growth at site I (Lathahae) and site II (Had Soa) 19
4.2. The impact of the thinning intensity on teak growth at site III (Pak Check) and at site IV (Houay Leuang) 23
5. Discussion and Conclusions 27
6. Recommendations for further work 30
7. Acknowledgements 31
8. References 32
9. Appendices 35

Abstract

Teak (Tectonia grandis) plantation establishment in Lao PDR started in 1942, and has strongly increased since 1980. The total area of teak plantations in the Luang Phrabang province is estimated at 5587 hectares. Pak Ou district is one of the most important areas with teak plantations in the Luang Phrabang province. An attempt was made by the Teak Research Station in Luang Phrabang to test effects of technologies such as thinning and pruning on teak growth during a 2-3-year period during 2002-2004. This thesis work aims at evaluating the effects of these forestry practices from both bio-physical and socio-economic aspects.

A literature survey was made to compile information about nutrient element demand, nutrient cycles and problems related to insects and fungi in teak plantations. Pruning and thinning and their effects on teak growth were monitored and analysed. The socio-economic aspects, such as the role of teak forestry in the farmers' household economy and the market flow of teak, were also studied.

The socio-economic data collection was carried out in four villages in the Pak Ou district. The village headmen and owners of teak in the experimental plots provided the history and general information about the villages relevant for this study. The bio-physical data, i.e. the tree growth variables diameter at breast height (DBH), commercial tree height and total (top) tree height were analyzed with ANOVA assuming pseudoreplication to compare mean annual increments of teak growth between different treatments at the four sites Lathahea, Had Soa , Pak Check , and Houay Leuang.

The results show that thinning and pruning increased teak growth. Pruning was applied at 50%, 60% and 70% combined with thinning at 25%, and control plots were left untreated. Thinning was applied at 25% and 50% and according to farmers' practice, in combination with pruning to 60% of total height, and control plots were left untreated. The results suggested that pruning should be applied at a rate between 50 and 60%, and that thinning should be applied at 25 to 50%.

Teak played an important role for the farmers, because they got a high income when selling the timber to local and outside traders. Teak accounted for 27,15 and 14% of the total household income for the wealthy, middle and poor groups, respectively. The market channel of teak production for most growers went via local and outside traders, and teak growers could not access the wood processing units directly. It was estimated that 99% of the teak logs in a village were bought by outside traders and only 1% by a local trader. The export was estimated at about 95% of the teak wood produced. The remaining 5% of teak logs were used locally as teak residues obtained after pre-processing in the Wood Processing Units.

In order to have a positive effect on farmers' living standard, teak may need to be produced more efficiently to be marketable. The income from teak was ranked as the second one of importance for the inhabitants of the Pak Check, Houay Leuang, Lathahae and Had Soa villages.

Key words: Teak, growth rate, effect, thinning, pruning, ANOVA, Laos, Luang Phrabang.

1. Introduction

1.1 General information about Lao PDR

Lao PDR occupies a relatively large area of $236,800 \mathrm{~km}^{2}$, and is predominantly a mountainous and land-locked country. It shares borders with China in the north, Myanmar in the northwest, Thailand in the west, Cambodia in the south and Vietnam in the East. In Lao PDR water for hydropower and timber are the principal natural resources. Approximately 3% of the area is used for agriculture with rice as the main crop. Fallow land in slash-and-burn systems may account for another 6-10\% of the total land area. Lao PDR has a small population of approximately 5.1 million people (Pravongviengkham, 2002). About 83% of the population is rural and 66% of the people depend on subsistence agriculture (Roder, 2001). The population is ethnically diverse with more than 60 ethnic groups (Stuart-Fox, 1986). Based primarily on ethnic, linguistic, and geographical characteristics, ethnic groups have been divided into three broad categories: Lao Loum (Lao of the lowlands), Lao Theung (Lao of the mountain slopes), Lao Soung (Lao of the mountain summits). All major ethnic groups of the country depend to some degree on upland agriculture in proportion to their total numbers. Lao Theung and Lao Soung farmers are more likely to live in hilly areas. Although, all ethnic groups are engaged in slash-and-burn agriculture, it is very common to hear that it is "the ethnic minorities" (groups other than Lao Loum) or the "ethnics" that live from slash-and-burn agriculture and destroy the forest areas. Lao PDR, is poor by Asian standards with a per capita GDP estimated at 390 USD per year in 2002 (Pravongviengkham, 2002). Especially the mountainous areas are marginalized and have a high incidence of poverty, low per capita income, predominantly within the agricultural and rural sectors and scarce availability of social and economic infrastructure.

Forestry is an important sector in Lao PDR. Forests covered 70\% of the area of the country in the 1940's and decreased to 47\% in 1989 (Sodarak, 2000). The deforestation was mainly caused by shifting cultivation, which included clearing of forest areas by slash and burn. The shifting cultivation in the uplands of Lao PDR was a well adapted and sustainable farming system for centuries but has lately become a major problem, caused by overuse of forest land due to an increase of the population. The fallow periods have been shortened, leading to an increase in weed abundance, soil degradation, and lower crop yields (see e.g. McAllister et al., 2000).

The government of Lao PDR has recognized the agriculture and forestry sectors as the backbone of the national economy. Therefore the organization of the protection and maintenance of forests including reforestation is a major concern. The government policy is to allocate land to farmers and to forest protection (Souvanthong et al., 1995). In connection with the forestry policy in Lao PDR, teak has been introduced since 1942, and the teak area has increased markedly since 1980. It is estimated at 8000 ha in the whole country of which about 2000 ha consist of stands older than 30 years (Southitham et al., 2001).

This MSc thesis is part of an assessment of the sustainability of teak forestry at a landscape scale. Sustainability means maintained and secure productivity, protection of the environment as well as maintained social values. The thesis is a part of the project named 'Sustainable Land Use Practices for the Uplands of Vietnam and Laos: Science and Local Knowledge for Food Security (LUSLOF). The LUSLOF project aims at the development of sustainable land use at selected study sites in Vietnam and Lao PDR (Hoang Fagerstrom et al. 2004). The project is carried out by an international team from the Swedish University of Agricultural Sciences (SLU), National Agriculture and Forestry Research Institute (NAFRI) Lao PDR, National Institute for Soils and Fertilizers (NISF), Vietnam and World Agroforestry Centre (ICRAF). It is funded by the Rockefeller Foundation (RF).

The field work of this MSc thesis was carried out 2002 - 2005, as a part of the LUSLOF fieldwork in Lao PDR.

1.2 KBS Approach

A Knowledge Based System (KBS) approach has been tested, whereby local and scientific knowledge were combined to develop land use options, at Dong Cao catchment, Luong Son district in the Hoa Binh province, Vietnam and in Pak Check and other villages in the Pak Ou district in Luang Phrabang province, Lao PDR (Hoang Fagerstrom et al., 2004). When searching options other than the short - fallow crop rotation in the upper part of the landscape, a combination of Participatory Landscape Analysis (PaLA), Local Ecological Knowledge (LEK), Participatory Household Economy Analysis (PHEA) and modelling was regarded as suitable. People in the lower part of the landscape have made efforts to find several useful innovations. Therefore it was important to investigate how much the lowland options could compensate for the loss from not planting upland rice in the upper parts of the landscape, and instead concentrate on teak plantations (LUSLOF project report, 2003).

2. Background with Literature Review and Objectives

2.1. Teak and environment

Teak (Tectonia grandis) has its natural distribution in limited regions of South and Southeast Asia (Tanaka et al., 1998). In Lao PDR teak is found in the north-western part of the country along the northern border to Thailand and Myanmar. It is one of the valuable tree species in tropical regions of the world (Kaosa-ard, 1999). The area used for plantations varies greatly between different countries. It comprised 159,000 ha in Thailand (Varmola, 2002), 700,000 ha in Indonesia (Tanaka, 1998), 139,000 ha in Myanmar (Varmola, 2002) and 40,000 ha in Costa Rica (Cordero, 2002). More than 90 percent of the 1990 total area of teak plantation in the world was located in Asia. The total area of teak plantation in the world increased to 1.7 million ha in 1980 and 2.2 million ha in 1990 (FAO, 1995).

Luang Phrabang is a mountainous province located in the Northern part of Lao PDR, where teak has been planted more than in other provinces, by both the state and the farmers. So far, the total teak area of Luang Phrabang is about 5,587 ha of which 89 \% belongs to the farmers (Southitham, 2001). It is planted on hill slopes and along roads, rivers and footpaths. It is also planted near paddy fields and in home gardens (LUSLOF fieldwork report, 2003).

An increasing proportion of teak coming from plantation forests may circumvent some environmental controversies but sometimes attract others. Teak is a pioneer species and as such is generally susceptible to competition from other plant species. Cleaning undergrowth and debris may assist teak growth in the short-term, but almost inevitably at the cost of long-term site degradation (Kaosa ard, 1981). A Minor Field Study (MFS) was carried out in Luang Prabang in early 2005 to study soil characteristics under teak. (Keonakhone, 2005).

The existing teak plantations in the Luang Phrabang province seem to have a positive impact on the environment. Luang Phrabang has presently a low forest cover. Therefore, more forest cover than shifting cultivation areas would be a good sign of improvement of the environment. Planting more teak in areas, where there is a lot of shifting cultivation practiced would enhance the value of the area presently covered by fallows.

2.2. Soil-plant interactions with respect to Teak

The species and its general site requirements

Teak was previously believed to belong to the family Verbenaceae but recently scientists have questioned this classification based on the use of modern DNA-technique. Probably teak will be placed in the family of Labiatae within short (Teaknet, 2005).

Teak grows when the monthly minimum temperature is above $13^{\circ} \mathrm{C}$ and monthly maximum temperature is below $40^{\circ} \mathrm{C}$. Optimal rainfall for teak ranges between 1250 and 3750 mm per year. For the production of good-quality timber the species requires a dry season of at least four months with less than 60 mm precipitation per month (Kaosa-ard, 1981). Teak has proved to grow well in day temperatures ranging from 27 to $36^{\circ} \mathrm{C}$ and night temperatures ranging from 22 to $31^{\circ} \mathrm{C}$. In order to determine whether a site is good or bad for teak plantations, Tanaka et al. (1998) claim one should consider the following factors: 1) climate, 2) edaphic factors such as geology, topography and soil and 3) Factors on a plant community level such as light, moisture conditions etc. In order to identify sites that fulfil the requirements for good teak growth in accordance with the stated three factors, one can use either of two methods. The first method is the establishment of a trial plantation, which is time consuming but normally gives an easily interpreted result. The second is the so-called plant indicator method where one uses species such as Lagerstroemia calcylata, Xylia dolabriformis or Bambuseae spp., all of which have similar site requirements as teak but have a much more rapid growth (Tanaka et al., 1998).

According to Kaosa-ard (1981), teak can grow on a variety of soils. However, the quality of the biomass depends on the soil depth, structure, porosity, drainage and moisture-holding capacity. Teak develops best on deep, well-drained and fertile soils, especially on volcanic substrata and on alluvial soils formed from various parent materials. The optimal soil pH for teak is between 6.5 and 7.5. The calcium content of the soil is also an important factor. Calcium deficiency may result in stunted growth (Tewari, 1992).

Plant nutrition and fluxes of organic matter and organic carbon

Cleaning of undergrowth and debris (litter raking) may stimulate teak growth in the short term, but will almost inevitably cause a long-term site degradation. In practice the "cleaning" exposes the soil to wind and water. Litter raking and excessive burning, may particularly exacerbate erosion and leaching problems in such teak plantations that have a wide tree spacing and are prone to leaf drip Kaosa-ard (1981).

Kumar et al. (1998), found that intercropping of teak with Leucaena sp. in India affected the soil properties. Soil organic C in the topsoil layer ($0-30 \mathrm{~cm}$) varied across the southwest monsoon, inter monsoon and northeast monsoon periods. The total N content of the soil increased with increasing relative proportion of Leucaena and available P levels were highest in teak-Leucaena plots, while available K levels were highest in the teak-Leucaena mixture and in pure Leucaena plots. For teak it has been previously reported that wide seasonal variations occur in fine root biomass indicating a significant accumulation and disappearance pattern of fine root biomass. Soil organic C increases after the onset of the southwest monsoon and may continue until the dry summer when soil moisture availability limits fine root growth (Srivasthava et al., 1986).

Kraenzel et al. (2001), studied the C storage of harvest-age teak plantations in Panama. The biomass and C concentration of the teak tissues were obtained by weighting the different tissue types by the proportion of the total tree biomass, and assuming that the C concentration of the dry biomass was 49.5%. The mean C storage in the tree roots, with root sizes varying between coarse roots ($>5 \mathrm{~mm}$ diameter) and fine roots ($<5 \mathrm{~mm}$ diameter) was $15.7 \mathrm{t} / \mathrm{ha}$, while the mean C stock in
above ground standing biomass was $104.5 \mathrm{t} / \mathrm{ha}$. The mean total tree C storage at the plantation level was $120.2 \mathrm{t} / \mathrm{ha}$. The dry mass of litter which accumulated during the dry season in the teak plantations was $7.9 \mathrm{t} / \mathrm{ha}$, with a C content of $3.4 \mathrm{t} / \mathrm{ha}$.

In an evaluation of a site quality index for teak plantations in Thailand (Sakurai et al., 2002) average values of soil chemical data in the surface and subsurface layers, indicated that the growth of teak would be better than Eucalyptus and several other native tree species on acidic and less fertile soils with a hard surface layer. Among four exchangeable cations, only Mg seemed to promote the tree growth. The C and N contents did not seem to yield a positive effect on growth. C and N did not accumulate in these soils. One reason could be that teak leaves are big in size and do not always stay on the ground when shedding. One should notice that the statement that teak grows better on acidic and nutrient poor soil is in conflict with Kaosa ard (1981).

In connection to the C and N behaviour described above it could be mentioned that Roder (2001), who studied rice-fallow systems found a downward trend for total N and organic C over the entire cropping and fallow period, possibly indicating substantial losses of C and N to the atmosphere, biomass uptake combined with harvest of N and/or soil losses. On an average, losses over a period of 3 years represented 20% of the total soil organic C and 8% of the N content in soil (in a 1 m deep profile). While the loss in the initial year occurred largely in the top soil layer, it was more significant at greater soil depths during the following years. There was a higher level of organic C in the deeper layers and the trends were similar for all sites with total C losses over $49 \mathrm{tha}{ }^{-1}$.

Morphology and phenology

According to a study in Tiripati, India, the teak species comprises at least two different phenotypes. The differences between the phenotypes are found in their leaf length/breadth ratio and they are called broad-leaved (BL) and narrow-leaved (NL) phenotypes (Rajendrudu, Naidu and Malikarjuna 1977). The same phenotypes also occur in Lao PDR (Syanuvong pers. comm. 2005).

According to a study performed in India made on three different localities (Priya \& Baht, 1998) a mature tree shows the annual phenological sequence displayed in Table 1.

Table 1: Phenology of teak in India (Priya \& Baht, 1998)

Month	Phenomena
December-January	Leaf Fall
February	Leafless
March-April	Leaf emergence
May	Full foliage
June	Full foliage + flowering
July	Full foliage + flowering + fruit set
August-October	Full foliage
November	Beginning of leaf fall

According to Syanuvong pers. comm.. (2005), the flowering occurs in July throughout August and the trees normally start flowering at the age of ten years. However, in Lao PDR some trees flower and bear fruit already at the age of three to five years but then the seeds are often of poor quality. According to Kadambi (1972), teak in Uttar Pradesh, starts to produce seeds as early as at four years. However, the seed viability at that age is only 4 percent. This should be compared with seeds from 23-year-old trees, which have a viability of 18 percent.

Effects of insects and other pests

According to Kim (2004), there are at least two different insect larvae in Luang Phrabang province which attack teak trees, one that eats the leaves (Hyblaea puera) and one that eats the cambium, (Psilogramma spp.) Both larvae have a negative impact on tree growth and quality. Rats as well as termites (Isoptera) can attack the roots, thus decreasing the tree's ability to get nutrients and water and eventually this will kill the tree. Also wind and frost can cause damage to the trees; the former in windy regions and especially in trees with poorly developed roots, the latter affects young shoots at high altitudes where the temperature is low during winter. Other pests of teak seedlings are some orthoptroriods, aphids, mites, thrips, coccids, bark beetles, leaf beetles, ants and snails.

Mycorrhiza

According to Rajan et al. (1998), the Arbuscular Mycorrhizal (AM) fungi form a ubiquitos group of soil fungi colonizing the roots of plants belonging to more than 90% of the plant families. Teak plants grown in the presence of AM increase in plant growth variables such as plant height, stem girth, leaf area and total dry weight, compared to those grown in soils that are not inoculated with AM fungus. The mycorrhizal inoculation increases the phosphorus content of the teak plant. The enhancement in growth and nutritional status is also related to the percent root colonization in soil apart from several other soil and environmental factors.

2.3. Socio-economic aspects of Teak

2.3.1 Teak in the household economy

The final survey of the LUSLOF project in Laos was carried out in January, 2005. The objective of this survey was to investigate constraints and possibilities of scaling up improved management of teak through studies of the teak market, household economy and relationships between trees and soil in teak plantations. In this survey, the household economy was studied in the four villages Pak Check, Houay Leuang, Lathahae and Had Soa in the Pak Ou district. Based on wealth ranking and data collected from interviews, the middle group of households with respect to wealth accounted for $49 \%, 81 \%, 90 \%$ and 63% of the income in the four villages. The income per capita of those people was 369, 268, 353 and 249 USD per year (LUSLOF fieldwork report 5, 2005). The middle income in the studied villages was lower than the GDP reported for Laos (390 USD per capita per year) in 2002 (Pravongviengkham, 2002).

Among the four studied villages Pak Check was the oldest one, which was established already in 1753 (McAllister et. al., 2000). According to the village leader teak had been present on their land for about three generations. Farmers in the village used teak for house construction, sale and barter. For these reasons the Pak Check village was chosen for the analysis of the role of teak in the household economy

Table 2: Income from rice, teak, bamboo and other plants as a percentage of total income from farm production in Pak Check village.
(These data come from interviews of 24 farmers in Pak Check in 2005, LUSLOF fieldwork report 5 , 2005)

Group	Percentage (\%)				
	Rice	Teak	Bamboo	Other	
Wealthy	35	52	5	8	100
Middle	33	45	5	17	100
Poor	57	26	3	14	100

Table 2 shows that teak took the second position in the poor group (26%) with respect to total income from farm production. This was not the case in the wealthy and middle groups where teak took the first position and accounted for 52 and 45%, respectively.. It seemed to be in the poor group, that farmers used most of their land to grow rice and other crops for home consumption.

Rice also accounted for an important part of the total household income of the poor group as it made up 32% (Figure 1). This was higher than the income from teak (14\%). The ranking of income sources was different in the wealthy and middle groups. The income from rice in these groups accounted for 18% and 13%, respectively of the total household economy. The income from teak was higher and accounted for 27% and 15%, respectively.

Figure 1: Production of rice, teak, bamboo and other plants as a percentage of the total
 household income (Luslof fieldwork report 5

Market channels of teak

Teak was sold to local and national markets. We assumed that the character of the market flow may have an impact on the farmers' income from selling teak. Therefore a study was done by the LUSLOF team concerning the teak market flow. The flow chart (Figure 2) shows that products from most of the teak growers were sold via local and outside traders, because the teak growers could not access wood processing units directly. It was is estimated that 99% of the teak logs in a village were bought by outside traders and only 1% of the teak logs were bought by a local trader.

Figure 2: Marketing channel of teak logs in Luang Phrabang province, Lao, PDR (LUSLOF fieldwork report 5, 2005)

The export was estimated at about 95% of the teak wood produced. Five percent of the teak logs were used locally as teak residues obtained after pre-processing in the wood processing units. Of these $5 \%, 3 \%$ (in absolute numbers) were sold to small sellers and 2% were used for making furniture in Luang Phrabang.

According to Syanuvong pers. comm.. (2005), about 50% of the square teak logs were exported to Thailand, 40% to Vietnam and 10% to China. The change of the teak log price from producers to traders and then to Wood Processing Units (WPU) was large. The income of the teak growers was lower than the economic potential of teak products because farmers could not access the WPU and sell their products directly. The major problem was that the teak growers had not enough resources in terms of labour, equipment and means of transportation to first harvest teak, and then transport the logs to a WPU. Therefore, marketing of teak in the Luang Phrabang province was made by floating on rivers and depended on the demand of the WPU and the export market (LUSLOF fieldwork report 5, 2005).

Southitham (2001), found that there were two steps associated with the purchasing of teak in Luang Phrabang. Firstly, buying teak from plantations was handled by a buyer and a teak owner (a farmer); secondly, round wood and square logs were produced, then sold to wood processing units and factories. A price based on standing teak has been practised in Luang Phrabang, but the price of teak can be negotiated between owner and buyer. For example, a standing teak tree with a dimension of 90 cm circumference (or about 28.7 cm in diameter) at breast height has the price of 90,000 Kip (USD 9.4) per tree, and if the circumference is 100 cm (or about 32 cm in diameter) at
breast height its price is 100,000 Kip (USD 10.5) per tree. The price of round logs with an average diameter greater than 25 cm for example, is about 1,700,000 Kip or about USD 180 per cubic meter. The price of square logs differs depending on the diameter. For example, the price of square logs with a diameter of less than 15 cm is about 1,500,000 Kip (USD 158) and if the diameter is greater than 15 cm the price is about 2,000,000 Kip (USD 210).

Better techniques that can improve the quality of the teak wood products may bring a better income to the local farmers.

2.4. Teak management

Plantation management

According to Kaosa-ard (1986), initial planting density is generally between 1200 and 1600 plants per hectare. The spacing and number of trees, as well as timing and intensity of the thinning strongly affect the pattern of growth and the yield of the plantation. If thinning is practised late during the stand development, the growth rate declines or ceases, whereas if the stand is thinned too early or too heavily, the trees have a greater tendency to produce side branches and epicormic shoots. This also reduces the potential yield of the plantation since growth is diverted from the main stem, which should be free from defects such as those caused by side branches and epicormic shoots. The timing of the first thinning is often determined by the height of the trees and is commonly carried out when the trees reach 9.0 to 9.5 meters. The second thinning may be carried out when the trees reach 17 to 18 meters. Since teak has a very good coppicing ability the next tree generation will come by coppice and the original root system can support up to four teak generations before a completely new tree has to be planted.

According to Southitham (2001), teak plantation management regimes vary between and within countries, mainly according to site-specific conditions and prevailing markets. Typically, however, it is recommended that initial stocking rates should be in the range of 1000 to 2000 stems per hectare to allow for early mortality rates and to provide an opportunity for selecting the better individuals during thinning operations. Partially depending on the intensity of planting, an initial thinning should be considered as soon as the branches of a tree start to make contact with those of surrounding trees; this may occur when the plantation is four to five years old and the intensity of tree removals may be as high as 50 percent of the initial stocking. A second thinning may follow at about the age 10 to 15 years, and a final thinning at around 15 to 20 years. Again depending on market requirements and other factors, an ideal final stocking is likely to be around 200 to 300 stems per hectare, or approximately some $300 \mathrm{~m}^{3}$ of wood. Management practices may vary significantly, however, depending on whether teak is grown on short or long rotations.

Productivity of teak

The productivity of teak plantations has been studied across a broad range of countries through permanent sample plots. The earliest yield table for teak was constructed by von Wulfing (1932) for plantations on Java, Indonesia. Laurie and Ram (1939) constructed a yield table for teak plantations distributed over present-day India, Myanmar and Bangladesh. More recently, yield tables have been developed using data from permanent and temporary sample plots for plantations of teak established outside its natural range, including provisional yield tables for Trinidad and Tobago (Miller, 1969), Côte d'Ivoire (Maitre, 1983), Nigeria (Abayomi, 1984) and Sri Lanka (Phillips, 1995).

The densities of teak plantations (Spacing, thinning and pruning)

According to Kaosa-ard (1986), initial spacing of teak plantation varies from $1.8 \times 1.8 \mathrm{~m}$ to $4 \times 4 \mathrm{~m}$ depending on many factors such as site quality, cost of establishment, thinning regime, small wood utilization, planting system etc. However, site quality seems to be the priority factor determining the size of spacing in teak planting programs. The result of 12 year-old spacing trials, with spacing of 2 $\mathrm{x} 2,3 \times 3,4 \times 4$ and $6 \times 6 \mathrm{~m}$ in Thailand clearly demonstrated how the effects of initial spacing on growth, stem quality and weed control in teak plantations vary with different site conditions. Under dry site conditions, where the initial growth rate of the plantation was poor (The height growth was <1.00 metre per year), the close spacing 2×2 metre was most suitable. These plantations' were thinned about 10 times until the age of 60, which left between 100 and 150 trees/ha. Final felling was conducted at an age of 80 and the average yield was about $170 \mathrm{~m}^{3}$ per hectare.

According to Hansen et al. (1997), teak trees can be harvested at an age of twenty years but the quality will improve if one lets them grow until they are $30-40$ years old. After 40 years the heartwood is believed to rot but that is an observation which is not supported by any known scientific study. In Luang Phrabang province, the average age for teak harvest is 21 years. Probably this is due to the fact that the minimum diameter required by sawmills is 20 cm at breast height.

Objectives:

The overall objective was to assess the sustainability of teak plantations at a landscape scale, using a Knowledge Base System (KBS) approach.

The specific objectives of the study were:

1.) To review and understand the teak - soil interactions (see above).
2.) To analyze the effects of pruning and thinning on growth of teak
3.) To analyse the potential improvement of farmer income due to the use of pruning and thinning techniques i.e. the KBS approach.

3. Materials and methods

3.1. Study sites

The four villages in the Pak Ou district, Luang Phrabang province, which were studied with respect to their household economy were also selected for studying the growth effects on teak by thinning and pruning. The province has a total area of more than 2 million hectares. Most of the land (about 85%) is mountainous. The altitude varies from 250 to 1600 m above sea level. The total population of the Luang Phrabang province was 412100 people in 2000 with an annul growth rate of 3%. People who live in the province belong to the ethnic groups Lao Loum (lowland; 38.7\%), Lao Theung (highland; 45.1\%) and Lao Seung (midland; 16.2 \%). About 16000 people lived in the city of Luang Phrabang in the year 2000. More than 60% of the population are still shifting cultivators (Pradichit, 2002).

Figure 3: Location of study sites in Pak Ou district, Luang Phrabang, Lao PDR (IUARP, 2000)

The Pak Ou district has an area of approximately 196,000 hectares and a population of 21615 people divided into 3663 families. It contains 75 villages and its main road of transportation is the 30 kilometre long 13 -north road, which runs along the Nam Ou River. Pak Ou is a rural area with the Pak Ou town, consisting of the two villages Somsanuk and Hadnga, as the most densely populated area. The four target villages belong to the IUARP project area.
The order of the villages from North to South is Houay Leuang, Had Soa, Pak Check and Lathahae. They are situated at altitudes varying between 250 and 300 m above sea level.

Table 3: General information about the four villages.

	Houay Leuang	Had Soa	Pak Check	Lathahae.
Household	57	59	121	105
Population	319	265	638	576
Total area (ha)	791	994	2,429	1,708
Teak plantation (ha)	5	8	14	8

The climate is of the monsoon type with a mean annual rainfall of 1309 mm during 1992 - 2004, with a maximum of 1830 mm in 1998 and a minimum of 945 mm in 1997. The mean annual temperature is $25.5^{\circ} \mathrm{C}$ with the annual minimum of $24.1^{\circ} \mathrm{C}$ in 2004 , and the annual maximum of $26.6^{\circ} \mathrm{C}$ in 2003 (Pak Ou meteorological station, 2005). The wet rainy season in Lao PDR is from May to October, the cool dry season from November to February, and the hot dry season during March and April.

Figure 4: Monthly average rainfall and temperature at Pak Ou during 1992-20 04. (Source of data Pak Ou meteorological station, 2005)

3.2. Methods

3.2.1. Comments about the literature review:

The main focus of the literature review was to find relevant information related to the proposed study to be carried out. This means that similar studies conducted in Lao PDR or other relevant countries were looked for. Generally, there are a number of previous Minor Field Studies conducted in Luang Prabang on various aspects of teak management as well a number of reports from Swedish projects working in the uplands of Laos.

Literature was reviewed for specific questions related to teak such as: soil-teak interactions, site requirements, plant nutrition, teak morphology and phenology, teak management, teak productivity and effects of insects and pests as well as effects of mycorrhiza
and intercropping on teak productivity.
The following websites were consulted:
www.teaknet.com. Natural distribution and densities of teak. (28 April.2005). www.library.wur.nl/prosrom/tecona.html. The growth of teak roots. (5 May. 2005). www.elisevier.com/locate/foreco. Forest Ecology and Management. (3 May. 2005).

3.2.2 Description and data collection of the teak experimental sites

Based on the information given in the villages, they had teak plantations which were 6-10 years old. The present study was conducted in 8 -year-old teak plantations. There were four sites (site I at Lathahae, site II at Had Soa, Site III at Pak Check and site IV at Houay Leuang).

3.2.2.1. Field experiment

Field experiments were set up with 4 treatments in each village as follows:
First experiment: The effect on the growth of teak of pruning combined with constant thinning was tested at site I (Lathahae) and site II (Had Soa). The pruning and thinning were carried out in 2002, and impacts on stand development were measured during 2002-2004. In this and the following experiment, the percentage figures for pruning refer to the length of the stem that was pruned and the percentage figures for thinning refer to the number of removed trees in each tree row (Table 1.1 and 1.2 in Appendix 1). The area of each treatment (plot) was 0.05 ha, the total area of the four treatments was 0.2 ha at each site, and the tree spacing was $2 \times 2 \mathrm{~m}$. The total number of trees was 2500 per ha.

Treatments:
TP 1: Pruning 50\% and thinning 25\%
TP 2: Pruning 60% and thinning 25%
TP 3: Pruning 70\% and thinning 25\%
TP 4: Untreated
Second experiment: The effect on the growth of teak of thinning combined with constant pruning was tested at site III (Pak Check) and site IV (Houay Leuang) The thinning and pruning were carried out in 2003, and stand development measurements were done during 2003-2004 (Table 1.3 and 1.4 in Appendix 1). The area of each treatment (plot) was 0.04 ha, the total area of the four treatments was 0.16 ha at each site and tree spacing was $2.5 \times 2.5 \mathrm{~m}$. The total number of trees was 1600 per ha. In treatments TT1 and TT2 thinning was done subjectively, i.e. trees were cut depending on their size, shape or condition. Farmers' practice meant that the farmers used their knowledge and experience to improve their teak plantation. In this study the farmers removed about 10% of the teak trees. They cut the seemingly poor trees which were obviously attacked by pests and/or showed disease symptoms. They also cut trees whose stems were crooked or forked.

Treatments:

> TT 1: Thinning 25% and pruning 60%
> TT2: Thinning 50% and pruning 60%
> TT3: Thinning according to farmers' practice and pruning 60%.
> TT4: Untreated

3.2.2.2. Tree measurements

All trees in a study plot were measured with respect to the total height called TH, and the height to the first branch, called the commercial height (CH), both expressed in m . The diameter of the tree stems in cm was measured at breast height (DBH; 1.30 m above the forest floor). DBH was measured with a measuring tape, and total height and commercial height with an expandable measuring stick starting from the ground (forest floor).

The measurements were made by researchers together with the farmers who owned the teak plantations. At sites I and II measurements were done in March 2002 before the treatments were made, and thereafter once a year in March 2003 and June 2004. The data collection at sites III and IV was carried out the first time in July 2003 before treatments were made and the second time in July 2004. The latter time period included one full growing season for the trees. The data collection is detailed in Appendix 1.

3.2.2.3. Thinning and pruning

The thinning and pruning were done together with the farmers. At sites I and II thinning (25\%) was made before the pruning. The control (TP4) was left untreated. At sites III and IV pruning (60% of the tree height) was done before the thinning and the control (TT4) was left untreated.

In all stands, the second thinning will be a selection thinning which will take place 7 years after the first thinning. On that occasion, trees which show disease symptoms, or are suppressed or do not have a good tree form (forked trees) will be selected for cutting (Appendix 1).

3.2.2.4. Data Analysis

The data collected during the yearly inventories were used to show the development of the stand variables diameter at breast height (DBH), commercial height (CH) and total height (TH). To compare data from different management treatments at an experimental site, average values for CH , TH and DBH were calculated for each treatment. These mean values were used to get the mean annual growth increment per unit area (m^{3} per hectare) in terms of the total or commercial stem volume.

At each site, the data were analysed by one-way analysis of variance (ANOVA) assuming pseudoreplication. The measurements were made on individual trees which had been planted in rows. Sets of rows were the experimental units (pseudoreplicates) in the ANOVA analysis as there was only one plot per treatment in each experiment. Each pseudoreplicate consisted of 3 adjacent rows of trees. Three such pseudoreplicates in each plot were used for the calculations. The ANOVA analyses are presented in the Appendix.

4. Results

4.1. The impact of the pruning intensity on teak growth at site I (Lathahae) and site II (Had Soa).

The impact of the pruning intensity on the growth of teak at site I (Lathahae)
Before the treatments started in 2002, the mean diameter (DBH) (Table 4) at site I (Lathahae) varied from 8.61 to 9.56 cm . One year after pruning and 25 \% thinning (in 2003), the mean increment of DBH was 2.38 cm at 50% pruning, 2.61 cm at 60% and 2.17 cm at 70%.The mean increment of the untreated plot was 1.47 cm . In 2004, the measurements were made in June instead of March, i.e. just after the peak of the annual shoot growth. The increments of the pruned treatments during 2002-2004 were 4.23 cm (50\%), 3.92 cm (60%) and $4.01 \mathrm{~cm}(70 \%)$. The increment of the untreated plot was 2.94 cm . In 2003-2004 the diameter growth was thus 1.9 cm (50\%), 1.3 cm (60\%), 1.8 cm (70\%) and 1.5 cm (untreated plot). For the whole period 2002-2004 the increments in TP1, TP2 and TP3 were significantly higher than in TP4 (untreated plot). Thus there seemed to be a treatment effect. By pruning small branches at different heights, the relative increment of the diameter was 47.6-77.6 \% during the first year (2002-2003), and 33.3-43.9 \% during 2002-2004. (two years).

Table 4: The effects of pruning on diameter growth at site I (Lathahea)

Treatment	Diameter at breast height, cm			Mean diameter increment, cm		Relative increment effect*		Basal area, m ${ }^{2}$ per tree		
	2002 (Before treatment)	$\begin{aligned} & 2003 \\ & \text { (1 year) } \end{aligned}$	$\begin{gathered} 2004 \\ (2 \text { years }) \end{gathered}$	$\begin{gathered} 2002- \\ 2003 \\ (1 \text { year }) \end{gathered}$	$\begin{gathered} 2002- \\ 2004 \\ \text { (2years) } \end{gathered}$	$\begin{gathered} 2002- \\ 2003 \\ (1 \\ \text { year }) \end{gathered}$	$\begin{gathered} 2002- \\ 2004 \\ (2 \\ \text { years }) \end{gathered}$	$\begin{gathered} 2002 \\ \text { (before } \\ \text { treatment) } \end{gathered}$	$\begin{gathered} 2003 \\ (1 \text { year }) \end{gathered}$	$\begin{gathered} 2004 \\ (2 \text { years }) \end{gathered}$
TP 1 (50\%)	9.51	11.89	13.74	2.38	4.23	61.9	43.9	0.007	0.010	0.014
TP 2 (60\%)	8.61	11.22	12.53	2.61	3.92	77.6	33.3	0.008	0.010	0.012
TP 3 (70\%)	9.56	11.73	13.57	2.17	4.01	47.6	36.4	0.009	0.010	0.014
TP 4 (untr.)	9.22	10.69	12.16	1.47	2.94			0.009	0.012	0.015
P (0.05)	0.0331	0.0209	0.0008	0.0122	0.0334			0.0755	0.0402	0.0150
LSD (0.05)	0.2812	0.3174	0.2689	0.2613	0.3687			$\begin{array}{r} 5.243 \mathrm{E}- \\ 04 \end{array}$	$\begin{array}{r} 5.672 \mathrm{E} \\ -04 \end{array}$	$\begin{array}{r} \hline 6.941 \mathrm{E} \\ -04 \end{array}$

* Relative increment effect $=100 \mathrm{x}$ (treated plot - untreated plot)/untreated plot)

The commercial height was changed by pruning (Table 5). The relative increment effect of commercial height was increased from 61.1 to 248.9% during the first year after pruning as compared to the untreated plot, and 25.4 to 137% between 2002 and2004 (two years). The increment in absolute numbers in 2003 was $1.45-3.14 \mathrm{~m}$ in the pruned treatments, while in the untreated plot the increment was 0.9 m . The increment during 2002-2004 was 2.17-4.10 m in the pruned treatments while the untreated plot increased by 1.73 m . During this 2 -year-period all increments in the pruning treatments were significantly different from those in the untreated plot and the ranking was TP3 > TP2 > TP1 > TP4 (control). Consequently there seemed to be a treatment effect.

Table 5: The effect of pruning on commercial height of teak at site I (Lathahae)

Treatment	Commercial tree height, m			Mean height increment, m		Relative increment effect*	
	2002 (Before treatment)	$\begin{aligned} & 2003 \\ & \text { (1 year) } \end{aligned}$	2004 (2 years)	$\begin{aligned} & 2002-2003 \\ & (1 \text { year }) \end{aligned}$	2002-2004 (2 years)	2002-2003 (1 year)	2002-2004 (2 years)
TP1 (50\%)	4.26	5.71	6.43	1.45	2.17	61.1	25.4
TP2 (60\%)	4.40	6.74	7.69	2.35	3.29	161.1	90.2
TP3 (70\%)	5.22	8.36	9.32	3.14	4.10	248.9	137
TP4 (untr.)	4.50	5.40	6.23	0.90	1.73		
P (0.05)	0.0023	0.0000	0.0000	0.0000	0.0000		
LSD (0.05)	0.1725	0.1791	0.1802	0.0937	0.0964		

* Relative increment effect $=100 \mathrm{x}$ (treated plot - untreated plot)/untreated plot)

Table 6: The effect of pruning on total height of teak at site I (Lathahae)

Treatment	Total tree height, m			Mean height increment, m		Relative increment effect*	
	2002 (Before treatment)	$\begin{gathered} 2003 \\ (1 \text { year }) \\ \hline \end{gathered}$	$\begin{gathered} 2004 \\ (2 \text { years }) \\ \hline \end{gathered}$	$\begin{gathered} 2002-2003 \\ (1 \text { year }) \\ \hline \end{gathered}$	$\begin{gathered} 2002-2004 \\ \text { (2 years) } \\ \hline \end{gathered}$	$\begin{gathered} 2002-2003 \\ (1 \text { year }) \\ \hline \end{gathered}$	$\begin{gathered} 2002-2004 \\ \text { (2 years) } \\ \hline \end{gathered}$
TP 1 (50\%)	9.33	10.94	12.37	1.61	3.04	23.8	11.0
TP 2 (60\%)	9.28	11.57	13.11	2.29	3.83	76.2	39.8
TP 3 (70\%)	10.08	12.19	13.57	2.12	3.49	63.1	27.4
TP 4 (untr.)	9.63	10.93	12.37	1.30	2.74		
P (0.05)	0.0552	0.0043	0.0018	0.0000	0.0000		
LSD (0.05)	0.6041	0.2684	0.2292	0.0877	0.1060		

* Relative increment effect $=100 \mathrm{x}$ (treated plot - untreated plot)/untreated plot)

The mean height increment of the pruned trees (Table 6) was increased by 1.61 to 2.29 m in 20022003 (one year) and by 3.04 to 3.83 m in 2002-2004 (two years). In the untreated plot, mean height increment was increased by 1.3 m after one year and 2.74 m after two years. The relative increment effect compared to the untreated plot, was 23.8-76.2 \% between 2002 and2003 (one year) and 11.039.8 \% in 2002-2004 (two years).

In 2002-2003 the mean height increment was significantly higher in TP3 (pruning 70\%) and TP2 (pruning 60\%) compared to TP1 (pruning 50\%) and the untreated plot. For the whole period 20022004 the mean height increments were all significantly different from each other and ranked as TP2 > TP3 > TP1 >TP4 (untreated plot). Consequently there seemed to be a treatment effect of the pruning.

The impact of pruning intensity on the growth of teak at site II (Had Soa)

Table 7: The effect of pruning on diameter growth of teak at site II (Had Soa)

Treatment	Diameter at breast height, cm			Mean diameter increment, cm		Relative increment effect*		Basal area, m^{2} per tree		
	2002 (Before treatment)	$\begin{gathered} 2003 \\ (1 \text { year }) \end{gathered}$	$\begin{gathered} 2004 \\ (2 \text { years }) \end{gathered}$	$\begin{gathered} 2002- \\ 2003 \\ (1 \text { year }) \end{gathered}$	$\begin{gathered} 2002- \\ 2004 \\ \text { (2years) } \end{gathered}$	$\begin{gathered} 2002- \\ 2003 \\ (1 \\ \text { year }) \end{gathered}$	$\begin{gathered} 2002- \\ 2004 \\ (2 \\ \text { years }) \end{gathered}$	2002 (Before treatme nt)	$\begin{gathered} 2003 \\ (1 \text { year }) \end{gathered}$	$\begin{gathered} 2004 \\ \text { (2years) } \end{gathered}$
TP 1 (50\%)	11.07	13.22	15.24	2.16	4.18	16.1	41.7	0.013	0.013	0.016
TP 2 (60\%)	10.18	13.92	16.27	3.75	6.10	101.6	106.8	0.011	0.011	0.015
TP 3 (70\%)	9.97	13.02	15.50	3.05	5.53	64	87.5	0.010	0.010	0.013
TP 4 (untr.)	11.39	13.24	14.34	1.86	2.95			0.014	0.018	0.021
$\mathrm{P}(0.05)$	0.0876	0.5119	0.0854	0.0000	0.0000			0.1152	0.0074	0.0160
LSD (0.05)	0.5463	0.6091	0.6344	0.1644	0.1789			$\begin{array}{r} \hline 1.451 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} 1.642 \mathrm{E}- \\ 03 \end{array}$	$\begin{array}{r} \hline 1.983 \mathrm{E}- \\ 03 \end{array}$

* Relative increment effect $=100 \mathrm{x}$ (treated plot - untreated plot)/untreated plot)

Before the treatments started in 2002, the mean diameter (DBH) (Table 7) at site II (Hadsoa) varied from 9.97 to 11.39 cm . One year after pruning and 25% thinning, the mean increment of DBH was 2.16 cm at 50% pruning, 3.75 cm at 60% and 3.05 cm at 70%. The mean diameter increment of the untreated plot was 1.86 cm . For the two-year period 2002-2004, the increments of DBH in the pruned treatments were $4.18 \mathrm{~cm}(50 \%), 6.10 \mathrm{~cm}(60 \%)$ and $5.53 \mathrm{~cm}(70 \%)$. The increment of DBH at the untreated plot was 2.95 cm . For the whole two-year-period 2002-2004, TP1 and TP4 (untreated plot) had a smaller DBH than TP2 and TP3. The increments of DBH of all four treatments during 2002-2004 were significantly different from each other and increased in the order TP4 (untreated plot) < TP1 < TP3 < TP2. Thus there seemed to be a treatment effect. By pruning small branches at different heights, the relative increment effect on the diameter compared to control was increased by 16.1-101.6 \% after the first year (2002-2003) and by 41.7-106.8 \% after two years (2002-2004).

Table 8: The effect of pruning on commercial height of teak at site II (Had Soa)

Treatment	Commercial tree height, m			Mean height increment, m		Relative increment effect*	
	2002 (Before treatment)	$\begin{aligned} & 2003 \\ & \text { (1 year) } \end{aligned}$	$\begin{aligned} & 2004 \\ & \text { (2 years) } \end{aligned}$	$\begin{aligned} & 2002-2003 \\ & \text { (1 year) } \end{aligned}$	$\begin{aligned} & 2002-2004 \\ & \text { (2 years) } \end{aligned}$	$\begin{aligned} & 2002-2003 \\ & \text { (1 year) } \end{aligned}$	$\begin{aligned} & \text { 2002-2004 } \\ & \text { (2 years) } \end{aligned}$
TP1 (50\%)	5.14	6.48	7.28	1.35	2.14	51.7	25.9
TP2 (60\%)	4.84	7.88	8.81	3.04	3.97	241.6	133.5
TP3 (70\%)	4.31	8.48	9.79	4.17	5.48	368.5	222.4
TP4 (untr.)	4.71	5.59	6.41	0.89	1.70		
P (0.05)	0.0399	0.0000	0.0000	0.0000	0.0000		
LSD (0.05)	0.2304	0.2731	0.2718	0.1940	0.1579		

* Relative increment effect $=100 \mathrm{x}$ (treated plot - untreated plot)/untreated plot)

The commercial height was changed by pruning (Table 8). The relative increment effect in the first year (2002-2003) after pruning extended from 51.7 to 368.5% compared to the untreated plot. The mean height increment varied between 1.35 and 4.17 m in the pruned treatments while the height increment in the untreated plot was 0.89 m . The mean height increment during 2002-2004 varied between 2.14 and 5.48 m in the pruned treatments while the increment in the untreated plot was 1.70 m . For the whole period 2002-2004, all treatment increments differed significantly from each
other, i.e TP4 (untreated plot) < TP1 < TP2 < TP3. Consequently there seemed to be an overall treatment effect.

Table 9: The effect of pruning on total height at site II (Had Soa)

Treatment	Total tree height, m			Mean height increment, m		Relative increment effect*	
	$\begin{gathered} 2002 \\ \text { (Before } \\ \text { treatment) } \end{gathered}$	$\begin{gathered} 2003 \\ \text { (1 year) } \end{gathered}$	$\begin{gathered} 2004 \\ (2 \text { years }) \end{gathered}$	2002-2003 (1 year)	$\begin{gathered} \text { 2002-2004 } \\ (2 \text { years }) \\ \hline \end{gathered}$	$\begin{gathered} \text { 2002-2003 } \\ \text { (1 year) } \end{gathered}$	$\begin{gathered} \text { 2002-2004 } \\ (2 \text { years }) \\ \hline \end{gathered}$
TP 1 (50\%)	10.91	12.88	14.58	1.97	3.66	23.9	20.4
TP 2 (60\%)	10.68	13.35	14.92	2.67	4.24	67.9	39.5
TP 3 (70\%)	10.05	12.40	14.38	2.35	4.33	47.8	42.4
TP 4 (untr.)	10.11	11.70	13.15	1.59	3.04		
$\mathrm{P}(0.05)$	0.0628	0.0049	0.0036	0.0042	0.0016		
LSD (0.05)	0.3139	0.3206	0.3340	0.2069	0.2272		

* Relative increment effect $=100 \mathrm{x}$ (treated plot - untreated plot)/untreated plot)

The mean height increment of the pruned trees varied between 1.97 m (TP1) and 2.67 m (TP2) after one year (2002-2003), and between 3.66 m (TP1) and 4.33 m (TP3) after two years (2002-2004). The mean height increment of the untreated plot was 1.59 m after one year (2002-2003) and 3.04 m after two years (2002-2004). The relative increment effect compared to the untreated plot was 23.9$67.9 \%$ in 2002-2003 (after one year), and 20.4-42.4\% in 2002-2004 (after two years).

In 2004 (after two years) the total height in TP4 (untreated plot) was significantly lower than in all the pruned treatments. Consequently there seemed to be a statistically significant pruning effect ($\mathrm{P}<$ 0.05) after two years. This could also be shown by the mean height increments during 2002-2004. The increments of TP4 (control) and TP1 were significantly less than those of TP2 and TP3 (Table $9)$.

Table 10: The impact of pruning on the mean annual volume increments at sites I and II (Lathahae, Had Soa)

Treatment	Site I (Lathahae) Mean annual volume increment, $\mathrm{m}^{3} \cdot 0.05 \mathrm{ha}^{-1} \cdot$ year $^{-1}$		Site II (Had Soa) Mean annual volume increment, $\mathrm{m}^{3} \cdot 0.05 \mathrm{ha}^{-1} \cdot$ year $^{-1}$	
	$\begin{gathered} 2002-2003 \\ (1 \text { year }) \end{gathered}$	$\begin{gathered} 2002-2004 \\ (2 \text { years }) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2002-2003 \\ \text { (1 year) } \\ \hline \end{gathered}$	$\begin{gathered} 2002-2004 \\ (2 \text { years }) \\ \hline \end{gathered}$
TP1 (50\%)	1.0	2.4	0.6	2.6
TP2 (60\%)	1.2	1.4	1.1	3.6
TP3 (70\%)	1.3	2.5	0.7	2.2
TP4 (untr.)	1.8	2.5	2.1	3.6
P (0.05)	0.0653	0.0653	0.0085	0.0474
LSD (0.05)	0.0870	0.1286	0.1164	0.1666

The formula of the mean annual volume increment is:

$$
\begin{aligned}
& \mathbf{V}=\mathbf{T} \mathbf{x}(\mathbf{D} / 2)^{2} \mathbf{x ~ H} \mathbf{x ~ F} \\
& \mathrm{~V} \text { - mean annual volume increment, } \mathrm{m}^{3} \cdot 0.05 \mathrm{ha}^{-1} \cdot \mathrm{year}^{-1} \\
& \mathbf{T}=3.14 \\
& \mathrm{D} \text { - Diameter at breast height, } \mathrm{m} \\
& \mathrm{H} \text { - Total tree height, } \mathrm{m} \\
& \mathrm{~F} \text { - Form factor (} 0.441 \text { according to Southitham, 2001) }
\end{aligned}
$$

It is interesting to note that the untreated plots (TP4) at sites I and II tended to have a higher annual volume increment, than the treated plots. This might be due to a higher density of trees in the untreated plots. (see Appendix 2, Table 2.2).

4.2. The impact of the thinning intensity on teak growth at site III (Pak Check) and at site IV (Houay Leuang)

Table 11: The affect of thinning on diameter growth at site III (Pak Check)

Treatment	Diameter at breast height, cm		Mean diameter increment, cm 2003-2004 (1 year)	Relative increment effect*	Basal area, m ${ }^{2}$ per tree	
	2003 (Before treatment)	$\begin{aligned} & 2004 \\ & (1 \text { year }) \\ & \hline \end{aligned}$		$\begin{aligned} & 2003-2004 \\ & \text { (1 year) } \\ & \hline \end{aligned}$	2003 (Before treatment)	$\begin{aligned} & 2004 \\ & \text { (1 year) } \\ & \hline \end{aligned}$
TT1 (25\%)	12.53	13.99	1.46	80.2	0.016	0.017
TT2 (50\%)	8.13	10.17	2.04	151.9	0.007	0.008
TT3 (Farmers pract.)	7.41	8.71	1.30	60.5	0.006	0.007
TT4 (untr.)	11.86	12.67	0.81		0.015	0.017
$\mathrm{P}(0.05)$	0.0001	0.0000	0.0497		0.0000	0.0005
LSD (0.05)	0.6602	0.5216	0.3565		$1.076 \mathrm{E}-03$	$1.833 \mathrm{E}-03$

* Relative increment effect $=100 \mathrm{x}$ (treated plot - untreated plot)/untreated plot)

The diameter at breast height (DBH) in 2004, one year after thinning $+60 \%$ pruning (Table 11) varied between 8.71 and 13.99 cm , and the diameter in the untreated plots was 12.67 cm . The mean DBH increment at site III (Pak Check) in 2004 was 1.46 cm in TT1 (thinning 25\%), 2.04 cm in TT2 (50%) and 1.30 cm in TT3 (Farmers' practice). The mean DBH increment in TT4 (untreated plot) was 0.81 cm . The mean DBH increments were thus ranked as TT4 < TT3 < TT1 < TT2. The diameter increment of the untreated plot (TT4) was significantly less than in all the thinned treatments. Consequently there was a significant thinning effect. By reducing the number of trees at different percentage rates the relative increment effect on the diameter compared to control was 60.5-151.9 \%..

Table 12: The effect of thinning on the commercial height at site III (Pak Check)

Treatment	Commercial tree height, m		Mean height increment, m	Relative increment effect*
	2003 (Before treatment)	2004 $(1$ year)	$2003-2004$ $(1$ year)	$2003-2004$ $(1$ year) $)$
TT1 (25\%)	6.96	8.88	1.92	4.3
TT2 (50\%)	4.92	7.26	2.34	27.2
TT3 (Farmers' pract.)	3.61	6.11	2.50	35.9
TT4 (untr.)	6.53	8.37	1.84	
P (0.05)	0.0001	0.0002	0.0062	
LSD (0.05)	0.3898	0.3441	0.1507	

* Relative increment effect $=100 \mathrm{x}$ (treated plot - untreated plot)/untreated plot)

The relative increment effect of the commercial height after thinning (Table 12) varied from 4.3 to 35.9% in 2003-2004 (after one year) compared to the untreated plot. The mean height increment was increased in absolute numbers by $1.92-2.50 \mathrm{~m}$ in the thinned treatments, while the height in the untreated plot was increased by 1.84 m .
The average increments in the untreated plot (TT4) and at 25\% thinning (TT1) were significantly smaller than in the treatments TT2 (thinning 50\%) and TT3 (farmers' practice). Consequently, a thinning effect was indicated.

Table 13: The effect of thinning on the total height at site III (Pak Check)

Treatment			Mean height increment, m	Relative increment effect*
	Total tree height, m (Before treatment) (2003	2004 (1 year)	2003-2004 (1 year)	2003-2004 (1 year)
TT1 (25\%)	10.35	12.53	2.18	12.9
TT2 (50\%)	7.09	10.36	3.27	69.4
TT3 (Farmers' pract.)	6.02	8.71	2.69	39.4
TT4 (untr.)	9.54	11.47	1.93	
P (0.05)	0.0001	0.0002	0.0265	
LSD (0.05)	0.5407	0.4647	0.3645	

* Relative increment effect $=100 \mathrm{x}$ (treated plot - untreated plot)/untreated plot)

The mean total tree height increment in the thinned treatments (Table 13) was 2.18 to 3.27 m in 2003-2004 (after one year). In the untreated plot, the mean total tree height was increased by 1.93 m . The relative increment effect among the thinned treatments varied between 12.9 and 69.4% compared to the untreated plot.

The mean total tree height increment was significantly higher in TT2 (50\% thinning) and TT3 (Farmers' practice) compared to TT1 (25% thinning) and TT4 (untreated plot). There was thus a tendency of a statistically significant ($\mathrm{P}<0.05$) effect of thinning after one year.

The impact of thinning technique on the growth of teak at site IV (Houay Leuang)
Table 14: The affect of thinning on diameter growth at site IV (Houay Leuang)

Treatment	Diameter at breast height, cm		Mean diameter increment, m	Relative increment effect*	Basal area, m ${ }^{2}$ per tree	
	2003 (Before treatment)	$\begin{aligned} & 2004 \\ & \text { (1 year) } \end{aligned}$	$\begin{aligned} & 2003-2004 \\ & \text { (1 year) } \end{aligned}$	$\begin{aligned} & \text { 2003-2004 } \\ & \text { (1 year) } \end{aligned}$	2003 (Before treatment)	$\begin{aligned} & 2004 \\ & \text { (1 year) } \end{aligned}$
TT1 (25\%)	8.39	10.88	2.49	72.9	0.007	0.009
TT2 (50\%)	9.13	12.27	3.14	118.1	0.008	0.010
TT3 (Farmers’ pract.)	9.67	11.40	1.73	20.1	0.010	0.012
TT4 (untr.)	8.57	10.01	1.44		0.008	0.010
P (0.05)	0.1207	0.0189	0.0000		0.1664	0.2375
LSD (0.05)	0.5061	0.5463	0.0564		8.671E-04	$1.183 \mathrm{E}-03$

* Relative increment effect = 100 x (treated plot - untreated plot)/untreated plot)

The DBH in 2004, one year after thinning + 60\% pruning (Table 14) varied between 10.88 and 12.27 cm in the thinned treatments, and was 10.01 cm in the untreated plot. The mean diameter increment was 2.49 cm in TT1 (25% thinning), 3.14 cm in TT2 (50\%), and 1.73 cm in TT3 (Farmers' practice). The mean diameter increment in TT4 (untreated plot) was 1.44 cm . The diameter increase (increment) was ranked as TT4 < TT3 < TT1 < TT2. These treatment differences were all statistically significant from one another and indicated an effect of thinning. By thinning the relative increment effect on the diameter was 20.1-118.1\%..

Table 15: The effects of thinning on commercial height at site IV (Houay Leuang)

Treatment	Commercial tree height, m		Mean height increment, m	Relative increment effect*
	2003 (Before treatment)	2004 (1 year)	$\begin{aligned} & 2003-2004 \\ & (1 \text { year }) \end{aligned}$	2003-2004 (1 year)
TT1 (25\%)	4.36	5.75	1.39	71.6
TT2 (50\%)	4.68	5.99	1.31	61.7
TT3 (Farmers' pract.)	5.25	6.47	1.22	50.6
TT4 (untr.)	4.89	5.70	0.81	
P (0.05)	0.0438	0.0890	0.0006	
LSD (0.05)	0.2554	0.2849	0.0867	

* Relative increment effect $=100 \mathrm{x}$ (treated plot - untreated plot)/untreated plot)

The relative increment effect on commercial height (Table 15) varied between 50.6 and 71.6% after thinning compared to the untreated plot. The increase in absolute numbers after one year was 1.22 1.39 m in the thinning treatments and 0.81 m in the untreated plot.

In 2004 the increase in commercial height was significantly higher in TT1 (25\% thinning), TT2 (50\%) and TT3 (Farmers' practices) compared to TT4 (untreated plot). Thus there seemed to be a significant effect of the thinning.

Table 16: The effects of thinning on total height at site IV (Houay Leuang)

Treatment	Total tree height, m		Mean height increment, m	Relative increment effect*
	2003 (Before treatment)	2004 (1 year)	$2003-2004$ $(1$ year)	$2003-2004$ (1 year)
TT1 (25\%)	7.84	9.58	1.74	38.1
TT2 (50\%)	8.68	9.95	1.27	0.8
TT3 (Farmers' pract.)	9.52	10.91	1.39	10.3
TT4 (untr.)	8.84	10.10	1.26	
P (0.05)	0.1559	0.3316	0.0000	
LSD (0.05)	0.6459	0.6868	0.0517	

* Relative increment effect $=100 \mathrm{x}$ (treated plot - untreated plot)/untreated plot)

The mean total tree height increment of the thinned treatments (Table 16) varied between 1.27 and 1.74 m in 2003-2004. In the untreated plot, the mean total tree height increase was 1.26 m . The relative increment effect on total tree height was $0.8-38.1 \%$ compared to the control.
The mean total tree height increments in the treatments TT4 (untreated plot)) and TT2 (50\% thinning) were significantly smaller than the increments in the treatments TT3 (farmers' practice) and TT1 (25% thinning). Thus there was no clear indication of a thinning effect.

Table 17: The impact of thinning on teak growth of mean annual volume increment at site III (Pak Check) and site IV (Houay Leuang)

Treatment	Site III (Pak Check) Mean annual volume increment, $\mathrm{m}^{3 \cdot} 0.04 \mathrm{ha}^{-1} \cdot$ year $^{-1}$	Site IV (Houay Leuang) Mean annual volume increment, $\mathrm{m}^{3} \cdot 0.04 \mathrm{ha}^{-1} \cdot$ year $^{-1}$
	2004	2004
TT1 (25\%)	0.7	0.7
TT2 (50\%)	0.5	0.5
TT3 (Farmers' pract.)	0.5	0.6
TT4 (unt.)	1.0	0.9
P (0.05)	0.3834	0.1962
LSD (0.05)	0.0988	0.0596

It is interesting to note that the untreated plots had a higher mean annual volume incrementthan the other treatments (Table 17). The mean annual volume increments were ranked as $\mathrm{TT} 2 \leq \mathrm{TT} 3<$ TT1 < TT4. This might be due to the higher density of the trees in TT4 compared to the other treatments (See Appendix 2; Table 2.4).

5. Discussion and Conclusions

5.1. The effects pruning and thinning of teak on tree growth and productivity

Teak growth as affected by pruning

The expected effect of pruning may be twofold. A reduced amount of branch biomass enables more of the synthesised carbohydrates (biomass) to be allocated to stem wood instead of branch wood and thus increase stem growth. A second type of impact is lost canopy and, thereby, lower photosynthetic capacity and less synthesised carbohydrates and, hence, reduced growth. However, the latter effect might be less important because the lower part of the canopy is shadowed and its contribution to net assimilation might be low or even negative. The results indicate that the pruning seemed to have a positive effect on tree growth measured as either diameter growth, commercial height growth or total height growth. As a general conclusion it seems that the loss of inefficient branches has had a positive impact on tree growth.

Pruning at $50-60 \%$ generally seemed to increase the diameter, commercial height and total height growth with desired proportions of DBH and total height. The strong CH increase was not primarily a result of increased production but rather a consequence of the fact that a longer part of the stem was cleared from branches and of the definition of CH as the branch free part of the bole. In order to increase teak production farmers should apply pruning at 60% during the first thinning (25%). In order to increase only CH pruning at 70% is to be preferred but the diameter is too small to sustain 70% of pruning (difficulties to climb the tree).

In a short-term perspective, if there is a higher density of trees, such as in the untreated plots, the annual volume increment will be higher. However, in the long-term there could be a higher annual volume increment, where management techniques are applied due to an additional increase of DBH and total height.

Teak growth as affected by (thinning)

After thinning at different intensities combined with pruning (60\%) there was an increase in diameter at breast height (DBH), commercial height (CH) and total height (TH) at sites III and IV. In 2004 the DBH growth in the thinned treatments at site III ranged from 1.30 (farmer's practice) to 2.04 cm (50% thinning), and in the untreated plot (not subjected to thinning and pruning) there was an increase of 0.81 cm . The increase in DBH at site IV ranged from 1.73 (farmers' practice) to 3.14 $\mathrm{cm}(50 \%$ thinning) and in the control there was an increase by 1.44 cm . The increase in DBH and total height in some treatments was higher than that recommended for young teak stands in Luang Phrabang (Southitham, 2001). At both sites the increase in DBH at the thinning rate 50\% was considerably higher than in the treatments 25% thinning, farmers' practice and control. The increase in total height in 2004 depended on the intensity of thinning and ranged from 1.93 (untreated plot) to 3.27 (50% thinning) m at site III and from 1.26 (untreated plot) to 1.74 (25% thinning) m at site IV. Southitham (2001) found that the diameter growth of teak increased by $1.50-2.01 \mathrm{~cm} \cdot$ year $^{-1}$, and top height increased by 1.9-2.3 m year ${ }^{-1}$ in 5-10 years old teak plantations in the Luang Phrabang province.

In order to increase the diameter growth, farmers should apply thinning at 25\%-50\% to get an increased diameter growth and height growth. Intensive thinning at 25% or 50% had a positive effect on the stem form, including the development of trees with desired proportions of DBH and total height.

In a short-term perspective, thinning may increase the diameter growth but decrease the total volumetric growth. However, in a long-term perspective, where management techniques are applied there might be a higher annual volume increment after thinning. This would be due to an increase in DBH and total height of the remaining trees..

A final remark concerning the statistics of the teak growth data

Replication is used in experiments to answer the following question: "Are the observed treatment effects due to the treatment or due to inherent differences between the experimental units" By applying each treatment level to several experimental units (replicates) an estimate of the "natural" variability of the experimental units is separated from and compared with treatment differences. True replicates should be placed randomly. If this (as in this study) is not the case the results have to be treated cautiously.

Teak growth and soil properties in the experimental plots in four sites

Continuing deforestation and shifting cultivation may result in changes in soil moisture, soil temperature, aeration and nutrient conditions. Soil degradation of these systems may cause a decline in soil fertility resulting in very low productivity. When these soils become degraded, farmers frequently abandon the fields and allow natural revegetation and self-forestation. New forest areas will be cleared for a new shifting cultivation cycle (Keonakhone, 2005).

Important soil chemical variables to consider when comparing the chemical properties of soil under teak plantations and fallow fields are for instance organic matter content, available amounts of nutrients such as N and P , exchangeable base cations ($\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}, \mathrm{K}^{+}$and Na^{+}), cation exchange capacity, and the contents of potentially toxic aluminium. The main finding was that the differences in analytical values between teak plantations and nearby fallow fields were generally small and nonsignificant. There was a tendency that the CEC in soils under teak was lower compared with soils under fallow (Keonakhone, 2005).

One reason for not finding any differences for instance regarding P , Ca or Mg under teak and fallow may be that all the plants growing in the fallows and in the teak plantations produce green manure from falling leaves so that these elements may be repeatedly remobilized and then taken up again by the vegetation to the same extent in plantations and fallows. This hypothesis requires that, there should be no differences in the leaching of nutrients or in nutrient exports.

5.2. The potential improvement of farmers' income due to the use of pruning and thinning techniques and changes in the market-flow

Southitham (2001) reported that there are numerous products coming from teak wood. Among these are floors, doors and indoor and outdoor furniture. In the town of Luang Phrabang one can usually see many kinds of wood products and furniture made out of teak in the small wood shops along the streets. However, Thongsavath (pers. comm. 2005), who is a trader, says that although he can make furniture out of teak upon request, the locals normally prefer to have their furniture made out of rosewood (Dalbergia spp.). In the villages teak timber is much used for construction work. Generally, teak is a most important income source for the middle wealth group of farmers.

Farmers might increase both quantity and quality of teak wood by using scientific knowledge gained from thinning and pruning experiments. However, if teak is to be a valuable export commodity which gives a profit to the farmers, the infrastructure has to be better than today. Few teak growers have direct access to Wood Processing Units (WPU) or to the export market. Therefore, the gap in the price of teak logs between the farm gate and the WPU is quite wide. It
ranges from 150.000-400.000 kip per cubic meter. Local traders and traders from outside play an important role in collecting teak logs from the villages. Ninety-nine percent of the teak logs are collected by outside traders. The price of teak logs mostly depends on the export market demand because 95% of teak logs have been exported during the last years. If farmers could sell teak directly to the WPU, they could certainly increase their income.

6. Recommendations for further work

The government should review the forest policy to be pursued in the future for maintaining a sustainable timber production. This would include encouragement and persuasion of farmers who work with teak timber production to join the train of sustainable forest development.

In order to improve the teak growers' income, the Lao government should set up necessary policies to help farmers to improve both quality and quantity, by using management techniques such as pruning and thinning in their plantations. The farmers also need assistance in tree harvesting and transportation of teak logs. It is necessary that farmers can have an easy access to wood processing units (WPU) and the export market. Concerning the export market, the Lao government needs to find the opportunities for exporting teak wood to more profitable potential markets both within and outside the country.

Much research on teak silviculture is carried out internationally, including countries near Laos. Considering the limited economic resources and research capability in Laos there is still much scope for more systematic evaluations and research. Research in Laos should concentrate on solving concrete problems of specific local interest such as:
> Study the ecology and structure of natural teak stands and plantations to help improve their protection and use.
> Adopt or develop new improved silvicultural practices that will facilitate higher income and shorter rotations, especially practices that are relevant for poor farmers in the uplands.
> Investigate the environmental suitability of teak, especially regarding elevation (temperature), rainfall and bedrock. This activity may be linked to provenance trials for specified climatic zones.
> Survey pest and environmental stress problems affecting the performance of teak.
$>$ Develop systems for inter-cropping teak with arable crops and with other tree species to improve overall production and sustainability.

7. Acknowledgements

My study was carried out with great support from groups and people.
I am greatful to the Rockefeller Foundation for funding my MSc. education.
I would like to thank:
My supervisors at SLU, Prof. Mats Olsson, and Prof. Ingvar Nilsson, for their full support of the whole study, especially in writing this thesis. My supervisors at NISF, Dr. Nguyen Cong Vinh, MSc. La Nguyen, and Nguyen Due Phuong brought me into the System of ANOVA and in writing.
PhD. Minh Ha Fagerstrom Coordinator of ICRAF and the whole team of the LUSLOF project, which included Vietnam and Laos. In Laos it was run by Northern Agriculture and Forestry Research Center (NAFReC), Luang Phrabang province and in Vietnam by National Institute for Soils and Fertilizers (NISF).
Mr. Phouthone Sophathilath Project coordinator for great support and help during the study time.
Mr. Houmchitsavath Sodarack Director of NAFReC and Project coordinator for great support and help with the field work in Luang Phrabang.
Mr. Saysana Inthavong, Mr. Viraphong, Mr. Sanitvong for help with collected data and information about the field activities.
All the people living in the four villages for taking their time to answer my questions and join us at the experimental sites.

8. References

Abayomi, J.O., 1984. A yield model for teak plantation in southern Nigeria. Paper presented at the $14^{\text {th }}$ Annual Conference of the Forestry Association of Nigeria, Port Harcourt, Nigeria, 3-8 December.

Cordero, L. D., Kanninen M. 2002. Heartwood, sapwood and bark content and wood dry density of young and mature teak (Tectona grandis) trees grown in Costa Rica. Silva Fennica 37(1):45-54.

FAO, 1995. Forest resources assessment, 1990-global synthesis. FAO Forestry Paper 124. Food and Agriculture Organization of the United Nations, Rome.

Hoang Fagerström, M.H., Tran Duc Toan, Sodarak, H., van Noordwijk, M., Joshi, L, 2004. How to combine Scientific and Local Knowledge to Develop Sustainable Land Use Practices in the Upland - A case study from Vietnam and Laos. A paper to the workshop "Poverty Reduction and Sifting Cultivation Stabilization in the Uplands of Lao PDR: Technologies, approaches and methods for improving upland livelihoods", January 27-30, 2004.

Hansen, P., Sodarak, H., Savathvong, S., 1997. Teak production by shifting cultivators in Northern Lao P.D.R. Technical report No. 9. Shifting Cultivation Research Sub-programme, Lao Swedish Forestry Programme, Luang Phrabang.

Kadambi, K. 1972, Silviculture and management of teak. Bulletin No. 24. Nacogdoches, Texas, USA, School of forestry, Stephen F. Austin State University.

Kaosa-ard, A. 1981. Teak (Tectona grandis L.f.)- its natural distribution and related factors. Natural History Bulletin of the Siam Society, 19: 55-74.

Kaosa-ard, A., 1986. Teak in ASEAN: A Survey report ASEAN CANADA Forest Tree Seed Centre, 60p.

Kaosa-ard, A., 1999. Gain from provenance selection. Paper presented at the Regional Seminar on Site,Technology and Productivity of teak Plantations, Chiang Mai, Thailand, 25-29 January.

Keonakhone, T., 2005. Soil characteristic under teak plantation and natural fallow in Luang Phrabang province, Lao PDR. Minor Field Study draft report. SLU, Sweden.

Kim, Y., J., 2004. Pest and diseases in teak plantation in Luang Phrabang Province. Unpublished Report. Provincial Forestry Office. Luang Prabang. Lao PDR.

Kraenzel, M., Castillo, A., Moore, T., Potvin, C., 2001. Carbon storage of harvest-age teak (Tectonia grandis) plantation Panama. Forest Ecology and Management 173 (2003) 213-225.

Kumar, B.M., Kumar, S.S., Fisher, R.F., 1998. Intercroping teak with Leucaena increases tree growth and modifies soil characteristics. Agroforestry Systems 42: 81-89.

Laurie, M.V. \& Ram, B.S., 1939. Yield and stand tables for plantation teak. India Forest Record (n.s.) Silviculture 4-A, No. 1. Dehra Dun, India, Forest Research Institute.

LUSLOF fieldwork report, 2003. Local Ecological Knowledge (LEK) on landscape function using Participatory Landscape Analysis - PaLA and Agro ecological Toolkit - AKT - A case study from Luang Prabang, Laos. Draft report.

LUSLOF fieldwork report, 2005. Constrains and Possibilities of scaling up Teak 'improved' management techniques - Studies on Teak market, household economy in relation with Teak and soil under Teak

Maitre, H.F., 1983. Table the production proviso ire du teck (Tectona grandis) en Cote d’lvoire. Abidjan, Cote d’lvoire, Centre Technigue Forestier Tropical.

McAllister, K., Gabunada, F., Douangsavanh, L., 2000. Report of the General Agricultural System Diagnosis with Farmers in Four villages of Pak Ou District, Lao PDR.

Miller, H.G., 1969. Provisional yield tables for teak in Trinidad. Port of Spain, Trinidad and Tobago, Government Printery.

Phillips, G.B., 1995. Growth functions of teak (Tectona grandis Linn. f) plantations in Sri Lanka. Commonwealth Forestry Review, 74(4): 361-374.

Pradichit, S., 2002. AGRICULTURE \& FORESTRY DEVELOPMENT OF LUANG PRABANG. Unpublished PowerPoint presentation. Provincial Agriculture and Forestry Department, Luang Phrabang, Lao PDR.

Pravongviengkham, P.P., 2002. Strategic Version. Integrated Watershed Management for Sustainable Mountain Development, and Poverty Alleviation in Lao PDR. Ministry of Agriculture and Forestry.

Priya P.B., Baht K.M., 1999. Influence of rainfall, irrigation and age on the growth periodicity and wood structure in teak (Tectona grandis). Wood Science Division, Kerala Forest Research Institute. IAWA Journal, Vol. 20(2): 181-192. Peechi, India.

Rajendrudu, G., Naidu, C.V., Malikarjua. 1997. Leaf gas exchange capacity in relation t leaf position on the stem in field grown teak (Tectona grandis) Photosynthetica 34(I):45-55.

Rajan, S.K., Reddy, B.J.D., Bagyaraj, D.J., 1998. Screening of arbuscular mycorrhizal fungi for their symbiotic efficiency with teak (Tectona grandis). Forest Ecology and Management 126 (2000) 91-95pp.

Roder, W., 2001. Slash-and-Burn Rice Systems in the Hills of Northern Lao PDR: Description, Challenges, and Opportunities. Los Banos (Philippines): International Rice Research Institute. 201p.

Sakurai, K., Yamada, Y., Tulaphitak, T., Junthotai, K., Wacharintarat, C., Teejuntuk, S., Sahunalu, P., 2002. Evaluation of site quality index for teak plantation in Thailand. Paper no. 350.

Sodarak, H., 2000. Sifting Cultivation Practices by Hmong, Khamu and Lao ethnic categories in the Name Nane watershed, Nane district, Luang Phrabang province, Lao PDR, Master thesis No. 10, Swedish University of Agricultural Sciences, Depertment of Rural Development Studies, Uppsala, 2000. ISSN 1403-7998. YEAR?

Southitham,T., 2001. Study on teak management and processing. Ministry International Cooperation Agency. Lao PDR.

Souvanthong, P., 1995. Shifting Cultivation in Lao PDR: And overview of land use and policy initiatives, Shifting Cultivation Stabilization Office, Vientiane.

Srivasthava S.K., Singh K.P., Upadhyay R.S., 1986. Fine root dynamics in teak (Tectona grandis Linn.f). Can J. For Res 16: 1360-1364.

Stuart-Fox M., 1986. Laos politics, economics and society. London (UK): Frances Pinter.
Tanaka, N., Hamazaki, T., Vacharangkura, T. 1998. Distribution, Growth and Site Requirements of teak. JARQ 32. pp. 65-77.

Tewari, D.N., 1992. A monograph on teak (Tectona grandis Linn. F.), International Book Distributors, Dehra Dun, India, 479p.

Varmola, M.I., Carle, J.B. 2002. The importance of hardwood plantations in the tropics and subtropics, International Forestry Review, 4(2) pp. 110-121
von Wulfing, W.H.E., 1932. Het perkonderzoek van A.E.J. Bruinsma; schattingstabellen vor djatiplantsoenen, Tectona grandis L.f. [Yield tables for Java teak plantations.] TECTONA, Part 25. Indonesia Forest Research Institute Special Publication No. 30a.

Personal communications

Mr. Syanuvong Savatvong 2005, Head of Provincial Forestry Office
Thongsavath, 2005, Wood Shop, Luang Prabang.

Internet

www.teaknet.com
Approached April 2005.
www.library.wur.nl/prosrom/tecona.html
Approached May 2005.
www.elisevier.com/locate/foreco
Approached May 2005

9. APPENDICES

Appendix 1: Measurement data of teak at four experimental sites
Table 1.1: Measurement data of teak at site I (Lathahae)

Name of owner: Thao Sieng My				Planting year: 1995					
Measurement date: March 20, 2002				Measurement date: March 19, 2003			Measurement date: March 18, 2004		
Treatment 1: TP1 Pruning 50\%				Treatment 1: TP1 Pruning 50\%			Treatment 1: TP1 Pruning 50\%		
Tree No	GBH (cm)	CH (m)	TH (m)	GBH (cm)	CH (m)	TH (m)	GBH (cm)	CH (m)	TH (m)
1	28.4	4	8	33.4	5	9	35.6	6	10.5
2	31	5	10	37.6	6	11	40	6.5	12.5
3	38.4	5	10	46.3	6	11	50.5	6.5	12
4	32.6	5	10	37.4	6	11	40.1	6.5	12
5	31.5	5	10	38.2	6	11	49	6.5	12
6	18	2	6						
7	32.2	4	9	38.2	5	10	41	5.5	11
8	26.8	4	9.5						
9	38	5	11						
10	35.6	4	10	46.7	5.5	11	50	6.5	12.5
11	29.4	5	10	40.4	5.5	11	46	6	12
12	31.6	5	11	41.4	6	12	46	7	13
13	29	5	11	48.2	6	12	51	7	13
14	39	5	10	42.5	6	11.5	55	6.5	13
15	23.4	4	9						
16	44.8	5	10	52.4	5.5	11	55.5	6.5	12
17	29	5	9						
18	30.2	5	11	36.7	6	12	46.5	7	13
19	35.4	2	7						
20	38.6	5	10	42.7	6	11.5	50	6.5	13
21	38.5	4	8						
22	37.8	5	11	46.6	6	12	52.5	7	13
23	39.8	4	10	48.2	6	11.5	47	6.5	13
24	38.9	4.5	10	42.7	6	11.5	47.5	6.5	13
25	33.4	5	11						
26	38.7	5	9	43.6	5.5	10.5	36	6	12
27	38.6	2	7						
28	25.8	5	10	30.4	6	11.5	35	6.5	13
29	25.4	5	11	30.4	6	12	41	7	13
30	20.4	3	7						
31	22.6	5	10	26.7	6	11.5	31.5	6.5	13
32	30.2	5	11	37.4	6	12	44.5	7	13.5
33	30.2	4	9						
34	32.5	5	11	37.2	6	12	42	7	13.5
35	20	4	8						
36	36.4	5	11	40.5	6	12	46.5	7	13.5
37	30.3	4	10	35.6	5.5	11.5	40.5	6.5	13
38	28.6	4	11	33.6	6	12	40	7	13.5
39	22.8	3	7						
40	20.6	4	9	25.7	5	10	33.5	6	12

41	38.6	5	11	43.7	6	12	48	7.5	13.5
42	36.8	4	9	40.6	5	10	46.5	6	12
R1 Av.	31.66	4.37	9.58	39.48	5.78	11.28	44.42	6.57	12.62
Av. DBH	10.08			12.57			14.15		
43	23.4	2	5						
44	29.4	5	9.5	33.6	5.5	11	40	6	12.5
45	29.8	5	10	34.2	6	11	37	6.5	12.5
46	32.5	5	9.5	35.4	5.5	11	44.5	6	12.5
47	21.8	3	7						
48	27.7	4	8.5	33.6	5	9.5	37	6	11
49	34.8	4	9	39.2	5	10	46.5	6	11.5
50	30.3	5	10						
51	36.7	4	10	42.4	6	11	46.1	6.5	12.5
52	28.4	4	9.5						
53	35.7	5	11	40.3	6.5	12	46	7	13.5
54	24.4	5	10						
55	20.6	5	10	27.4	6	11	37.5	6.5	12.5
56	26.7	5	9.5						
57	37.9	5	11	42.4	6.5	12	45.5	7	13.5
58	36.7	5	9	41.6	5	10	44.5	6	11.5
59	38.6	5	10	43.6	6	11	47.2	6.5	12.5
60	35.9	3	7	40.3	4.5	9	45	5.5	10.5
61	23.9	4	8	33.6	5	10	38.7	6	12
62	36.9	4	10.5	40.7	6	11	40.5	6.5	12.5
63	30.7	5	10	35.7	6	11	40.8	6.5	13
64	28.3	4.5	9	32.6	5	10	37.1	6	12
65	23.2	3	7						
66	21	2	7						
67	32.2	7	11	36.7	7	12	46	7	13
68	26.3	2.5	7						
69	32	4	10	42.4	6	11	48.4	6.5	12.5
70	25.3	4	9						
71	31.4	5	9	37.8	5.5	10.5	44.5	6.5	12
72	30.2	5	10	36.4	6	11.5	41.5	6.5	13
73	26.4	5	10	28.3	6	11.5	37.5	6.5	13
74	34.6	5	11	40.5	6.5	12	43	7	13.5
75	28.6	5	9.5	33.6	6	11	42.5	7	12
76	27	3	7						
77	26.5	4	9.5	32.4	6	11	37	6.5	12
78	26	4	9						
79	26.4	4	9.5	32.7	5.5	11	38.4	6.5	12
80	25.3	4	9.5	38.4	5.5	11	45	6.5	12
81	28.5	6	10	35.6	5.5	11	41.3	6.5	12
82	22.8	5	9						
83	32.8	5	11	42.7	6	12	48.1	7	13
84	28	4	10	32.4	5.5	11	38.7	6.5	12
85	28.2	5	10	33.4	5.5	11	46.5	6.5	12
86	22.8	3	7						
R2 Av.	29.01	4.34	9.20	36.66	5.73	10.93	42.41	6.45	12.33
Av. DBH	9.24			11.68			13.51		
87	33.4	5	10	37.8	6	11	45	6.5	12
88	36	5	11	41.8	6.5	12	48.5	7	13

89	34.4	4	11	39.4	6	12	45.7	7	13
90	31.6	5	11	36.8	6	12	43.5	7	13
91	26.8	3	8						
92	34.8	4	8	40.3	5	9	47.5	6	11
93	21.8	3	7						
94	20.3	4	9	26.3	5	10	34.5	6	11.5
95	28.8	2.7	7	32.3	4.5	9	38.2	5.5	10.5
96	30.8	3	8	36.5	5	9	43.5	5	10.5
97	29.5	4	9.5						
98	38.5	5	11.5	43.5	6	12.5	51.3	7	13.5
99	28.6	3	8						
100	36.3	4	9	40.3	5.5	10	47.5	6	11
101	27.9	4	8						
102	31.2	4	8	37.2	5	9	43.6	5.5	10
103	23.3	5	10	29.3	5.5	11	36.3	6	12
104	25.6	4	8	30.9	5	9	37.5	5.5	10.5
105	25.8	4	9	31.6	5.5	10	40.1	6.5	12
106	29.3	5	11	36.3	6	12	43.4	7	13.5
107	28.8	5.5	11	32.4	6.5	12	39.2	7	14
108	30.5	5	10	34.2	6	11	40.5	7	13
109	31.4	4	10	38.3	6	11	41.7	7	13
110	29.2	5	11	35.8	6.5	12	43	7	13.5
111	16.4	2	10						
112	28	5	10	36.3	6	11	38	6.5	12.5
113	26	4	8						
114	30.4	5	11	36.7	6	12	42.3	6.5	13
115	34.5	4	9	41.5	5.5	10	43.4	6	11.5
116	20.4	2	7						
117	23.6	3	8	26.8	4.5	9	35	5	11.5
118	28.4	4	9	34.5	5.5	10	42	6	11.5
119	25.4	4	8	31.4	5	10	38.7	5.5	11.5
120	26.4	4	9	33.2	5.5	10	42	6	11.5
121	21.7	3	7						
122	30.4	5	10	37.8	6	11	44.7	6.5	13
123	38.8	5	11	43.4	6.5	12	52.5	7	14
124	28.8	4	8	33.2	5	9	43.5	5.5	11
125	32.5	5	10	38.7	6	11	45	6.5	13
R3 Av.	28.88	4.08	9.21	35.82	5.63	10.62	42.59	6.28	12.15
Av. DBH	9.20			11.41			13.56		

Measurement date: March 20, 2002				$\begin{aligned} & \text { Measurement date: March 19, } \\ & 2003 \end{aligned}$			Measurement date: March 18, 2004		
Treatment 2: TP2 Pruning 60\%				Treatment 2: TP2 Pruning 60\%			Treatment 2: TP2 Pruning 60\%		
Tree No	GBH (cm)	CH (m)	TH (m)	GBH (cm)	CH (m)	TH (m)	GBH (cm)	CH (m)	TH (m)
1	35.8	5	10	41.4	7	12.5	45.5	8	14
2	26.6	5	9	31.5	6	11	38.3	7	13
3	27.4	4.5	10	32.5	7	12.5	35	8	14
4	33	2	8	38.3	5.5	10	43	6.5	11.5
5	26	6	10.5	32.2	7	13	37.8	8.5	14.5
6	32	4	10	39.8	7	12.5	39.5	8	14
7	22.4	3	8	29.7	5.5	10	33.5	6.5	11.5

8	20	2	7	28.3	5	9	30.7	6	10.5
9	24.4	4	9	30.2	6	11	34.5	7	12.5
10	36	4	11	43	7	12.5	46	8	14
11	33	5	10	39.4	7	12	43.4	7.5	13.5
12	31.7	5	10	36.3	7	12	40	7.5	13.5
13	27	2	8	33.4	5.5	10	35.5	7	12
14	13.6	2	6						
15	23	2	7						
16	36.8	5	10	43.2	7	12	45	7.5	14
17	21.6	3	8	28.3	5	10	32.4	7	12
18	41	5	11	47.5	7	12.5	48.5	7.5	14
19	20	4	9	28.1	6	11	33.1	7	13
20	29.4	5	10	37.8	7	12	43	7.5	14
21	33.6	6	11	40.2	7	13	43.5	7.5	14
22	27	4	8						
23	22	5	9						
24	22.5	5	9	30.2	6	11	32.5	7	13
25	25	4	8	33.2	6	10	36	6.5	12
26	30.6	5	10	38.6	7	12	39	7.5	14
27	20.2	5	9	27.7	6	11	31.5	7	13
28	33	3	8						
29	31	4	10	38.6	7	12	38.5	7.5	14
30	26.5	5	9.5						
31	34.4	5	10	41.3	7	12	43	7.5	14
R1 Av.	27.95	4.15	9.13	35.63	6.42	11.46	38.75	7.30	13.18
Av. DBH	8.90			11.35			12.34		
32	20.4	5	9	26.2	6	10.5	30	7	12
33	20.8	4	9	25.7	6	10.5	30	7	12
34	35.6	5	11	40.3	7	12.5	44.5	8	14
35	27	5	10	32.4	7	12	36	8	13.5
36	30.6	6	11	36.2	7.5	12.5	41.5	8	14
37	20.3	5	10	25.3	7	12	30.2	8	13.5
38	29	5	11	36.2	8	13	40.5	8	14
39	19.4	4	8						
40	15	4	7						
41	32	5	11	39.3	8	13	43	8.5	14
42	17	5	9						
43	18	3	8	25.6	6	10	30	7	12
44	19.5	3	9						
45	23	4	9	26.7	6	10	30.5	8	13
46	34.8	5	11	39.3	8	13	44	8.5	14
47	18.3	3	7						
48	36.8	5	11.5	41.4	8	13	45	8.5	14
49	23.6	5	10	29.3	7	12	34.5	8	13
50	23.6	6	10.5						
51	34.8	5	10	39.6	7	12	44	8.5	14
52	46.8	5	11	51.3	8	13	55.5	8.5	14
53	32.2	5	10	38.6	7	12	43	8.5	14
R2 Av.	26.30	4.64	9.68	34.59	7.09	11.94	38.89	8.00	13.44
Av. DBH	8.37			11.02			12.38		
54	22.3	4	8						
55	30.4	5	11	37.2	8	12.5	42.5	8.5	13.5

56	27	4	9	32.4	6	11	38.1	7	12
57	28	4	9	37.8	6	11	42.5	7	12
58	37	6	11	43.4	8	12.5	47	8.5	13.5
59	33.8	6	11	40.2	8	12.5	45	8.5	13.5
60	36.2	6	11	43.2	8	12.5	47.5	8.5	13.5
61	18	4	9	25.3	6	11	30	7.5	12.5
62	16.2	2	7						
63	36	5	10	40.2	7	11.5	44.5	8.5	13.5
64	34.5	5	10	39.6	7	11.5	43	8.5	13.5
65	19.2	5	9	26.4	6	11	31.2	7	12
66	18.6	3	7						
67	28.6	6	10	33.5	7	12	38.5	8.5	13.5
68	18	3	6						
69	34.5	5	10	40.2	6.5	11.5	42	8	13
70	16.7	4	7						
71	31.3	6	10.5	38.2	7	12	40.5	8	13.5
72	18.3	3	7						
73	27.2	3	7						
74	25.2	5	10	32.4	6.5	11.5	36.5	8	13
75	26	5	10	31.5	6.5	11.5	35.8	7.5	13
76	27.4	5	10	35.6	6.5	11.5	40.5	8	13
77	29	5	10	34.6	6.5	11.5	40	8	13
78	18	2	7						
79	34	5	10	39.3	7	11.5	45	8	13
80	21.3	5	9.5	26.7	6.5	10.5	32.4	7.5	12
81	41.8	6	11	47.9	7	12	51.5	8.5	13.5
82	22.6	3	7						
83	28.4	4	10	35.6	7	11.5	42.5	8	13
84	37.6	4	8	40.2	6	9.5	46.5	6.5	11
85	20	4	8	25.8	6	9.5	32.1	6.5	11
86	23.4	4	9	28.2	6.5	10.5	36.5	7	12
87	25.9	4	8	31.4	5.5	9.5	38	6.5	11
R3 Av.	26.84	4.41	9.03	35.47	6.72	11.32	40.38	7.76	12.72
Av. DBH	8.55			11.30			12.86		

Measurement date: March 19, 2002				$\begin{aligned} & \text { Measurement date: March 19, } \\ & 2003 \end{aligned}$			$\begin{aligned} & \text { Measurement date: March 18, } \\ & 2004 \end{aligned}$		
Treatment 3: TP3 Pruning 70\%				Treatment 3: TP3 Pruning70% 70\%			$\begin{aligned} & \text { Treatment 3: TP3 Pruning } \\ & \text { 70\% } \\ & \hline \end{aligned}$		
Tree No	GBH (cm)	CH (m)	TH (m)	GBH (cm)	CH (m)	TH (m)	GBH (cm)	CH (m)	TH (m)
1	33.4	6	10	38.7	8.5	12	45.5	9	13.5
2	35.6	4	9	39.3	7.5	10.5	45.7	8.5	12
3	28.5	5	9	33.8	8	11	37	8.5	13
4	25.6	4	8						
5	26.3	5	10	31.4	8.5	12	40	9	13.5
6	22.3	4	8						
7	25.8	6	10	32.3	8	11	41.5	8.5	13
8	20.3	4	9						
9	28.5	5	11	35.6	9	13	40	10	14
10	36.7	6	11	41.5	9	13	32.5	10	14
11	21.4	4	8						
12	34.5	6	11	40.3	9.5	13.5	43	10.5	14.5
13	28.4	5	10	35.7	8.5	12	46	9	13.5

14	16.3	4	7						
15	29.5	5	10	35.6	8.5	12	47.5	9	13.5
16	40.2	6	11	44.6	9	13	50	10	14.5
17	22.8	5	9						
18	25.4	4	8						
19	30.4	5	11	37.6	8.5	12.5	41	10	14
20	23.4	4	9						
21	35.4	6	11	39.6	9	13	42.5	10	14
22	36.2	5	10	41.3	8.5	12	51.5	9	13.5
23	34.5	6	11	39.6	8.5	12.5	43.4	10	14
24	27.2	5	10	32.8	8.5	12	41	9	13.5
25	30.3	6	11	36.8	8.5	12.5	40.5	10	14
26	34.5	5	10	39.2	8	12	43.1	9	13.5
27	30.4	4	9	38.2	7.5	10.5	48	8.5	12
28	27.3	5	9	35.7	7.5	10.5	41.1	8.5	12
29	32.6	6	11	40.3	7.5	12.5	42.5	10	14
30	24.3	4	8						
31	27.4	5	9	32.7	7	10.5	40	8.5	12
32	30.3	6	10	38.2	8	11.5	43.1	9	13
33	28.4	5	10	35.6	8	11.5	45	9	13
34	27.8	5	10						
35	40.2	6	11	46.7	8.5	12.5	50	9.5	13.5
36	38.2	5	11	45.9	8.5	12.5	45.5	9.5	13.5
37	30.1	4	9	37.6	7	10.5	42.1	8.5	12
38	35.4	6	10	42.3	8.5	12	45.5	9.5	13
R1 Av.	29.63	5.03	9.71	38.18	8.27	11.93	43.38	9.27	13.34
Av. DBH	9.44			12.16			13.81		
39	28.6	5	9	38.4	8	11	42.7	8.5	13
40	36.7	6	11	42.6	8.5	12.5	32	9	14
41	23.2	5	9	28.7	8	11	36.5	8.5	13
42	19.6	5	10	27.8	8	11.5	33.8	8.5	13
43	23.4	5	9	32.6	8	11	38	8.5	12.5
44	20.3	4	9						
45	19.7	5	10	28.6	8	12	34	8.5	13
46	26.4	5	11	33.4	8.5	13	50	10	14
47	32.4	6	10	39.2	8	12	52.5	9	13
48	28.8	5	9						
49	35.6	6	10	42.4	8.5	12.5	52	10	13.5
50	28.7	5	11	35.6	8.5	13	42.5	10	14
51	23.5	4	9	32.4	8	11.5	40.3	8.5	12.5
52	28.2	5	10	36.5	8	12	38.5	9	13
53	23.3	4	9						
54	27.6	5	11	33.4	9	13	47.5	10	14
55	30.4	6	12	36.7	9	14	42.5	10	15
56	33.5	6	11	40.3	10.5	13	45	10.5	14.5
57	30.6	5	10						
58	32.5	5	12	38.7	9	14	42	10	15
59	28.4	4	9	39.2	8	11	46.1	9	12.5
60	30.3	5	11	38.7	9	13	45.5	9	14.5
61	35.4	6	10						
62	32.4	5	11	38.7	8.5	13	50	10	14.5
63	33.5	5	10						

64	35.6	6	12	41.3	9	14	39	10	15
65	30.4	5	11	38.2	9	13	42.5	10	14.5
66	34.3	6	11	42.3	8.5	13	45.8	9	14
67	37.4	6	12						
68	30.4	5	10	36.7	8	12	40	9.5	14.5
69	33.2	6	10	38.7	8	12	43.4	9.5	13.5
70	30.4	5	11	36.8	9	13	32.5	10	14.5
71	28.5	5	9	34.4	8	11	40.1	9	12.5
72	30.2	6	10	35.6	8.5	12	65.5	10	13.5
73	38.7	6	11						
R2 Av.	29.77	5.23	10.29	36.59	8.48	12.37	42.97	9.39	13.72
Av. DBH	9.48			11.65			13.68		
74	25.5	5	10	30.4	8.5	12	36	9.5	13.5
75	24.3	5	9	28.2	7.5	11	32.1	8.5	12
76	27.3	5	11	32.1	8.5	13	39.2	9	13
77	23.4	5	9	28	7.5	11	36.1	8.5	12.5
78	26.3	5	11	32.3	8.5	13	39.5	10	14
79	30.2	6	10	35.6	8	12	41	9	13
80	24.5	5	9	28.3	7	10.5	35.1	8.5	12
81	36.4	6	9						
82	34.5	5	11	39.4	9	13	44	9	13.5
83	32.4	5	9						
84	26.5	4	9	28.7	7.5	11	36.7	8.5	12.5
85	29.3	5	10	38.6	8.5	12	45.6	9.5	13.5
86	24.4	5	9	29.3	7.5	11	36	8.5	12.5
87	30.4	6	10	36.7	8	12	43	9	13.5
88	33.4	6	11	38.6	8.5	13	44.5	9	14
89	30.2	5	10	36.4	8	12	42	9	13
90	34.5	6	10	39.2	8	12	45.7	8.5	13
91	32.4	5	11	38.6	8.5	13	43.5	9	14
92	28.5	5	10	35.7	8	12	41	8.5	13
93	33.4	6	10						
94	29.5	5	11	36.5	8.5	13	42.5	10	14
95	33.2	6	10						
96	30.3	5	10						
97	28.2	6	10	35.6	8	12	41.5	9	14
98	33.4	5	11	38.8	9	13	44	9.5	14.5
99	28.5	5	9						
100	32.4	6	10						
101	28.7	5	10	35.4	8	12	42.5	9.5	13.5
102	32.4	6	11						
103	35.6	6	11	40.3	9	13	44	10.5	15
104	28.4	5	10						
105	31.3	6	11	38.2	9	13	43	10	15
106	33.2	5	11	39.4	8.5	12	44.5	9	14
107	28.5	6	10	35.6	8.5	12	39.2	9	13.5
108	31.4	5	11	37.8	9	13	42	10	14.5
109	35.6	6	11	41.3	9	13	46.5	10	14.5
110	34.2	5	11						
111	36.4	6.5	11	41.2	9	13	46	10	14.5
112	33.4	6	10						
113	28.4	5	11	33.2	8.5	12.5	44.5	10	14.5

$\mathbf{1 1 4}$	30.5	6	10	36.6	8	12	40.5	9.5	13.5
$\mathbf{1 1 5}$	35.4	6	11	40.3	9	13	44.6	10	14.5
$\mathbf{1 1 6}$	32.4	5	11	37.2	9	13	42.6	10	14.5
R3 Av.	$\mathbf{3 0 . 6 8}$	$\mathbf{5 . 4 1}$	$\mathbf{1 0 . 2 3}$	$\mathbf{3 5 . 7 3}$	$\mathbf{8 . 3 4}$	$\mathbf{1 2 . 2 8}$	$\mathbf{4 1 . 5 3}$	$\mathbf{9 . 3 0}$	$\mathbf{1 3 . 6 4}$
Av. DBH	$\mathbf{9 . 7 7}$			$\mathbf{1 1 . 3 8}$			$\mathbf{1 3 . 2 3}$		

Measurement date: March 19, 2002				$\begin{aligned} & \text { Measurement date: March 19, } \\ & 2003 \end{aligned}$			$\begin{array}{\|l} \hline \text { Measurement date: March 18, } \\ 2004 \\ \hline \end{array}$		
Treatment 4: TP4 Control				Treatment 4: TP4 Control			Treatment 4: TP4 Control		
Tree No	GBH (cm)	CH (m)	TH (m)	GBH (cm)	CH (m)	TH (m)	GBH (cm)	CH (m)	TH (m)
1	36	4	8	40	4.5	9	43.5	5	11
2	33.8	5	10	37.5	5.5	11	41	6	12.5
3	30.8	5	11	33.3	5.5	11.5	36.5	6	13
4	21	3	7	23	4	8.5	26.4	5	10.5
5	34.2	4.5	9	38.4	5	9.5	41.3	5.5	11
6	20.4	3	7	23.1	4	8.5	25.4	5	10
7	32.5	5.5	10	36.3	6	11	41.5	6.5	12.5
8	25.8	5	11	29.8	6	12	33.6	7	14
9	33.8	5	11.5	38.4	6	13	42.2	7	14
10	20.2	3	7	23.7	4	8	29.3	5	10
11	22.4	3	7	28.3	4	8	33.5	5	10
12	32.8	5	11	34.7	5.5	12	37.1	6	13
13	32.4	3	7	34.2	4	9	36.8	5	10.5
14	35.2	5	11	37.8	6	13	40	7	14
15	33.7	5	11	36.5	6	12	39.9	6.5	13
16	19	4	8	25.4	5	10	29.9	6	11.5
17	30.8	5	10	36.2	6	12	40.3	7	13.5
18	26.8	2	6	28.7	3.5	8	30.9	4.5	9.5
19	27.5	3	7	29.7	5	9	31.4	5.5	11
20	32.4	4	9	36.5	5	11	42.5	6	12.5
21	30.4	5	11	36.2	6	12	30	7	13.5
22	25.6	4	8	27.4	5	9.5	29.6	6	11
23	30.4	5	11	35.4	6	12	38	6.5	13
24	33	5	11	35.8	6	12	38.6	6.5	13.5
25	24.5	5	9	30.4	5.5	11	35	6.5	12.5
26	36.4	3	7	38.2	4	8.5	40.5	5	10
27	28.4	5	9.5	32.1	5.5	10.5	35.4	6.5	12
28	25.6	4	9	29.2	5	10	32.5	6	11.5
29	25.6	4	9	28.9	5	10	33.3	6	11.5
30	35.8	5	10	39.2	5.5	11	42.8	6.5	12.5
31	35	3	7	38.4	4	8.5	41.7	5	10
32	38.8	5	11	43.3	6	13	49.5	7	14
33	35.4	5	11	39.4	5.5	12	43.5	6.5	13.5
34	32.2	5	11	37	5.5	12	41.1	6.5	13.5
35	30.6	5	10	35.6	5.5	11	38.3	6.5	12.5
36	29	4	9	36.2	4.5	10	40.7	5.5	12
R1 Aver.	29.95	4.28	9.22	33.73	5.14	10.53	37.04	6.00	12.04
Av. DBH	9.54			10.74			11.80		
37	32.8	3	7	38.4	4	8.5	41.3	5	10
38	31.8	3	7	37.5	4.5	8.5	39.5	5.5	10
39	17.4	4	8	23.5	5.5	9	27.6	6	10.5
40	37.2	5	11	42.7	6	12	45.9	7	13.5
41	20.4	4	8.5	26.7	5	10	29.8	5.5	11.5

42	29.2	4	9	34.5	5	10	39.7	6	12
43	25.4	4	9	29.6	5	10	32.2	6	11.5
44	31.5	5	11	37.6	6	12	43.6	7	13.5
45	25.6	5	11	30.3	6	12	35.1	7	13.5
46	30.8	4	8	35.7	5	9	39.3	5.5	10.5
47	32.5	5	10.5	38.4	6	12	42	7	13.5
48	32.8	5	10	36.8	5.5	11	40.5	6.5	12.5
49	29.2	3	7	35.4	4	9	40.3	5	10
50	21.8	4	9	26.4	5	10.5	32	6	13
51	23.6	4	9	28.5	5	11	39.5	6	12.5
52	18.4	5	10	27.6	6	12	28.4	7	13
53	25	4	8	30.4	5	9	34	5.5	11
54	31.8	4	10	36.7	6	12	42.4	7	13
55	25.7	5	10	30.4	5.5	11	38.7	6.5	12.5
56	37.4	5	11	42.4	6	12.5	47.9	7	13.5
57	35.2	5	11	41.3	6	12.5	47	7	13.5
58	21.2	4	8	26.2	5	10	30.5	6	12
59	19.4	5	11	24.7	6	12.5	28.4	7	13.5
60	39.2	5	11	43.7	6	12.5	46.5	7	13.5
61	24.7	5	11.5	30.2	6	13	39	7	14
62	24.2	5	11	28.7	6	12	36.1	7	13.5
63	28.4	5	11	35.6	5.5	11.5	41.5	6.5	13
64	23.2	3	7	28	4.5	9	36	5	10.5
65	28.6	5	10	33.4	5.5	11	35.1	6	12
66	39.4	5	11	43.5	6	12	49	6.5	13
67	23	4	8	28.4	5	9.5	34.4	6	11
68	26.8	5	11	31.4	6	12	39.5	7	13
69	28.2	5	10	34.2	5.5	11	42	6.5	12
70	37.4	5	11	41.5	6	12	46.8	7	13
71	19	4	9	25.4	5	10	35	6	12
72	37.2	4	8	41.2	5	9	46.5	5.5	10.5
73	31.4	5	11	39.4	6	12	40.6	7	13
74	15.8	4	9	21.3	5	10	31	6	12
75	30.6	4	8	34.3	4.5	9	41.5	5	10.5
76	19	4	9	23.4	4.5	10	26.7	5.5	12
77	28.6	5	11	33.5	6	12	38.3	7	14
78	23.6	5	11	27.5	6	12	33	7	14
79	24.8	5	11	22.4	6	12	33.5	5.5	14
80	21.2	5	11	26.2	6	12	34.5	6.5	14
81	34.7	5	11	38.8	6	12	44	6.5	14
82	26	4	10	31.3	5	11	37.1	6	13
83	28.7	4	10	32.7	5	11	39	6	13
84	36.4	5	10	41.5	5.5	11	44.8	6	13
85	34.8	5	11	38.3	6	12	45	6.5	14
86	18.7	4	9	25.4	5	10	29	6	12
R2 Aver.	27.79	4.46	9.71	32.86	5.43	10.93	38.22	6.27	12.47
Av. DBH	8.85			10.46			12.17		
87	35.6	5	11	39.5	6.5	13	43.5	7	14
88	16.3	4	9	23.4	5	10	28	5.5	11
89	22.7	4	9	27.3	5	10	33	6	11.5
90	37.3	5	11	41.5	6	12.5	45	7	14
91	31.4	5	11.5	36.4	6	12.5	40	7	14

$\mathbf{9 2}$	39.4	5	11	44.5	6	12.5	48.5	7	14
$\mathbf{9 3}$	19.2	4.5	9	26.2	5	10	30	5.5	11
$\mathbf{9 4}$	31.4	5	11	36.7	6	12.5	42.5	6.5	13
$\mathbf{9 5}$	32.6	5	11	35.8	6	12.5	40.1	6.5	13
$\mathbf{9 6}$	16.7	4.5	9	21.3	5	10	29	5.5	11
$\mathbf{9 7}$	22.7	5	10	27.4	6	11.5	32	6.5	12.5
$\mathbf{9 8}$	22.3	4.5	9	25.8	5.5	11	27.5	6	12
$\mathbf{9 9}$	33.2	5	11	39.7	6	12.5	41	7	14
$\mathbf{1 0 0}$	34.7	5	11	40.5	6	12.5	46.7	7	14
$\mathbf{1 0 1}$	28.3	5	11	33.4	6	12.5	38.3	7	14
$\mathbf{1 0 2}$	24.8	5	11	28.3	6	12	34	7	13.5
$\mathbf{1 0 3}$	24.8	5	11	29.4	6	12	33	7	13.5
$\mathbf{1 0 4}$	27.8	5	12	34.6	6	13	40.5	7	14
$\mathbf{1 0 5}$	27	5	9.5	30.4	5.5	11	38.6	6	12
$\mathbf{1 0 6}$	38	5	9.5	42.3	5.5	11	49	6	12
$\mathbf{1 0 7}$	34.8	5	11	41.4	6	12	45.6	7	13
$\mathbf{1 0 8}$	30	4	9	36.5	5.5	10.5	46.5	6.5	12
$\mathbf{1 0 9}$	26.8	5	10	32.6	5.5	11	39	6	12
$\mathbf{1 1 0}$	32	5	10	37.3	5.5	11	43	6	12
$\mathbf{1 1 1}$	24.7	4	8	28.2	5	9.5	36	6	11
$\mathbf{1 1 2}$	22.4	5	10.5	28.3	6	12	30.5	7	14
$\mathbf{1 1 3}$	28.2	5	9	33.7	5.5	10	37.5	6.5	12
$\mathbf{1 1 4}$	27	4	8	30.6	5	10	35.5	6	12
$\mathbf{1 1 5}$	40.7	4	7	45.5	5	9	54	6	11
$\mathbf{1 1 6}$	20.3	5	9.5	26.7	5.5	11	30.5	6	12
$\mathbf{1 1 7}$	26.3	4	9	31.4	5	11	36.3	6	12
$\mathbf{1 1 8}$	38.7	5	10	43.6	6	12	52	7	13.5
$\mathbf{1 1 9}$	33.7	5	10	38.9	5.5	11	43	6	12
$\mathbf{1 2 0}$	37.8	5	10	41.5	5.5	11	46.5	6	12
$\mathbf{R 3} \mathbf{A v e r}$	$\mathbf{2 9 . 1 1}$	$\mathbf{4 . 7 5}$	$\mathbf{9 . 9 6}$	$\mathbf{3 4 . 1 4}$	$\mathbf{5 . 6 3}$	$\mathbf{1 1 . 3 4}$	$\mathbf{3 9 . 3 0}$	$\mathbf{6 . 4 1}$	$\mathbf{1 2 . 6 0}$
Av. DBH	$\mathbf{9 . 2 7}$			$\mathbf{1 0 . 8 7}$			$\mathbf{1 2 . 5 1}$		
								6	

Table 1.2: Measurement data of teak at site II (Had Soa)
Table 1.2: Measurement data of Teak in experimental plots at site II (Hadsoa)

Name of owner: Nane Seng
Measurement date: March 18, 2002
Treatment 1: TP1 pruning 50\%

Before pruning								
Tree No.	GBH $\mathbf{(c m)}$	CH (m)	TH (m)	$	$	$\mathbf{1}$	48.6	7
---:	---:	---:						
$\mathbf{2}$	37.8	5						
$\mathbf{3}$	37	6						
$\mathbf{4}$	40	6						
$\mathbf{5}$	44.6	6						
$\mathbf{6}$	19.4	1						
$\mathbf{7}$	27.6	2						
$\mathbf{8}$	30.2	6						

Year of planting: 1996
Measurement date:
March 18, 2003
Treatment 1: TP1,
pruning 50\%
After pruning one year

GBH (cm)	CH (m)	TH (m)
52.5	8	15
40	5.5	14
42	7	12
53	7.5	12
45.3	7	13.5
31	2.5	8.5
33.2	7	13

Measurement date:
March 20, 2004
Treatment 1: TP1
pruning 50\%
After pruning two years

GBH (cm)	$\mathbf{C H}(\mathbf{m})$	$\mathbf{T H}(\mathbf{m})$
56	8	16
45.5	8	15
47	8	14
58.5	8	14
50.5	8.5	15
35.5		
37	8.5	14

9	39.8	9	14	42.3	9	14	47	10	15
10	49	7	12	52.2	8	13.5	56.5	8	15
11	38.2	6	12	41.6	7.5	13	46.5	8	15
12	31.2	4	8	37.7	5.5	10	41.5	7	12
13	47.2	5.5	12	49.3	6	13	56	8	15
14	32.4	4	10	40.3	6.5	12	44.5	7	14
15	40.6	7	13	45.8	8	14	50.5	9	15
16	32.8	6	11	35.2	7	12.5	39	8	13
17	25.2	3	7						
18	23.6	3	7	35.4	4.5	7.5	40.5	6	9
19	40.2	7	13	43.3	7.5	14	47	8	15
20	30.2	5	11						
21	35.6	6	12						
22	44.6	6	11	48.7	7.5	13	52.5	8	15
23	31.6	6	12	38.6	7.5	14	42	8	15
24	45.6	7	12	49.3	8	13.5	53.5	9	15
25	24	2	8						
26	28.4	3	9	34.2	5.5	11	38.5	7	12
27	38	5.5	11						
28	20.4	2	7	22.8	2.5	8	27.5	5	9
29	32	6	11	35.6	7.5	12.5	40.5	9	14
30	39	7	13	46.2	8	14	50.5	9.5	15
31	33	4	10	37.6	6	11.5	42	7.5	14
32	42.8	7	12						
R1 Av.	35.33	5.2	10.8	41.32	6.7	12.4	45.84	7.8	13.7
Av. DBH	11.25			13.16			14.60		
33	45.6	5	12	49.3	6.5	14	53.5	8	15
34	36.8	2	10	39.3	4.5	12	44.5	7	13
35	17.8	2	7	22.2	3	7.5	26.5	5	9
36	36	6	12	40.3	7	13	45	8	15
37	38.8	6	12	43.4	8	14	46	9	15
38	30.4	4	11	33.7	5	12.5	36.5	7	13
39	37	6	12	43.5	7	14	47.5	9	15
40	34	6	11	38.4	7	12	43.5	8	14
41	39.4	6	13	41.3	7	14	45.5	9	15
42	33	4	10						
43	33.3	5	12	35.6	6	13	40.5	8	13
44	34.8	6	12	39.4	6.5	13.5	44.5	8	15
45	31.8	5	12	35.7	6	13	40	7.5	14
46	41.4	6	12	47.2	7	14	52.5	8	15
47	35.4	6	12						
48	33	5	11	37.6	6	12	41.5	8	14
49	34.8	5	10	39.4	6	11	44	7.5	13
50	30.4	6	11	35.7	7	12	39.5	7	13.5
51	36.6	6	12	40.7	7	13.5	43.5	9	14
52	20.6	2	7	25.4	4	8	28.5	6	9
53	37.6	7	12	43.4	8	14	47	8.5	14
54	33	4	9	40.4	6	11.5	44.5	8	14
55	43.6	7	13	47.2	8.5	14	52	9	15
56	24.8	3	8	29.3	5	9	34	7	10
57	41.6	7	12	46.8	7.5	13	51.5	8.5	15
58	27.6	4	10	30.3	5.5	11	34	7	13

59	25.6	5	11						
60	47.2	8	12	51.4	8.5	13	55.5	9	15
61	22	3	9						
62	30.2	4	10						
63	39.6	8	12						
64	24.4	2.5	8						
65	36.4	6	12	41.7	7	13.5	45	8.5	14
R2 Av.	34.20	5.1	10.8	39.74	6.5	12.4	44.02	7.8	13.7
Av. DBH	10.89			12.66			14.0		
66	41	7	12	48.7	8.5	13	53.5	9	15
67	47.8	7	13	52.8	8.5	14	56.5	9	15
68	31.2	6	10						
69	39.6	6	11	45.2	7	13	51.5	8	15
70	36.6	6	12	42.2	8	14	48	9	15
71	41	6	10	47.7	7	12	51.5	8	14
72	20.6	2	6						
73	38	6	11	42.4	6.5	12	46.5	8	13
74	26.8	6	10	32.3	7	13	36.5	8	14
75	33.8	6	10	36.2	7.5	12	40	8	13
76	27.6	5	12						
77	25.6	5	11	29.8	7	13	56.5	9	15
78	46.2	7	12	52.3	8	14	58	8.5	15
79	49.6	6	12	56.4	7.5	14	61	9	15
80	28.2	5	10						
81	42.6	8	13	52.6	8.5	14	55	9	15
82	49.4	8	12	56.6	9.5	14	61	10	15
83	44.2	8	13						
84	43.2	8	14	49.4	8	15	53	8	16
85	36	5	12						
86	43.4	6	12	48.4	7	14	51.5	8	15
87	29.8	6	12						
88	30.4	4	10	35.2	6	12	40	8	13
89	36	6	13	38.3	7.5	14	43.5	9	15
90	28	5	11						
91	31.8	7	12						
92	54.8	8	12						
93	29.8	6	11						
94	34.6	6	12	39.3	7	14	44	7.5	15
95	21.4	3	8	25.7	5	9	30.5	8	11
96	39	7	13	45.4	8.5	14	51.5	9.5	15
97	41.2	7	13						
R3 Av.	34.71	5.4	11.0	40.47	6.8	12.6	45.07	8.0	13.9
Av. DBH	11.05			12.89			14.4		

Measurement date: March 18, 2002				Measurement date: March 18, 2003			Measurement date: March 20, 2004		
Treatment 2: PT2 pruning 60\%				Treatment 2: PT2 pruning 60\%			Treatment 2: PT2 pruning 60\%		
Tree No	$\begin{aligned} & \text { GBH } \\ & (\mathrm{cm}) \end{aligned}$	CH (m)	TH (m)	$\begin{aligned} & \text { GBH } \\ & (\mathrm{cm}) \end{aligned}$	CH (m)	TH (m)	$\begin{aligned} & \text { GBH } \\ & (\mathrm{cm}) \end{aligned}$	CH (m)	TH (m)
1	24.6	2	8	29.3	4	9	36	6	11

2	28	4	9	31.4	5	10	36,5	7	12
3	46.4	6	13.5	52.3	8	15	58,5	8	16
4	27.6	4	10						
5	31	4	10	34.3	6	12	42,5	8	13
6	24	2	8	26.2	3.5	9	31.5	5	11
7	38.8	7	13	45.3	8	15	52.5	9	16
8	45	6	12	49.3	7	14	58.5	9	15
9	25	4	12	41.2	6	12	46.5	8	13.5
10	27.8	4	8						
11	28.2	5	11	31.7	6.5	13	36.5	8	14
12	43	6	13	48.8	8	15	55.5	9	16
13	38	6	10	41.4	7	12	48	8	13.5
14	35	6	12						
15	38.4	6	12	40.2	7	13	46.5	8	14
16	27.4	4	10						
17	25.4	3	6	28.1	4	7.5	37	7	10
18	28.4	2	8						
19	48	7	13	56.2	8.5	15	62.5	9	16
20	23.8	3	7						
21	29.4	5	11	39.4	7	13	46.5	8	14.5
22	34	6	12	38.7	7	13	44.5	8	14.5
23	44	7	12	48.3	8	14	56.5	9	15
24	42.4	7	12	50.1	8.5	15	58	9	16
25	27.4	3	10						
26	40.8	6	12	45.6	8	15	52.5	9	16
27	36.4	6	13	40.7	7	14	46.5	8	15
28	30.8	5	12	35.3	7	13.5	40	8	15
29	29.4	4	10						
30	57.4	8	13	62.5	9.5	15	68.5	11	16
31	32	6	12	36.2	7	13	42.5	8	14
32	21	2	7						
33	28.2	5	11						
34	36.4	6	12	42.3	8	14	48.5	9	15
35	20.8	2	8						
36	35.4	7	12	40.4	8	14	45.5	9	15
37	20	2	7						
38	37.6	8	13	42.6	9	14	47	10	15
R1 Av.	33.08	4.9	10.6	41.45	7.0	13.0	48.15	8.3	14.1
Av. DBH	10.54			13.20			15.34		
39	42	7	13	49.5	8.5	14	55.5	9	15
40	18	2	7						
41	28	4	12.5						
42	26.4	4	10	31.4	6	12	36.5	8	14

43	25	4	11						
44	46	7	13	53.2	9	14	60.5	9	15
45	34	6	12	40.4	8	14	50.5	9	15
46	40	7	13.5	45.3	9	14	50	10	15
47	36	6	12	43.2	7	14	48.5	8	15
48	36	7	11						
49	30.4	5	12	35.8	6	13	39.5	8	14
50	38	5	12	42.7	6	13	48.5	8	14
51	20	2	6						
52	36.4	6	12	43.4	7	13	48.5	8	14
53	30	6	12	36.1	6.5	12	41.5	8	13
54	36	6	13	41.4	7	14	46.5	8	15
55	26	5	11	31.2	6	12	34.5	7	13
56	25.4	2	10						
57	40	8	13.5	47.28	14.5		52.5	9	15
58	34.2	6	12	39.4	6.5	13	43	8	14
59	39.6	6	12	44.7	7	14	48.5	8	15
60	26	4	8						
61	29	4	10	33.4	5	11	37.5	7	12
62	18.6	2	8						
63	30.6	5	11	35.3	6	12	40	7	13
64	20.4	2	6						
65	32	6	13	37.1	7	14	42.5	8	15
66	21.6	2	10						
67	27.8	3	9	33.7	5	10	37.5	7	12
68	36	6	12	42.2	7	13	48.5	8	15
69	32.6	5	11	37.4	6	12	43.5	8	14
70	30.4	6	12.5	35.3	7	13.5	39.5	8	15
71	33	7	12	38.6	7	13	44.5	8	15
72	23	2	9						
73	27	2	9						
74	29.2	5	10	31.5	6	12	36.5	7	13
75	22	2	7						
76	17	1	7						
R2 Av.	31.34	4.8	10.7	40.04	7.0	13.1	45.83	8.2	14.1
Av. DBH	9.98			12.75			14.59		
77	33.6	3	9	38.2	5	10	43.5	7	12
78	34.2	6	12	39.7	7	13	44.5	9	15
79	37	7	13	42.3	7.5	14	48.5	9	15
80	26.4	4	9						
81	29	4	10	33.5	6	12	38	8	14
82	30.6	6	12	36.3	7	13	41.5	8	15
83	28.8	4	10	32.4	5	11	37	7	13

84	22	3	9						
85	18	2	8						
86	34.8	7	13	39.6	7.5	14	45.5	9	15
87	31.8	7	13	37.2	7.5	14	43	9	15
88	31.8	6	12						
89	35.2	7	13	41.5	7.5	14	45.5	9	15
90	33	6	13	37.8	7	14	43	8	15
91	33.8	5	12	36.7	6	13	41.5	8	15
92	18.6	1	5						
93	24.4	2	8						
94	32.2	6	11	37.4	6.5	13	43.5	8	15
95	32.8	6	11	37.1	7	12	42.5	8	15
96	39	6	12	44.3	7	14	48	8	14
97	31.4	5	12	35.3	6	12.5	40	7.5	13
98	36.4	6	12	41.4	7	13	47	8	15
99	23	3	9						
100	44	7	12	48.2	7.5	14	52.5	9	15
101	27.6	3	10						
102	40	8	13	48.7	8.5	14	52.5	9	15
103	34	6	12	39.2	7	13	43	8	14
104	20	3	9						
105	56.2	5	12.5	62.4	7	14	67.5	9	15
106	27.6	5	11	33.6	6	12	37	8	14
107	20.2	2	9						
108	31.6	6	12.5	36.2	7	13	41.5	8	15
109	41	6	13	48.4	7	14	55.5	9	15
110	15	1	5						
111	28.8	4	12	33.4	6	13	38	8	14
112	23	2	7						
113	39	6	11	45.6	7	13	51.5	8	15
114	43	5	12	49.4	7	14	55.5	8.5	15
115	27.2	4	11						
R3 Av.	31.11	4.7	10.7	39.88	7.0	13.1	45.36	8.2	14.3
Av. DBH	9.91			12.70			14.45		

Measurement date: March 19, 2002				Measurement date: March 18, 2003			Measurement date: March 20, 2004		
Treatmen	PT3 p	ning 7		Treatme pruning	$\begin{aligned} & \text { t 3: PT3 } \\ & 0 \% \end{aligned}$		Treatme pruning	$\begin{aligned} & \text { t 3: PT3 } \\ & \text { 0\% } \end{aligned}$	
Tree No.	$\begin{aligned} & \text { GBH } \\ & (\mathrm{cm}) \end{aligned}$	CH (m)	TH (m)	$\begin{aligned} & \text { GBH } \\ & (\mathrm{cm}) \end{aligned}$	CH (m)	TH (m)	$\begin{aligned} & \text { GBH } \\ & (\mathrm{cm}) \end{aligned}$	CH (m)	TH (m)
1	41.2	5	12	44.3	7	13	47	8	14
2	21.8	2	6						
3	23.2	3.5	8	36.2	5	9	40.5	7	10

4	33	4	9						
5	29.8	5	10	41.3	6	12	46.5	7	13
6	31.4	4	9	37.3	6	11	40.5	7	13
7	35.8	6	11	39.2	7	13	44.5	8	14
8	37	5	11	40.3	6.5	12	45	8	13
-9	24	5	10						
10	31	5	11						
11	26	3	9						
12	27	4	9	30.3	5	11	33.5	6	12
13	26	5	11	34.4	6	12	36	7	13
14	26.8	4	10						
15	29.8	4	10	33.4	6	12	38	7.5	14
16	35.2	5	11	39.6	6	12	42	7	13
17	31	4	11	36.2	6	11	39.5	7	12
18	30.6	4	10	37.8	6.5	13	40.5	8	14
19	25.2	4	11	34.5	6	12	38.5	7	13
20	31.8	5	9						
21	24.2	3	9	27.4	5	10	30.5	6	12
22	26.2	3	10						
23	34	4	11	38.5	6	12	42.5	7	13
24	30.8	5	10	35.8	6	11	38	7	13
25	32	4	11						
26	28.6	5	11	36.2	6.5	12	40.5	8	14
27	27	4	11						
28	28	3	9	34.6	5	10	37.5	6	12
29	33.4	6	12	37.2	6.5	13	42.5	8	14
30	34.6	6	11	38.7	7	13	42	8	14
R1 Av.	29.88	4.3	10.1	36.66	6.1	11.8	40.28	7.2	13.0
Av. DBH	9.52			11.68			12.83		
31	35.8	6	12	41.5	7	13	45.5	8	14
32	30.4	4	10	37.3	6	12	42	7	13
33	30.8	5	12						
34	32.6	5	12	37.6	6	12.5	41	7	13
35	33	5	10	38.4	6	12	42.5	8	13
36	34	6	12						
37	34.4	5	12	39.3	6.5	13	43.5	7.5	14
38	42.8	7	12	47.3	8.5	13	50	9	14
39	32.8	5	11	38.2	7	12	42	7.5	13
40	35.4	5	10	41.6	7	12	44.5	8	14
41	29	4	10						
42	32.2	5	11	37.6	6	12	41.5	7.5	13
43	39	5	11	44.8	7	13	48.5	8	14
44	27	3	9	35.6	6	12	39	7	14

45	43.6	5	11	48.3	7	13	52.5	8	14
46	30.6	4	10	35.4	6	12	39	7	13
47	24	3	10						
48	26.8	4	9						
49	32.8	4.5	10	37.2	6	11	42	7	13
50	27.6	4	8						
51	32	5	11	35.7	6	12	38.5	7	13
52	35	4	11						
53	34.6	5	12	40.3	7	13	44	8	14
54	32.6	4	11	38.7	6	12	42.5	7	13
55	38	4.5	10						
56	26.2	3	9	30.4	5	11	34	6	12
57	26.6	4	9	33.5	6	11	37.5	7	13
58	22	3	9						
59	28	4	9	33.4	6	11	39.5	8	13
60	26.25	4	9	31.3	5	11	36	7	13
61	31.2	6	12						
62	24	3	9						
63	37.4	4	9	42.4	6	12	46	7	14
64	31	4	10	36.3	6	11	40.5	7	13
65	28.4	5	11	33.2	6	12	38	7	13
66	36	5	11						
R2 Av.	30.58	4.4	10.3	36.89	6.2	12.0	40.62	7.3	13.2
Av. DBH	9.74			11.75			12.94		
67	36.2	5	12	41.7	6.5	13	46	7.5	14
68	28.8	4	10	34.4	6	12	38.5	8	13
69	28	3.5	7	34.6	5	8	38.5	7	10
70	25.6	2	7						
71	27	4	8	33.2	5	9	39.5	7	11
72	18	2	7						
73	33.2	5	12	38.4	6.5	13	43.5	8	14
74	28.4	4	10						
75	43.4	7	13	47.2	7.5	14	52	8	15
76	40.8	6	12	48.1	7	13	52.5	8	14
77	56	6	13	62.4	7	14	66	8	15
78	42.6	6	10	47.7	6.5	13	51.5	9	14
79	34.4	5	12	39.3	6	12.5	44.5	8	14
80	37	5	10	43.2	6.5	13	48	8	14
81	31	5	12						
82	18	2	7						
83	28.6	5	9	35.4	6	11	40	7.5	13
84	23	3	9						
85	27	3	7						

$\mathbf{8 6}$	36.2	5	11	39.3	6	12	44.5	8	13
$\mathbf{8 7}$	30	2	9	36.4	4	10.5	40.5	6	12
$\mathbf{8 8}$	35	4	10	40.2	6	12	46	8	14
$\mathbf{8 9}$	26.6	3	8						
$\mathbf{9 0}$	40	5	10	47.3	7	12	52.5	8	14
$\mathbf{9 1}$	46.6	6	12	53.4	7.5	13	57	8	14
$\mathbf{9 2}$	22.6	2	8						
$\mathbf{9 3}$	24	4	8						
$\mathbf{9 4}$	36	5	12	41.4	6.5	13	46.5	8	14
$\mathbf{9 5}$	33	4	10	37.3	6	11	42	8	13
$\mathbf{9 6}$	30.2	3	6	35.7	5	8	40.5	7	9
$\mathbf{9 7}$	19.2	2	7						
$\mathbf{9 8}$	39.2	5	11	45.4	7	13	50	8	13
$\mathbf{9 9}$	26	3	8						
$\mathbf{1 0 0}$	32.6	3	8	36.7	6	12	41.58	8	14
$\mathbf{1 0 1}$	45	4	9	51.3	6	12	56.5	8	14
R3 Av.	$\mathbf{3 0 . 9 4}$	$\mathbf{4 . 3}$	$\mathbf{1 0 . 0}$	$\mathbf{3 8 . 2 5}$	$\mathbf{6 . 2}$	$\mathbf{1 2 . 0}$	$\mathbf{4 2 . 2 6}$	$\mathbf{7 . 5}$	$\mathbf{1 3 . 2}$
Av. DBH	$\mathbf{9 . 8 5}$			$\mathbf{1 2 . 1 8}$			$\mathbf{1 3 . 4 6}$		

Measurement date: March 19, 2002				Measurement date: March 18, 2003			Measurement date: March 20, 2004		
Treatment 4: PT4; Control				Treatment 4: PT4; Control			Treatment 4: PT4; Control		
Tree No.	$\begin{aligned} & \text { GBH } \\ & (\mathrm{cm}) \end{aligned}$	CH (m)	TH (m)	$\begin{aligned} & \text { GBH } \\ & (\mathrm{cm}) \end{aligned}$	CH (m)	TH (m)	$\begin{aligned} & \text { GBH } \\ & (\mathrm{cm}) \end{aligned}$	CH (m)	TH (m)
1	47.2	8	14	54.4	9	15	58	9	16
2	39.8	3	11	43.2	5	12	48	7	13
3	27.4	2	6						
4	43.2	5.5	11	48.2	6	12	52.5	8	14
5	46.4	6	12	53.7	7	13	58.5	8	14
6	43.2	6	12	52.4	7	13	57	8	14
7	39.8	6	11	44.7	7	13	49.5	8	14
8	53.8	6	12	58.4	7.5	14	64.5	9	15
9	49	6	12	53.2	7	13	57	8	14
10	47.4	7	12	56.4	8.5	15	59	9	15
11	39.6	5	10	48.2	6	12	52	8	13
12	33.8	2	7	39.4	5	9	43.5	8	12
13	45.6	6	11	54.3	7.5	13	58	8	14
14	34.6	4	12	39.2	5	13	43.5	8	14
15	47.4	8	12	55.2	8.5	14	58.5	9	15
16	42.2	6	11	48.3	7	13	52	8	14
17	45.6	6	10	51.5	7	13	54	8	14
18	22	2	7	26.2	4	8	29	6	9
19	45.4	6	12	51.4	7	13	54.5	8	14

20	45.6	6	11	50.3	7	13	54.5	9	14
21	36.6	5	11	42.3	7	13	46	8	14
22	20	4	9	24.3	5	10	27.5	7	12
23	27	7	12	33.6	8	13	36.5	8	14
24	47	7	11	52.3	7.5	13	55.5	9	14
25	34.8	6	11	38.7	7	13	42	8	14
R1 Av.	40.18	5.4	10.8	46.66	6.8	12.9	50.46	8.1	13.7
Av. DBH	12.79			14.86			16.07		
26	43.2	8	13	51.5	9	14	54.5	9	15
27	44	6	12	52.4	7.5	13	55.5	9	14
28	31	4	12	36.4	6	13	39	8	14
29	29.2	4	10	32.5	5	11	36	7	12
30	26.4	1.5	8	31.3	3	9	35.5	6	9
31	27	5	11	34.6	6	12	38.5	8	13
32	38	6	13	41.3	7.5	14	44.5	9	15
33	46	6	13	53.6	8	14	56	8	15
34	32.2	6	10	35.4	6.5	12	38.5	8	13
35	34.2	2.5	9	40.2	5	10	44.5	7	12
36	33	6	12	38.4	7	13	41.5	8	14
37	36	4	9	44.3	6	12	48.5	8	13
38	37.8	2	9	42.5	5	10	45	7	12
39	30	4	10	35.2	5	11	39.5	7	12
40	40.6	7	12	46.3	8	14	49	8	15
41	25.8	2	8	30.3	4	9	33.5	6	10
42	33.8	5	10	38.4	6	12	42.5	8	13
43	30.4	6	11	35.4	6.5	12	38	8	14
44	43.8	6	12	48.3	7	13	52.5	8	14
45	27.7	3	9	33.5	5	10	36	7	12
46	30	4	9	35.4	5	10	39.5	7	12
47	25.6	3	7	30.4	5	9	34.5	7	10
48	30.4	4	8	34.2	6	10	37.5	8	13
49	26.4	3	8	31.2	5	9	34.5	7	10
50	33.2	4	8	38.4	6	10	41	7.5	12
51	31.8	4	9	36.5	5	10	39	7	11.5
52	33	4	9	38.4	5	10	41.5	7	10
53	30	4	9	36.3	6	11	39	7	12.5
54	36	5	11	44.3	7	13	48.5	8	14
R2 Av.	33.33	4.4	10.1	38.86	6.0	11.7	42.19	7.6	12.6
Av. DBH	10.61			12.38			13.44		
55	24.4	3	7	28.4	4	8	32	6	9
56	29.2	4	10	35.7	6	11	39	8	12
57	35	5	12	40.4	6.5	13	44.5	8	14
58	44	6	13	48.2	7	14	52	8	15

$\mathbf{5 9}$	31.2	4	10	36.6	7.5	13	39.5	9	15
$\mathbf{6 0}$	39	6	12	45.6	8	14	49	9	15
$\mathbf{6 1}$	24.8	3	8	28.4	5	9	32.5	7	10
$\mathbf{6 2}$	29.4	3	8	33.6	5	9	36.5	7	10
$\mathbf{6 3}$	29	4	9	34.3	6	10	36.5	7	11
$\mathbf{6 4}$	28.6	4	7	35.4	5	9	37.5	8	11
$\mathbf{6 5}$	29	4	11	36.7	6	12	39.5	7	13
$\mathbf{6 6}$	40	7	13	46.4	8.5	14	49	9	15
$\mathbf{6 7}$	38.8	6	11	44.7	7	13	47.5	8	14
$\mathbf{6 8}$	36.4	5	12	40.7	6.5	13	43.5	8	14
$\mathbf{6 9}$	31.8	4	6	36.2	6	8	39.5	8	10
$\mathbf{7 0}$	23.2	2	6	27.2	3	8	30.5	5	9
$\mathbf{7 1}$	53.2	4	7	59.4	6	10	63.5	8	13
$\mathbf{7 2}$	20	1.5	5	25.1	3	7.5	27.5	5	8
$\mathbf{7 3}$	42	5	8	50.4	7	11	54.5	8	13
$\mathbf{7 4}$	38.2	6	11	43.5	8	13	46	8	15
$\mathbf{7 5}$	33.4	4	9	37.1	6	11	40.5	8	13
$\mathbf{7 6}$	44.4	2	12	50.5	5	14	54.5	8	15
$\mathbf{7 7}$	31	6	10	37.4	7	12	40.5	8	14
R3 Av.	$\mathbf{3 3}$	$\mathbf{4} .74$	$\mathbf{4 . 3}$	$\mathbf{9 . 4}$	$\mathbf{3 9 . 2 1}$	$\mathbf{6 . 0}$	$\mathbf{1 1 . 1}$	$\mathbf{4 2 . 4 1}$	$\mathbf{7 . 6}$
Av. DBH	$\mathbf{1 0 . 7 4}$			$\mathbf{1 2 . 4 9}$			$\mathbf{1 3 . 5 1}$		

Table 1.3: Measurement data of teak in experimental plots in site III (Pak Check)

Name of owner: Mr. Mai Bai				Year of planting: 1996			
Time of measurement: July 26, 2003				Time of measurement: July 6, 2004			
Treatment 1: TT1; thinning 25 \%				Treatment 1: TT1; thinning 25 \%			
Before thinning				After thinning			
No	GBH (cm)	CH (m)	TH (m)	Tree No	GBH (cm)	CH (m)	TH (m)
1	46	8	12	1	51	10.5	13
2	42	8	12	2	46	11	14
3	30	6	9	3	35.5	8	11
4	33	6	9	4	47.5	8	12
5	44	6	9	5	48	8.5	13
6	40	7	10	6	54.5	8	12
7	50	7	10	7	36	8	12
8	33	7	11	8	47.5	9.5	14
9	45	7	12	9	52	9	13
10	48	7	11	10	43.5	9	12
11	40	7	11	11	46	9.5	13
12	43	8	11	12	41.5	10	13
13	38	8	12	13	48.5	11	14
14	46	8	12	14	38	9.5	13
15	35	7	11	15	43	9	13
16	40	7	11	16	43.5	8	12
17	40	7	10	17	43	8.5	13
18	40	7	10	18			
R1 (Av.)	40.72	7.1	10.7	R1 (Av.)	45.0	9.1	12.8

Av. DBH	12.97			Av. DBH	14.33		
19	24	5	9	19			
20	36	7	10	20	39	8	12
21	37	8	11	21	40.5	9	13
22	44	7	11	22	47	9.5	13
23	35	6	9	23	37.5	8	12
24	34	7	9	24			
25	39	6	10	25	42.5	8	13
26	25	7	9	26			
27	50	7	10	27	54.5	8.5	12
28	39	7	10	28			
29	29	7	9	29	42	8	12
30	30	6	9	30	32	9	12
31	45	7	10	31	33	8	12
32	43	8	11	32	48	9	13
33	52	8	12	33	56.5	10	13
34	34	7	10	34			
R2 (Av.)	37.25	6.9	9.9	R2 (Av.)	43.25	8.7	12.4
Av. DBH	11.86			Av. DBH	13.77		
35	34	7	10	35	37	8	12
36	51	7	11	36	54.5	9	13
37	39	8	11	37	42.5	9.5	12
38	37	7	10	38	41	8	12
39	39	7	10	39	42.5	9	12
40	36	7	10	40	39	8.5	13
41	46	8	11	41	49.5	9.5	13
42	44	7	11	42	47	9.5	13
43	40	4	10	43	43.5	8	12
44	35	7	10	44	38.5	9	12
R3 (Av.)	40.1	6.9	10.4	R3 (Av.)	43.5	8.8	12.4
Av. DBH	12.77			Av. DBH	13.85		

Time of measurement: July 26, 2003				Time of measurement: July 6, 2004			
Treatment 2: TT2; thinning 50\%				Treatment 2: TT2; thinning 50\%			
Before thinning				After thinning			
Tree No	GBH(cm)	CH (m)	TH (m)	Tree No	GBH (cm)	CH (m)	TH (m)
1	21	5	7	1	24.5	7	9
2	32	6	9	2	35	8	11
3	30	5	7	3	33	7	10
4	38	6	8	4	41.5	8	12
5	26	6	8	5	29.5	8	11
6	26	4	6	6			
7	24	5	7	7			
8	31	6	8	8	34	8	11
9	34	6	9	9	37.5	8	11
10	33	7	9	10	36	8.5	11
11	11	4	6	11			
12	21	5	7	12			
13	21	4	6	13	24	7	10
14	40	6	8	14	43.5	8	11
15	34	6	8	15	37	7	10
16	24	5	7	16			

R1 (Av.)	27.88	5.4	7.5	R1 (Av.)	34.1	7.7	10.6
Av. DBH	8.88			Av. DBH	10.87		
17	38	6	8	17	42	8	12
18	37	5	7	18	40.5	7	9
19	17	3	5	19			
20	19	3	5	20			
21	25	4	6	21	28	6	9
22	31	7	9	22	33.5	8	12
23	41	7	10	23	44	9	13
24	33	7	10	24	36.5	8	12
25	25	6	9	25	28.5	8	11
26	21	4	6	26	24.5	6	9
27	8	2	4	27			
28	15	3	5	28	18	4	7
29	24	3	5	29			
30	28	4	6	30	31.5	6	9
31	29	6	8	31	32.5	8	11
32	15	4	6	32	18	6	9
33	25	5	7	33	28.5	7	10
34	10	2	3	34			
35	27	5	7	35	31	7	10
36	21	3	5	36			
37	27	6	9	37	30.5	8	11
38	32	7	10	38	35	8	12
39	38	8	11	39	41.5	9	13
R2 (Av.)	25.48	4.8	7.0	R2 (Av.)	32.0	7.0	10.5
Av. DBH	8.11			Av. DBH	10.19		
40	35	7	10	40	38.5	8	12
41	40	7	10	41	43.5	8	12
42	29	6	8	42	32.5	8	11
43	23	5	7	43	25.5	7	9
44	23	5	7	44	25	7	9
45	34	6	8	45	37.5	8	11
46	17	3	5	46			
47	19	4	6	47	22.5	6	9
48	11	2	4	48			
49	11	2	4	49			
50	30	5	7	50	33	7	10
51	14	4	6	51	19.5	6	8
52	16	4	6	52	19.5	6	8
R3 (Av.)	23.23	4.6	6.8	R3 (Av.)	29.7	7.1	9.9
Av. DBH	7.40			Av. DBH	9.46		

Time of measurement: July 26, 2003
Treatment 3: TT3; thinning with Farmer practices
before thinning

Tree No	GBH(cm)	CH (m)	TH (m)
$\mathbf{1}$	12	2	4
$\mathbf{2}$	4	1	2
$\mathbf{3}$	4	1	2
$\mathbf{4}$	24	3	5

Time of measurement: July 6, 2004
Treatment 3: TT3; thinning with Farmer practices
After thinning

Tree No	GBH (cm)	CH (m)	TH (m)
$\mathbf{1}$	14.5	4	6
$\mathbf{2}$			
3			
4	27.5	6	8

5	12	2	4	5	15.5	4	6
6	20	4	6	6	23	6	9
7	24	5	7	7	26.5	6	9
8	22	4	7	8	25.5	7	9
9	33	4	7	9	36	6	9
10	40	5	8	10	43	8	11
11	29	5	7	11	31.5	7	10
12	21	4	7	12	24.5	6	9
13	13	2	3	13			
14	9	1	2	14			
15	23	3	5	15	25	5	8
16	14	2	4	16	17	4	7
17	22	4	6	17	25	6	9
18	8	1	2	18			
19	19	3	6	19	22	5	8
20	18	1	3	20	22	5	8
21	24	2	5	21	27	5	8
R1 (Av.)	19.45	3.0	5.0	R1 (Av.)	26.22	5.8	8.6
Av. DBH	6.20			Av. DBH	8.35		
22	33	6	8	22	36	8	11
23	20	4	6	23			
24	27	2	4	24	30	4	6
25	14	2	4	25	17	4	6
26	18	3	5	26	20	5	7
27	29	5	7	27	31.5	7	9
28	21	5	8	28	23.5	8	11
29	24	6	7	29	27	8	11
30	30	6	8	30	32.5	9	12
31	18	3	6	31	20	5	8
32	30	6	8	32	33.5	8	11
33	18	3	6	33	20	5	8
34	30	6	8	34	32.5	8	11
35	21	3	6	35	23	5	8
36	22	2	6	36	25	5	7
37	32	6	8	37	34	8	10
38	41	3	7	38	43.5	6	9
39	33	6	8	39	35.5	7.5	11
40	17	2	4	40			
R2 (Av.)	25.05	4.1	6.4	R2 (Av.)	28.00	6.3	8.9
Av. DBH	7.98			Av. DBH	8.92		
41	31	4	6	41	33.5	6	8
42	24	3	5	42	27	5	7
43	18	4	6	43	20	6	8
44	24	2	6	44	26.5	5	7
45	18	3	6	45	20	6	8
46	22	4	6	46	24	6	9
47	21	4	6	47	23	7	9
48	26	5	7	48	28.5	7	10
49	22	3	7	49	24.5	5.5	8
50	40	4	8	50	43.5	7	10
51	29	5	9	51	31.5	8	11
52	33	5	8	52	35.5	8	11

$\mathbf{5 3}$	23	4	7	$\mathbf{5 3}$	25.5	6	8
$\mathbf{5 4}$	27	4	7	$\mathbf{5 4}$	30.5	6	9
$\mathbf{5 5}$	33	4	7	$\mathbf{5 5}$	35.5	6	8
$\mathbf{5 6}$	19	3	5	$\mathbf{5 6}$	22	5	7
$\mathbf{5 7}$	26	3	6	$\mathbf{5 7}$	28.5	6	8
R3 (Av.)	$\mathbf{2 5 . 3 1}$	$\mathbf{3 . 8}$	$\mathbf{6 . 6}$	R3 (Av.)	$\mathbf{2 7 . 8 8}$	$\mathbf{6 . 2}$	$\mathbf{8 . 6}$
Av. DBH	$\mathbf{8 . 0 6}$			Av. DBH	$\mathbf{8 . 8 8}$		

Time of measurement: July 26, 2003				Time of measurement: July 6, 2004			
Treatment 4: TT4; Control				Treatment 4: TT4; Control			
before thinning				After thinning			
Tree No	GBH (cm)	CH (m)	TH (m)	Tree No	GBH (cm)	CH (m)	TH (m)
1	58	7	12	1	61.5	10	14
2	44	8	12	2	46	10.5	14
3	48	8	12	3	48.5	10.5	13
4	32	7	9	4	34.5	8	12
5	22	5	7	5	22.5	7	9
6	37	6	8	6	39.5	8	10
7	20	4	6	7	22.5	6	8
8	17	3	5	8	17.5	4	6
9	24	3	6	9	26	4	6
10	42	7	9	10	44	8	11
R1 (Av.)	34.40	5.8	8.6	R1 (Av.)	36.25	7.6	10.3
Av. DBH	10.96			Av. DBH	11.54		
11	32	7	9	11	34.5	8	11
12	34	7	10	12	36.5	9.5	12
13	36	7	10	13	39.5	8	12
14	37	7	10	14	40.5	8.5	13
15	61	7	12	15	65.5	9	13
16	28	6	9	16	30	7.5	11
17	47	8	12	17	50	10.5	13
18	38	5	8	18	40.5	7	10
19	35	7	9	19	37.5	8	12
20	41	7	9	20	44	8	12
21	32	6	9	21	34.5	8	11
22	38	6	9	22	40	8	12
23	38	6	9	23	41	8	13
24	27	6	9	24	30.5	8	11
25	41	7	10	25	43	9	13
26	46	8	11	26	49	9	13
27	29	7	10	27	31	9	12
28	47	7	11	28	50	9.5	13
29	49	8	12	29	53	11	13
30	45	8	12	30	48.5	11	13
31	41	8	12	31	44.5	11	14
32	30	7	11	32	32	9.5	12
R2 (Av.)	38.73	6.9	10.1	R2 (Av.)	41.61	8.9	12.2
Av. DBH	12.33			Av. DBH	13.25		
33	54	8	11	33	58	9.5	13
34	43	8	11	34	47	9	12
35	52	7	10	35	55	9.5	13

$\mathbf{3 6}$	28	7	10	$\mathbf{3 6}$	30.5	8	12
$\mathbf{3 7}$	29	7	10	$\mathbf{3 7}$	31	9	12
$\mathbf{3 8}$	35	6	9	$\mathbf{3 8}$	37	8	11
$\mathbf{3 9}$	26	6	9	$\mathbf{3 9}$	28.5	8	11
$\mathbf{4 0}$	49	7	10	$\mathbf{4 0}$	51.5	8	12
$\mathbf{4 1}$	24	7	10	$\mathbf{4 1}$	26.5	9	12
$\mathbf{4 2}$	27	6	9	$\mathbf{4 2}$	30.5	8	11
$\mathbf{4 3}$	52	9	12	$\mathbf{4 3}$	55	11	14
$\mathbf{4 4}$	55	7	10	$\mathbf{4 4}$	58	8.5	12
$\mathbf{4 5}$	42	7	10	$\mathbf{4 5}$	45	9	12
$\mathbf{4 6}$	31	6	9	$\mathbf{4 6}$	33.5	8	11
$\mathbf{4 7}$	22	5	8	$\mathbf{4 7}$	24.5	7	10
$\mathbf{4 8}$	48	7	10	$\mathbf{4 8}$	51.5	9	12
R3 (Av.)	$\mathbf{3 8 . 5 6}$	$\mathbf{6 . 9}$	$\mathbf{9 . 9}$	R3 (Av.)	$\mathbf{4 1 . 4 4}$	$\mathbf{8 . 7}$	$\mathbf{1 1 . 9}$
Av. DBH	$\mathbf{1 2 . 2 8}$			Av. DBH	$\mathbf{1 3 . 2 0}$		

Table 1.4: measurement data in experimental plots of teak site IV (Houay Leuang)

Name of owner: Thao Nen
Measurement date: July 1, 2003
Treatment 1: TT1; Thinning 25\%
Before thinning

Year of planting: 1996
Measurement date: July 4, 2004
Treatment 1: TT1; Thinning 25\%
After thinning

Tree No	GBH (cm)	CH (m)	TH (m)	Tree No	GBH (cm)	CH (m)	TH (m)
1	25	5	9	1			
2	29	5	9	2	36.5	6	10.5
3	24	5	9	3	29.5	6	10.5
4	35	5	10	4	42.5	7	12
5	26	4	8	5	32.5	6	10
6	31	5	9	6	37	6.5	11
7	34	5	9	7	41	6.5	11
8	23	4	8	8	29.5	5.5	9.5
9	29	5	9	9	36	6	10.5
10	22	4	8	10			
11	23	5	9	11			
12	24	5	9	12			
13	24	5	9	13			
14	35	5	10	14	43.5	6.5	11.5
15	30	4	8	15	36	5.5	9.5
16	37	5	10	16	44	7	12
17	31	5	9	17	38.5	6.5	11
18	27	4	8	18	33.5	5.5	9.5
19	27	4	8	19			
20	28	5	9	20	35	6	10.5
21	26	5	9	21	32.5	6.5	11
22	30	5	9	22	36	6.5	11
23	26	5	9	23	32	6.5	11
24	31	5	9	24	37	6.5	11
25	26	4	8	25	31.5	5.5	9.5
26	30	4	8	26	36.5	5.5	9.5
Av. R1	28.19			Av. R1	36.03		
Av. DBH	8.98	4.69	8.81	Av. DBH	11.47	6.18	10.60
27	32	5	9	27	36.5	6.5	10.5
28	22	5	8	28	27.5	6	9.5
29	19	4	7	29	23.5	5	8
30	35	4	8	30	40.5	6	9.5
31	17	4	6	31			
32	21	4	6	32	26	4	7
33	24	4	6	33	28.5	4	7
34	40	5	9	34	46.5	6.5	10.5
35	24	5	7	35	28	5	8.5
36	37	5	9	36	42	6.5	11

37	43	5	9	37	48.5	6.5	11
38	21	4	7	38			
39	25	4	8	39	30	6	9.5
40	16	3	6	40			
41	25	4	8	41	30.5	5.5	9
42	30	4	8	42	36.5	5.5	9
43	18	3	6	43			
44	18	4	7	44	23	5	8.5
45	19	4	7	45	25.4	5	8.5
46	19	4	7	46			
47	29	5	9	47	35.5	6.5	10.5
Av. R2	25.43			Av. R2	33.03		
Av. DBH	8.10	4.24	7.48	Av. DBH	10.52	5.59	9.22
48	27	3	7	48	33.5	5	8.5
49	17	4	7	49			
50	35	6	9	50	41.5	6.5	10.5
51	32	6	9	51	38	6.5	10.5
52	27	5	7	52	33	5	8
53	23	4	7	53			
54	21	4	7	54	27.5	5	8
55	15	2	6	55			
56	33	5	8	56	38.5	6	9.5
57	31	5	8	57	36.5	6	9.5
58	33	5	8	58	38.5	6	9.5
59	34	5	8	59	40	6	9.5
60	30	5	8	60			
61	33	5	9	61	37.5	6.5	11
62	24	5	7	62	29.5	5	8
63	15	3	6	63			
64	23	4	7	64			
65	18	4	6	65	23.5	4	7
66	18	2	5	66			
67	21	3	7	67	25.5	5	8.5
68	21	3	6	68	25.5	4.5	7.5
69	27	3	7	69	33	5	8.5
Av. R3	25.36			Av. R3	33.43		
Av. DBH	8.08	4.14	7.23	Av. DBH	10.65	5.47	8.93

Measurement date: July 1, 2003				Measurement date: July 4, 2004			
Treatment 2: TT2; Thinning 50\%		Treatment 2: TT2; Thinning 50\%					
Tree No	GBH (cm)	CH (m)	TH (m)	Tree No	GBH (cm)	CH (m)	TH (m)
$\mathbf{1}$	29	5	9	$\mathbf{1}$	35	6.5	10.5
$\mathbf{2}$	29	5	9	$\mathbf{2}$			
$\mathbf{3}$	31	5	9	$\mathbf{3}$	38.5	6.5	10.5
$\mathbf{4}$	38	5	9	$\mathbf{4}$	44.5	6.5	10.5

5	22	5	8	5			
6	32	4	7	6	38	5	8
7	39	5	9	7	45	6	10
8	24	4	8	8			
9	31	5	9	9	37	5.5	10
10	24	4	8	10			
11	32	5	9	11	39	6	10
12	22	4	8	12	40	5.5	9
13	25	4	8	13			
14	23	4	8	14	29	5.5	9
15	22	4	8	15			
16	29	5	9	16	34	6	10
17	24	5	9	17	29.5	6	10
18	23	4	8	18			
19	26	4	8	19	31	5	9
20	33	5	9	20	49.5	6	10
Av. R1	27.90			Av. R1	37.69		
Av. DBH	8.89	4.55	8.45	Av. DBH	12.00	5.85	9.73
21	25	5	8	21	33.5	5.5	8.5
22	26	5	9	22	35	6	10
23	26	4	7	23			
24	29	5	9	24	36.5	6	10
25	23	4	8	25			
26	28	5	9	26			
27	33	5	9	27	40	6.5	10
28	36	5	9	28	44.5	6.5	10
29	31	5	9	29	38	6	10
30	27	5	9	30			
31	31	5	9	31	38.5	6	10
32	38	6	10	32	45	6.5	11
33	24	5	9	33			
34	28	5	9	34	35.5	6	10
35	25	4	8	35			
36	31	4	9	36	39	6	10
Av. R2	28.81			Av. R2	38.55		
Av. DBH	9.18	4.81	8.75	Av. DBH	12.28	6.10	9.95
37	35	5	9	37	42.5	6	10
38	31	5	9	38	37.5	6	10
39				39			
40	34	5	10	40	40.5	6.5	11
41	23	4	8	41	28	5	8.5
42	24	4	9	42			
43	26	5	9	43	44	6	10
44	31	4	8	44	37	5	8.5
45	24	4	8	45			

$\mathbf{4 6}$	31	4	$\mathbf{4 6}$	38	6	10	
$\mathbf{4 7}$	27	5	9	$\mathbf{4 7}$			
$\mathbf{4 8}$	32	5	9	$\mathbf{4 8}$	38.5	6	10
$\mathbf{4 9}$	34	5	10	$\mathbf{4 9}$	40.5	6.5	11
$\mathbf{5 0}$	37	5	10	$\mathbf{5 0}$	43.5	6.5	11
$\mathbf{5 1}$	20	4	7	$\mathbf{5 1}$			
$\mathbf{5 2}$	28	5	9	$\mathbf{5 2}$	34	6	10
$\mathbf{5 3}$	32	6	10	$\mathbf{5 3}$	40.5	6.5	11
$\mathbf{5 4}$	18.5	3	6	$\mathbf{5 4}$			
$\mathbf{5 5}$	38	6	10	$\mathbf{5 5}$	45.5	6.5	11
Av. R3	$\mathbf{2 9 . 1 9}$			Av. R3	$\mathbf{3 9 . 2 3}$		
Av. DBH	$\mathbf{9 . 3 3}$	$\mathbf{4 . 6 7}$	$\mathbf{8 . 8 3}$	Av. DBH	$\mathbf{1 2 . 5 3}$	$\mathbf{6 . 0 4}$	$\mathbf{1 0 . 1 5}$

Measurement date: July 1, 2003				Measurement date: July 5, 2003			
Treatment 3 : TT3; Farmer practice				Treatment 3 : TT3; Farmer practice			
Tree No	GBH (cm)	CH (m)	TH (m)	Tree No	GBH (cm)	CH (m)	TH (m)
1	23	4	7	1			
2	28	5	9	2	32.5	6	10
3	32	5	9	3	36	6	10
4	31	5	9	4	35.5	6	10
5	26	5	9	5	31	6	10.5
6	30	5	9	6	34.5	6	10.5
7	24	5	9	7	28.5	6	10.5
8	31	6	10	8	36.5	6.5	11
9	30	6	10	9	35.2	6.5	11
10	32	6	10	10	37	6.5	11
11	26	4	8	11	29.5	5.5	9
12	26	4	8	12			
13	27	4	8	13	32.5	5.5	9
14	30	6	10	14	35	7	11
15	38	6	10	15	42	7	11
16	33	6	10	16	37.5	7	11
Av. R1	29.19			Av. R1	34.51		
Av. DBH	9.30	5.13	9.06	Av. DBH	10.99	6.25	10.39
17	33	6	10	17	37	6.5	11
18	26	5	9	18	29.5	6	10
19	36	6	11	19	40.5	7	12
20	33	6	10	20	36.5	6.5	11
21	26	5	8	21	29.5	5.5	9
22	31	5	9	22	34	6	10
23	32	5	9	23	35.5	6	10
24	33	6	10	24	37.5	6.5	11
25	36	6	11	25	40	7	12
26	30	6	10	26	33.5	6.5	11
27	39	6	11	27	43	7	12

	$\mathbf{2 8}$	17	4	6	$\mathbf{2 8}$		
$\mathbf{2 9}$	18	3	6	$\mathbf{2 9}$			
$\mathbf{3 0}$	35	6	11	$\mathbf{3 0}$	38	7	12
$\mathbf{3 1}$	32	5	10	$\mathbf{3 1}$	35.5	6.5	11
$\mathbf{3 2}$	30	5	10	$\mathbf{3 2}$	34.5	6.5	11
$\mathbf{3 3}$	35	6	11	$\mathbf{3 3}$	38.5	7	12
$\mathbf{3 4}$	33	5	10	$\mathbf{3 4}$	36.5	6.5	11
Av. R2	$\mathbf{3 0 . 8 3}$			Av. R2	$\mathbf{3 6 . 2 2}$		
Av. DBH	$\mathbf{9 . 8 5}$	$\mathbf{5 . 3 3}$	$\mathbf{9 . 5 6}$	Av. DBH	$\mathbf{1 1 . 5 7}$	$\mathbf{6 . 5 0}$	$\mathbf{1 1 . 0 0}$
$\mathbf{3 5}$	31	5	9	$\mathbf{3 5}$			
$\mathbf{3 6}$	33	5	9	$\mathbf{3 6}$	38.5	6	10
$\mathbf{3 7}$	32	5	10	$\mathbf{3 7}$	38	6.5	11
$\mathbf{3 8}$	29	6	11	$\mathbf{3 8}$	35.5	7	12
$\mathbf{3 9}$	31	5	10	$\mathbf{3 9}$	37	6.5	11
$\mathbf{4 0}$	28	6	10	$\mathbf{4 0}$	34	7	12
$\mathbf{4 1}$	34	5	10	$\mathbf{4 1}$	39.5	6.5	11
$\mathbf{4 2}$	31	6	11	$\mathbf{4 2}$	36.5	7	12
$\mathbf{4 3}$	28	5	9	$\mathbf{4 3}$	33.5	6	10.5
$\mathbf{4 4}$	34	5	10	$\mathbf{4 4}$	38	7	12
$\mathbf{4 5}$	32	5	10	$\mathbf{4 5}$	36.5	7	12
$\mathbf{4 6}$	30	5	9	$\mathbf{4 6}$	35	6	10
$\mathbf{4 7}$	28	5	10	$\mathbf{4 7}$	32	6.5	11
$\mathbf{4 8}$	33	6	11	$\mathbf{4 8}$	37.5	7	12
Av. R3	$\mathbf{3 1 . 0 0}$			Av. R3	$\mathbf{3 6 . 2 7}$		
Av. DBH	$\mathbf{9 . 8 7}$	$\mathbf{5 . 2 9}$	$\mathbf{9 . 9 3}$	Av. DBH	$\mathbf{1 1 . 5 5}$	$\mathbf{6 . 6 2}$	$\mathbf{1 1 . 2 7}$

Measurement date: July 1, 2003				Measurement date: July 5, 2004			
Treatment 4: TT4; Control				Treatment 4: TT4; Control			
Tree No	GBH (cm)	CH (m)	TH (m)	Tree No	GBH (cm)	CH (m)	TH (m)
1	40	6	12	1	44.5	6.5	13
2	30	6	11	2	34	6.5	12.5
3	30	6	11	3	34	7	12.5
4	37	6	11	4	41.5	7	12.5
5	36	5	10	5	41	6	11.5
6	25	5	9	6	30.5	5.5	10.5
7	33	5	10	7	36.5	5.5	11.5
8	22	5	10	8	26	5.5	11.5
9	23	5	9	9	27.5	5.5	10.5
10	23	5	9	10	28	5.5	10.5
11	22	5	9	11	27	6	10.5
12	27	4	8	12	32.5	5.5	9
13	35	5	10	13	39.5	5.5	11.5
14	25	5	9	14	29.5	5.5	10.5
15	32	5	10	15	36	5.5	11.5
16	37	6	12	16	42	6.5	13

17	41	6	12	17	46.5	6.5	13
18	39	6	11	18	45	6.5	13
19	38	6	12	19	43	6.5	13
20	34	6	11	20	39.5	6.5	12
21	21	4	7	21	27	4.5	7.5
22	32	4	9	22	37.5	5	10.5
23	22	4	8	23	27	5	9
Av. R1	30.61			Av. R1	35.46		
Av. DBH	9.75	5.22	10.00	Av. DBH	11.29	5.89	11.33
24	24	5	9	24	28	6	10.5
25	23	4	7	25	27.5	5	8
26	27	5	9	26	30.5	6	10.5
27	27	5	9	27	30	6	10.5
28	24	5	9	28	28	6	10.5
29	29	5	9	29	32.5	6	10.5
30	31	6	10	30	35.5	6.5	11
31	34	6	10	31	38	7	11
32	35	7	11	32	39.5	7.5	12
33	31	7	11	33	35.5	7.5	12
34	23	6	9	34	27.5	7	10.5
35	33	7	11	35	37.5	8	12
36	17	4	7	36	22	5	8
37	27	5	9	37	33.5	6	10.5
38	21	5	9	38	25	6	10.5
39	22	5	9	39	26	6	10
40	26	5	9	40	31.5	6	10
41	22	5	9	41	26.5	6	10.5
42	25	5	9	42	29.5	6	10.5
43	27	4	8	43	32.5	5	9.5
44	23	4	8	44	27	5	9.5
45	17	4	7	45	21.5	5	8
46	26	5	9	46	30.5	6	10.5
47	29	5	9	47	33	6	10.5
Av. R2	25.96			Av. R2	30.35		
Av. DBH	8.27	5.17	9.00	Av. DBH	9.67	6.1	10.3
48	23	5	8	48	28.5	6	9
49	16	3	7	49	20	4	8
50	27	6	9	50	32.5	7	10.5
51	25	5	8	51	28.5	6	9
52	17	3	7	52	21	3.5	8
53	20	2	5	53	24.5	2	6
54	25	5	8	54	28.5	6	9
55	26	5	8	55	30.5	6	9.5
56	34	6	9	56	38	7	10.5
57	23	5	8	57	28.5	6	9

$\mathbf{5 8}$	32	6	$\mathbf{5}$	$\mathbf{5 8}$	37.5	7	10.5
$\mathbf{5 9}$	25	4	7	$\mathbf{5 9}$	30	4.5	8
$\mathbf{6 0}$	32	6	9	$\mathbf{6 0}$	36.5	7	10.5
$\mathbf{6 1}$	40	6	8	$\mathbf{6 1}$	44.6	7	9.5
$\mathbf{6 2}$	18	3	7	$\mathbf{6 2}$	22	3.5	8
$\mathbf{6 3}$	20	3	7	$\mathbf{6 3}$	24.5	3.5	8
$\mathbf{6 4}$	19	3	7	$\mathbf{6 4}$	22	4	8
$\mathbf{6 5}$	14	2	5	$\mathbf{6 5}$	17.5	2	6
$\mathbf{6 6}$	23	4	7	$\mathbf{6 6}$	26.5	5	8
$\mathbf{6 7}$	18	3	7	$\mathbf{6 7}$	21	4	8
$\mathbf{6 8}$	31	5	8	$\mathbf{6 8}$	35	6	9.5
Av. R2	$\mathbf{2 4 . 1 9}$		$\mathbf{y y}$	\mathbf{A}	$\mathbf{A v . ~ R 2}$	$\mathbf{2 8 . 4 6}$	
Av. DBH	$\mathbf{7 . 7 0}$	$\mathbf{4 . 2 9}$	$\mathbf{7 . 5 2}$	Av. DBH	$\mathbf{9 . 0 6}$	$\mathbf{5 . 1 0}$	$\mathbf{8 . 6 9}$

Appendix 2: Basal area and annual volume increments of teak at four sites: Site I (Lathahae); Site II (Had Soa); site III (Pak Check) and site IV (Houay Leuang)

Table 2.1: Basal area increment of teak at site I (Lathahae) and site II (Had Soa)

Treatment	Pseudo replicate	Basal area increment at Site I (Lathahae)			Basal area increment at Site II (Had Soa)		
		$\begin{gathered} \text { BA02 } \\ \left(\mathbf{m}^{2}\right) \end{gathered}$	$\begin{gathered} \text { BA03 } \\ \left(\mathbf{m}^{2}\right) \end{gathered}$	$\begin{gathered} \text { BA04 } \\ \left(\mathrm{m}^{2}\right) \end{gathered}$	$\begin{gathered} \text { BA02 } \\ \left(\mathrm{m}^{2}\right) \end{gathered}$	$\begin{gathered} \text { BA03 } \\ \left(\mathrm{m}^{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { BA04 } \\ \left(\mathrm{m}^{2}\right) \\ \hline \end{gathered}$
TP1 (50\%)	R1	0.011	0.011	0.014	0.013	0.014	0.017
	R2	0.009	0.009	0.013	0.012	0.013	0.015
	R3	0.009	0.010	0.014	0.014	0.013	0.016
	Average	0.009	0.010	0.014	0.013	0.013	0.016
TP2 (60\%)	R1	0.008	0.011	0.012	0.012	0.012	0.016
	R2	0.008	0.009	0.012	0.010	0.010	0.013
	R3	0.008	0.010	0.012	0.011	0.011	0.014
	Average	0.008	0.010	0.012	0.011	0.011	0.015
TP3 (70\%)	R1	0.009	0.011	0.014	0.009	0.009	0.011
	R2	0.009	0.011	0.015	0.010	0.010	0.012
	R3	0.010	0.010	0.013	0.011	0.012	0.015
	Average	0.009	0.010	0.014	0.010	0.010	0.013
TP4 (Untr.)	R1	0.009	0.012	0.014	0.017	0.022	0.026
	R2	0.008	0.011	0.015	0.012	0.016	0.018
	R3	0.009	0.012	0.016	0.012	0.016	0.019
	Average	0.009	0.012	0.015	0.014	0.018	0.021

Table 2.2: Mean annual volume increment of teak at site I (Lathahae) and site II (Had Soa)

Treatment	Pseudo replicate	Mean annual volume increment of teak at Site I (Lathahae), ($\mathrm{m}^{3 .}$ 0.05ha ${ }^{-1}$. year $^{-1}$)		Mean annual volume increment of teak at site II (Had Soa) ($\mathrm{m}^{3 .} 0.05 \mathrm{ha}^{-1}$. year $^{-1}$)	
		2002-2003 (1 year)	$\begin{gathered} \hline 2002-2004 \\ (2 \text { years }) \\ \hline \end{gathered}$	$\begin{gathered} 2002-2003 \\ \text { (1 year) } \\ \hline \end{gathered}$	$\begin{gathered} \hline 2002-2004 \\ \text { (2 years) } \\ \hline \end{gathered}$
	R1	0.3	1.1	0.3	1.0
	R2	0.3	1.1	0.3	0.9
	R3	0.4	1.3	0.0	0.7
TP1 (50\%)	Total	1.0	3.4	0.6	2.6
	R1	0.5	0.9	0.4	1.3
	R2	0.3	0.6	0.2	1.0
	R3	0.4	1.0	0.4	1.2
TP2 (60\%)	Total	1.2	2.5	1.1	3.6
	R1	0.5	1.3	0.1	0.5
	R2	0.4	1.3	0.2	0.6
	R3	0.3	1.2	0.4	1.0
TP3 (70\%)	Total	1.3	3.8	0.7	2.2
	R1	0.5	1.1	0.9	1.4
	R2	0.8	1.9	0.7	1.2
	R3	0.6	1.3	0.6	1.0
TP4 (Untr.)	Total	1.8	4.3	2.1	3.6

Table 2.3: Basal area increment (BAI) of teak at site III (Pak Check) and site IV (Houay Leuang)

Treatment	Pseudo replicate	Basal area increment of teak at Site III (Pak Check), m^{2}		Basal area increment of teak at Site IV (Houay Leuang), \mathbf{m}^{2}	
		2003	2004	2003	2004
TT1 (25\%)	R1	0.017	0.020	0.008	0.010
	R2	0.015	0.013	0.007	0.009
	R3	0.017	0.019	0.007	0.008
	Average	0.016	0.017	0.007	0.009
TT2 (50\%)	R1	0.008	0.008	0.008	0.010
	R2	0.007	0.008	0.009	0.010
	R3	0.006	0.007	0.008	0.011
	Average	0.007	0.008	0.008	0.010
TT3 (Farm.p.)	R1	0.004	0.005	0.009	0.011
	R2	0.007	0.008	0.010	0.012
	R3	0.007	0.008	0.010	0.012
	Average	0.006	0.007	0.010	0.012
TT4 (Untr.)	R1	0.014	0.015	0.010	0.013
	R2	0.016	0.018	0.007	0.010
	R3	0.016	0.019	0.006	0.009
	Average	0.015	0.017	0.008	0.010

Table 2.4: Mean annual volume increment of teak at site III (Pak Check) and site IV (Houay Leuang)

Treatment	Pseudo replicate	Mean annual volume increment of teak at Site III (Pak Check), (m3. 0.05ha-1 . year-1)	Mean annual volume increment of teak at site IV (Houay Leuang) (m3. 0.05ha-1 . year-1)
		$\begin{gathered} 2003-2004 \\ \text { (1 year) } \\ \hline \end{gathered}$	$\begin{gathered} 2003-2004 \\ \text { (1 year) } \\ \hline \end{gathered}$
TT1 (25\%)	R1	0.4	0.3
	R2	0.1	0.2
	R3	0.2	0.2
	Total	0.7	0.7
TT2 (50\%)	R1	0.1	0.2
	R2	0.2	0.1
	R3	0.1	0.2
	Total	0.5	0.5
$\begin{gathered} \text { TT3 } \\ \text { (Farm.pract.) } \end{gathered}$	R1	0.2	0.2
	R2	0.2	0.2
	R3	0.2	0.2
	Total	0.5	0.6
TT4 (Untr.)	R1	0.1	0.4
	R2	0.5	0.3
	R3	0.3	0.2
	Total	1.0	0.9

Appendix 3: Analysis of statistics at four experimental sites

Appendix 3.1: Analysis of statistics in site I (Lathahae)

ONE-WAY AOV FOR DBH_02 BY TREAT_NO

```
SOURCE DF SS MS F P
BETWEEN 
WITHIN 
TOTAL 11 2.67310
    CHI-SQ DF P
BARTLETT'S TEST OF
    EQUAL VARIANCES 1.70 3 0.6368
COCHRAN'S Q 0.5262
LARGEST VAR / SMALLEST VAR 7.6161
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.15200
EFFECTIVE CELL SIZE 3.0
        SAMPLE GROUP
\begin{tabular}{cccc} 
TREAT_NO & MEAN & SIZE & STD DEV \\
1 & 9.5069 & 3 & 0.4997 \\
2 & 8.6075 & 3 & 0.2690 \\
3 & 9.5624 & 3 & 0.1811 \\
4 & 9.2197 & 3 & 0.3460 \\
TOTAL & 9.2241 & 12 & 0.3445
\end{tabular}
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF DBH_02 BY TREAT_NO
            HOMOGENEOUS
TREAT_NO MEAN GROUPS
    3 9.5624 I
    1 9.5069 I
    4 9.2197 I I
    2 8.6075 .. I
```

THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.6485
STANDARD ERROR FOR COMPARISON 0.2812
ONE-WAY AOV FOR CH_02 BY TREAT_NO

SOURCE	DF	SS	MS	F	P	
BETWEEN	3	1.64904	0.54968	12.32	0.0023	
WITHIN	8	0.35697	0.04462			
TOTAL	11	2.00600				
CHI-SQ						DF
BARTLETT'S TEST OF	P					
EQUAL VARIANCES	0.40	3	0.9403			
COCHRAN'S Q	0.3388					
LARGEST VAR / SMALLEST VAR	2.4160					
COMPONENT OF VARIANCE FOR BETWEEN GROUPS	0.16835					
EFFECTIVE CELL SIZE						
SAMPLE						GROUP
TREAT_NO	MEAN	SIZE	STD DEV			

```
\begin{tabular}{rrrr}
1 & 4.2640 & 3 & 0.1582 \\
2 & 4.3978 & 3 & 0.2459 \\
3 & 5.2206 & 3 & 0.1905 \\
4 & 4.4959 & 3 & 0.2382 \\
TOTAL & 4.5946 & 12 & 0.2112
\end{tabular}
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF CH_02 BY TREAT_NO
HOMOGENEOUS
TREAT_NO MEAN GROUPS
\(3 \quad 5.2206 \quad\) I
4 4.4959 .. I
24.3978 .. I
1 4.2640 .. I
THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.3977
STANDARD ERROR FOR COMPARISON 0.1725
```

ONE-WAY AOV FOR TH_02 BY TREAT_NO

SOURCE	DF	SS	MS	F	P
BETWEEN	3	1.20199	0.40066	3.89	0.0552
WITHIN	8	0.82349	0.10294		
TOTAL	11	2.02548			
	CHI-SQ				

BARTLETT'S TEST OF
EQUAL VARIANCES 0.5030 .9193
COCHRAN'S Q 0.3387
LARGEST VAR / SMALLEST VAR 2.9200
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.09924
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP

TREAT_NO	MEAN	SIZE	STD DEV
1	9.3310	3	0.2185
2	9.2801	3	0.3515
3	10.076	3	0.3179
4	9.6294	3	0.3734
TOTAL	9.5792	12	0.3208
CASES INCL			

CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF TH_--1
HOMOGENEOUS
TREAT_NO MEAN GROUPS
$3 \quad 10.076 \quad$ I
$4 \quad 9.6294 \quad$ I I
1 9.3310 .. I
29.2801 .. I

THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.6041

```
STANDARD ERROR FOR COMPARISON 0.2620
```

ONE-WAY AOV FOR DBH_03 BY TREAT_NO

SOURCE	DF	SS	MS	F	P
BETWEEN	3	2.63112	0.87704	5.80	0.0209
WITHIN	8	1.20871	0.15109		
TOTAL	11	3.83983			
		CHI-SQ	DF	P	

BARTLETT'S TEST OF
EQUAL VARIANCES $3.10 \quad 3 \quad 0.3767$
COCHRAN'S Q 0.6183
LARGEST VAR / SMALLEST VAR 11.701
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.24198
EFFECTIVE CELL SIZE 3.0

	SAMPLE	GROUP	
TREAT_NO	MEAN	SIZE	STD DEV
1	11.886	3	0.6113
2	11.219	3	0.1787
3	11.730	3	0.3944
4	10.692	3	0.2078
TOTAL	11.382	12	0.3887
CASES INCLUDED 12	MISSING CASES 0		

LSD (T) COMPARISON OF MEANS OF DBH_03 BY TREAT_NO
HOMOGENEOUS

TREAT_NO	MEAN	GROUPS
1	11.886	I
3	11.730	I
2	11.219	I I
4	10.692	.. I

THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.7319
STANDARD ERROR FOR COMPARISON 0.3174
ONE-WAY AOV FOR CH_03 BY TREAT_NO

SOURCE	DF	SS	MS	F	P
BETWEEN	3	16.0494	5.34979	111.13	0.0000
WITHIN	8	0.38511	0.04814		
TOTAL	11	16.4345			
	CHI-SQ				
	DF	P			

BARTLETT'S TEST OF
EQUAL VARIANCES $4.14 \quad 3 \quad 0.2467$
COCHRAN'S Q 0.5917
LARGEST VAR / SMALLEST VAR 21.281
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 1.76722
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
$\begin{array}{cccc}\text { TREAT_NO } & \text { MEAN } & \text { SIZE } & \text { STD DEV } \\ 1 & 5.7142 & 3 & 0.0732 \\ 2 & 6.7446 & 3 & 0.3375\end{array}$

3	8.3644	3	0.1083
4	5.4004	3	0.2481
TOTAL	6.5559	12	0.2194
CASES INCLUDED 12	MISSING CASES 0		

LSD (T) COMPARISON OF MEANS OF CH_03 BY TREAT_NO		
HOMOGENEOUS		
TREAT_NO	MEAN	GROUPS
3	8.3644	I
2	6.7446	.. I
1	5.7142 I
4	5.4004 I

THERE ARE 3 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.4131
STANDARD ERROR FOR COMPARISON 0.1791
ONE-WAY AOV FOR TH_03 BY TREAT_NO

ONE-WAY AOV FOR DBH_04 BY TREAT_NO

```
SOURCE DF SS MS F P
BETWEEN 3
WITHIN 
TOTAL 11 6.27213
    CHI-SQ DF P
BARTLETT'S TEST OF
    EQUAL VARIANCES 0.11 3 0.9905
COCHRAN'S Q 0.2975
LARGEST VAR / SMALLEST VAR 1.5470
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.56435
EFFECTIVE CELL SIZE 3.0
                SAMPLE GROUP
TREAT_NO MEAN SIZE STD DEV
    1 13.739 3 0.3546
    2 12.529 3 0.2888
    3 13.575 3 0.3092
    4 12.161 3
TOTAL 13.001 12 0.3293
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF DBH_04 BY TREAT_NO
                                    HOMOGENEOUS
TREAT_NO MEAN GROUPS
\(1 \quad 13.739 \quad\) I
\(3 \quad 13.575\) I
212.529 .. I
    4 12.161 .. I
THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.6201
STANDARD ERROR FOR COMPARISON 0.2689
```

ONE-WAY AOV FOR CH_04 BY TREAT_NO


```
TOTAL 7.4165 12 0.2207
CASES INCLUDED 12 MISSING CASES 0
```

LSD (T) COMPARISON OF MEANS OF CH_04 BY TREAT_NO
HOMOGENEOUS

TREAT_NO	MEAN	GROUPS
3	9.3179	I
2	7.6867	.. I
1	6.4341 I
4	6.2273	$\ldots .$. I

THERE ARE 3 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER. CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.4156
STANDARD ERROR FOR COMPARISON 0.1802

ONE-WAY AOV FOR TH_04 BY TREAT_NO

LSD (T) COMPARISON OF MEANS OF TH_04 BY TREAT_NO
HOMOGENEOUS
TREAT_NO MEAN GROUPS

3	13.567	I

$2 \quad 13.113$ I
412.372 .. I

1 12.368 .. I
THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.5285
STANDARD ERROR FOR COMPARISON 0.2292
ONE-WAY AOV FOR DBH_A1 BY TREAT_NO

```
SOURCE DF SS MS F P
BETWEEN 
WITHIN 8
TOTAL 11 2.99403
    CHI-SQ DF P
BARTLETT'S TEST OF
    EQUAL VARIANCES 4.15 3 0.2462
COCHRAN'S Q 0.7541
LARGEST VAR / SMALLEST VAR 13.872
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.20746
EFFECTIVE CELL SIZE 3.0
                SAMPLE GROUP
TREAT_NO MEAN SIZE STD DEV
    1 2.3787 3 0.1493
    2 2.6120 3 0.1549
    3 2.1678 3 0.5559
    4 1.4725 3 0.2334
TOTAL 2.1578 12 0.3201
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF DBH_A1 BY TREAT_NO
                HOMOGENEOUS
TREAT_NO MEAN GROUPS
    2 2.6120 I
    1 2.3787 I
    3 2.1678 I
    4 1.4725 .. I
THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
```

```
CRITICAL T VALUE 2.306 REJECTION LEVEL
```

CRITICAL T VALUE 2.306 REJECTION LEVEL
CRITICAL VALUE FOR COMPARISON 0.6026
STANDARD ERROR FOR COMPARISON 0.2613

```

ONE-WAY AOV FOR CH_A1 BY TREAT_NO
```

SOURCE DF SS MS F P
BETWEEN
WITHIN
TOTAL 11 8.88000
CHI-SQ DF P
BARTLETT'S TEST OF
EQUAL VARIANCES 2.23 3
COCHRAN'S Q 0.6107
LARGEST VAR / SMALLEST VAR 9.6526
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.97058
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREAT_NO MEAN SIZE STD DEV
1 1.4502 3 0.0879
2 2.3468 3 0.0972
3 3.1437 3 0.1793
4 0.9045 3 0.0577
TOTAL 1.9613 12 0.1147
CASES INCLUDED 12 MISSING CASES 0

```

LSD (T) COMPARISON OF MEANS OF CH_A1 BY TREAT_NO
HOMOGENEOUS
\begin{tabular}{ccc} 
TREAT_NO & MEAN & GROUPS \\
3 & 3.1437 & I \\
2 & 2.3468 & .. I \\
1 & 1.4502 & .... I \\
4 & 0.9045 & ...... I
\end{tabular}

ALL 4 MEANS ARE SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.2160
STANDARD ERROR FOR COMPARISON 0.0937
ONE-WAY AOV FOR TH_A1 BY TREAT_NO
\begin{tabular}{lrcccc} 
SOURCE & DF & SS & MS & F & P \\
BETWEEN & 3 & 1.86709 & 0.62236 & 53.97 & 0.0000 \\
WITHIN & 8 & 0.09226 & 0.01153 & & \\
TOTAL & 11 & 1.95934 & & &
\end{tabular}

BARTLETT'S TEST OF
EQUAL VARIANCES 3.4130 .3320
COCHRAN'S Q 0.6537
LARGEST VAR / SMALLEST VAR 21.242
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.20361
EFFECTIVE CELL SIZE 3.0
\begin{tabular}{crcc} 
& SAMPLE & \multicolumn{2}{c}{ GROUP } \\
TREAT_NO & MEAN & SIZE & STD DEV \\
1 & 1.6110 & 3 & 0.1736 \\
2 & 2.2924 & 3 & 0.0377 \\
3 & 2.1171 & 3 & 0.0892 \\
4 & 1.3026 & 3 & 0.0812 \\
TOTAL & 1.8308 & 12 & 0.1074
\end{tabular}

CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF TH_A1 BY TREAT_NO
HOMOGENEOUS
\begin{tabular}{ccc} 
TREAT_NO & MEAN & GROUPS \\
2 & 2.2924 & I \\
3 & 2.1171 & I \\
1 & 1.6110 & .. I \\
4 & 1.3026 &.... I
\end{tabular}

THERE ARE 3 GROUPS IN WHICH THE MEANS ARE
NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.2022
STANDARD ERROR FOR COMPARISON 0.0877
ONE-WAY AOV FOR DBH_A2 BY TREAT_NO
\begin{tabular}{lccccc} 
SOURCE & DF & SS & MS & F & P \\
BETWEEN & 3 & 2.94287 & 0.98096 & 4.83 & 0.0334 \\
WITHIN & 8 & 1.62598 & 0.20325 & &
\end{tabular}

TOTAL \(\begin{array}{rllll} & 11 & 4.56885 \\ & & \text { CHI-SQ } & \text { DF } & \text { P }\end{array}\)
BARTLETT'S TEST OF
EQUAL VARIANCES \(2.42 \quad 30.4902\)
COCHRAN'S Q 0.4321
LARGEST VAR / SMALLEST VAR 14.816
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.25924
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREAT_NO MEAN SIZE STD DEV
\(\begin{array}{llll}1 & 4.2317 & 3 & 0.1540\end{array}\)
\(2 \quad 3.9211 \quad 3 \quad 0.4450\)
\(3 \quad 4.0123 \quad 3 \quad 0.4899\)
\(\begin{array}{llll}4 & 2.9415 & 3 & 0.5927\end{array}\)
TOTAL \(3.7767 \quad 12 \quad 0.4508\)
CASES INCLUDED 12 MISSING CASES 0

HOMOGENEOUS
TREAT_NO MEAN GROUPS
\(1 \quad 4.2317\) I
\(3 \quad 4.0123\) I
23.9211 I

4 2.9415 .. I
THERE ARE 2 GROUPS IN WHICH THE MEANS ARE
NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.8488
STANDARD ERROR FOR COMPARISON 0.3681

ONE-WAY AOV FOR CH_A2 BY TREAT_NO
\begin{tabular}{lrcccc} 
SOURCE & DF & SS & MS & F & P \\
BETWEEN & 3 & 10.3764 & 3.45881 & 248.02 & 0.0000 \\
WITHIN & 8 & 0.11157 & 0.01395 & & \\
TOTAL & 11 & 10.4880 \\
& \multicolumn{5}{c}{ CHI-SQ } \\
& DF & P &
\end{tabular}

BARTLETT'S TEST OF
EQUAL VARIANCES \(2.76 \quad 3 \quad 0.4294\)
COCHRAN'S Q 0.6076
LARGEST VAR / SMALLEST VAR 12.141
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 1.14829
EFFECTIVE CELL SIZE 3.0 SAMPLE GROUP
TREAT_NO MEAN SIZE STD DEV
\begin{tabular}{llll}
1 & 2.1701 & 3 & 0.0528
\end{tabular}
\(23.2889 \quad 3 \quad 0.1164\)
\(3 \quad 4.0973 \quad 3 \quad 0.1841\)
\(\begin{array}{llll}4 & 1.7313 & 3 & 0.0745\end{array}\)
TOTAL \(2.8219 \quad 12 \quad 0.1181\)
CASES INCLUDED 12 MISSING CASES 0

LSD (T) COMPARISON OF MEANS OF CH_A2 BY TREAT_NO

\section*{HOMOGENEOUS}
\begin{tabular}{ccc} 
TREAT_NO & MEAN & GROUPS \\
3 & 4.0973 & I \\
2 & 3.2889 & .. I \\
1 & 2.1701 & .... I \\
4 & 1.7313 & ...... I
\end{tabular}

ALL 4 MEANS ARE SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.2223
STANDARD ERROR FOR COMPARISON 0.0964

ONE-WAY AOV FOR TH_A2 BY TREAT_NO
\begin{tabular}{lrcccc} 
SOURCE & DF & SS & MS & F & P \\
BETWEEN & 3 & 2.09389 & 0.69796 & 41.41 & 0.0000 \\
WITHIN & 8 & 0.13484 & 0.01686 & & \\
TOTAL & 11 & 2.22873 & & & \\
& \multicolumn{5}{c}{ CHI-SQ } \\
& DF & P &
\end{tabular}

\section*{BARTLETT'S TEST OF}

EQUAL VARIANCES 1.41300 .7036
COCHRAN'S Q 0.5471
LARGEST VAR / SMALLEST VAR 4.8103
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.22704
EFFECTIVE CELL SIZE 3.0 SAMPLE GROUP
\begin{tabular}{cccc} 
TREAT_NO & MEAN & SIZE & STD DEV \\
1 & 3.0370 & \multicolumn{1}{c}{3} & 0.0920 \\
2 & 3.8324 & 3 & 0.1921 \\
3 & 3.4911 & 3 & 0.1201 \\
4 & 2.7422 & 3 & 0.0876 \\
TOTAL & 3.2757 & 12 & 0.1298
\end{tabular}

CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF TH_A2 BY TREAT_NO
HOMOGENEOUS
\begin{tabular}{ccc} 
TREAT_NO & MEAN & GROUPS \\
2 & 3.8324 & I \\
3 & 3.4911 & .. I \\
1 & 3.0370 & .... I \\
4 & 2.7422 & \(\ldots . .\). I
\end{tabular}

ALL 4 MEANS ARE SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.2444
STANDARD ERROR FOR COMPARISON 0.1060

Basal area and mean annual volume increment at site I (Lathahae)
ONE-WAY AOV FOR BA_02 BY TREATMENT
\begin{tabular}{lrrccc} 
SOURCE & \multicolumn{1}{c}{ DF } & \multicolumn{1}{c}{ SS } & MS & F & P \\
BETWEEN & 3 & \(4.161 \mathrm{E}-06\) & \(1.387 \mathrm{E}-06\) & 3.36 & 0.0755 \\
WITHIN & 8 & \(3.299 E-06\) & \(4.123 \mathrm{E}-07\) & & \\
TOTAL & 11 & \begin{tabular}{rl}
\(7.460 \mathrm{E}-06\) \\
& \\
& \\
&
\end{tabular}\(\quad\) CHI-SQ & DF & P & \\
&
\end{tabular}
```

BARTLETT'S TEST OF
EQUAL VARIANCES 3.87 3 0.2753
COCHRAN'S Q 0.6883
LARGEST VAR / SMALLEST VAR 17.538
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 3.249E-07
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREATMENT MEAN SIZE STD DEV
1 9.358E-03 3 1.065E-03
2 7.923E-03 3 3.351E-04
3 9.374E-03 3 2.544E-04
4 8.877E-03 3 5.806E-04
TOTAL 8.883E-03 12 6.421E-04
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF BA02 BY TREATMENT
HOMOGENEOUS
TREATMENT MEAN GROUPS
3 9.374E-03 I
1 9.358E-03 I
4 8.877E-03 I I
2 7.923E-03 .. I
THERE ARE 2 GROUPS IN WHICH THE MEANS ARE
NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 1.209E-03
STANDARD ERROR FOR COMPARISON 5.243E-04
ONE-WAY AOV FOR BA03 BY TREATMENT

```

\begin{tabular}{ccc}
4 & 0.0118 & I \\
3 & 0.0105 & .. I \\
1 & 0.0103 & .. I \\
2 & \(9.834 \mathrm{E}-03\) & .. I
\end{tabular}

THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 1.308E-03
STANDARD ERROR FOR COMPARISON 5.672E-04
ONE-WAY AOV FOR BA04 BY TREATMENT


LSD (T) COMPARISON OF MEANS OF BA04 BY TREATMENT
HOMOGENEOUS
TREATMENT MEAN GROUPS
\begin{tabular}{lll}
4 & 0.0152 & I \\
3 & 0.0140 & I \\
1 & 0.0136 & I I \\
2 & 0.0121 & .. I
\end{tabular}

THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON \(1.601 \mathrm{E}-03\)
STANDARD ERROR FOR COMPARISON 6.941E-04

ONE-WAY AOV FOR MEAN ANNUAL VOLUME INCREMENT OF LATHAHAE 2002-2003 BY TREATMENT
\begin{tabular}{llcccc} 
SOURCE & DF & SS & MS & F & P \\
BETWEEN & 3 & 0.12285 & 0.04095 & 3.60 & 0.0653 \\
WITHIN & 8 & 0.09088 & 0.01136 & &
\end{tabular}

TOTAL \(11 \quad 0.21374\)
```

 CHI-SQ DF P
 BARTLETT'S TEST OF
EQUAL VARIANCES 3.52 3 0.3179
COCHRAN'S Q 0.4456
LARGEST VAR / SMALLEST VAR 30.747
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.00986
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREATMENT MEAN SIZE STD DEV
1 0.3398 3 0.0257
2 0.3914 3 0.1166
0.4240 3 0.1046
4 0.6082 3 0.1423
TOTAL 0.4409 12 0.1066
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF LTH BY TREATMENT
HOMOGENEOUS
TREATMENT MEAN GROUPS
4 0.6082 I
3 0.4240 I I
2 0.3914 .. I
1 0.3398 .. I
THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.2007
STANDARD ERROR FOR COMPARISON 0.0870

```

ONE-WAY AOV FOR MEAN ANNUAL VOLUME INCREMENT OF LATHAHAE 2002-2004 BY TREATMENT
```

SOURCE DF SS MS F P
BETWEEN 3 0.30561 0.10187 4.11 0.0489
WITHIN 8 0.19852 0.02482
TOTAL 11 0.50413
CHI-SQ DF P
BARTLETT'S TEST OF
EQUAL VARIANCES 4.49 3 0.2132
COCHRAN'S Q 0.7686
LARGEST VAR / SMALLEST VAR 15.579
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.02568
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREATMENT MEAN SIZE STD DEV
1 0.8080 3 0.0700
2 0.4532 3 0.1132

```
```

 3 0.8329 3 0.0725
 4 0.8226 3 0.2762
 TOTAL 0.7292 12 0.1575
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF LATHAHAE BY TREATMENT
HOMOGENEOUS
TREATMENT MEAN GROUPS
30.8329 I
40.8226 I
10.8080 I
20.4532 .. I
THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER. CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.2966
STANDARD ERROR FOR COMPARISON 0.1286

```

\section*{Appendix 3.2: Analysis of statistic in site II (Had Soa)}

ONE-WAY AOV FOR DBH_02 BY TREAT_NO
```

SOURCE DF SS MS F P
BETWEEN
WITHIN
TOTAL 11 7.78122
CHI-SQ DF P
BARTLETT'S TEST OF
EQUAL VARIANCES 6.50 3 0.0895
COCHRAN'S Q 0.8354
LARGEST VAR / SMALLEST VAR 46.305
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.31741
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP

TREAT_NO	MEAN	SIZE	STD DEV
1	11.067	3	0.1797
2	10.176	3	0.3188
3	9.9700	3	0.4009
4	11.385	3	1.2231
TOTAL	10.649	12	0.6691

CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF DBH_02 BY TREAT_NO
HOMOGENEOUS
TREAT_NO MEAN GROUPS
4 11.385 I
1 11.067 I I
2 10.176 I I
3 9.9700 .. I
THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 1.2598
STANDARD ERROR FOR COMPARISON 0.5463

```

ONE-WAY AOV FOR CH_02 BY TREAT_NO
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SOURCE & DF & SS & & MS & F & P & \\
\hline BETWEEN & 3 & 1.07 & & 0.35670 & 4.48 & 0.0399 & \\
\hline WITHIN & 8 & 0.63 & 0 & 0.07963 & & & \\
\hline TOTAL & 11 & & \[
\begin{aligned}
& 712 \\
& \text { HI-SQ }
\end{aligned}
\] & DF & P & & \\
\hline \multicolumn{8}{|l|}{EQUAL VARIANCES 8.27 3 0.0408} \\
\hline \multicolumn{3}{|l|}{COCHRAN'S Q} & \multicolumn{5}{|l|}{0.8358} \\
\hline \multicolumn{8}{|l|}{LARGEST VAR / SMALLEST VAR 99.343} \\
\hline \multicolumn{7}{|l|}{COMPONENT OF VARIANCE FOR BETWEEN GROUPS} & 0.09236 \\
\hline \multicolumn{8}{|l|}{EFFECTIVE CELL SIZE 3.0} \\
\hline \multicolumn{8}{|c|}{SAMPLE GROUP} \\
\hline TREAT_NO & & AN & SIZE & E STD & DEV & & \\
\hline 1 & & 373 & 3 & 0.05 & & & \\
\hline
\end{tabular}
\begin{tabular}{crcc}
2 & 4.8354 & 3 & 0 \\
3 & 4.3056 & 3 & 0 \\
4 & 4.7059 & 3 & 0 \\
TOTAL & 4.7460 & 12 & 0 \\
CASES INCLUDED 12 & MISSING CA---------------------------------- \\
LSD (T) COMPARISON OF MEANS \\
\multicolumn{4}{c}{ HOMOGENEOUS } \\
TREAT_NO & MEAN & GROUPS \\
1 & 5.1373 & I \\
2 & 4.8354 & I I \\
4 & 4.7059 & I I \\
3 & 4.3056 & .. I
\end{tabular}

THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.5313
STANDARD ERROR FOR COMPARISON 0.2304
ONE-WAY AOV FOR TH_02 BY TREAT_NO
\begin{tabular}{lrcccc} 
SOURCE & DF & SS & MS & F & P \\
BETWEEN & 3 & 1.62643 & 0.54214 & 3.67 & 0.0628 \\
WITHIN & 8 & 1.18233 & 0.14779 & & \\
TOTAL & 11 & 2.80876 \\
& \multicolumn{5}{c}{ CHI-SQ } \\
& DF & P &
\end{tabular}

BARTLETT'S TEST OF
EQUAL VARIANCES 8.1230 .0436
COCHRAN'S Q 0.7431
LARGEST VAR / SMALLEST VAR 76.135
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.13145
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREAT_NO MEAN SIZE STD DEV
\(\begin{array}{llll}1 & 10.911 & 3 & 0.1013\end{array}\)
\(\begin{array}{llll}2 & 10.682 & 3 & 0.0760\end{array}\)
\(3 \quad 10.049 \quad 3 \quad 0.3686\)
\(\begin{array}{llll}4 & 10.110 & 3 & 0.6628\end{array}\)
TOTAL \(10.438 \quad 12 \quad 0.3844\)
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF TH_02 BY TREAT_NO
HOMOGENEOUS
TREAT_NO MEAN GROUPS
\(1 \quad 10.911 \quad\) I
\(2 \quad 10.682 \quad\) I I
4 10.110 .. I
310.049 .. I

THERE ARE 2 GROUPS IN WHICH THE MEANS ARE
NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.7238
STANDARD ERROR FOR COMPARISON 0.3139

ONE-WAY AOV FOR DBH_03 BY TREAT_NO


THERE ARE NO SIGNIFICANT PAIRWISE DIFFERENCES AMONG THE MEANS.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 1.4045
STANDARD ERROR FOR COMPARISON 0.6091
```

ONE-WAY AOV FOR CH_03 BY TREAT_NO

SOURCE	DF	SS	MS	F	P
BETWEEN	3	15.4539	5.15128	46.04	0.0000
WITHIN	8	0.89504	0.11188		
TOTAL	11	16.3489			
	CHI-SQ				
	DF	P			

```

\section*{BARTLETT'S TEST OF}
```

EQUAL VARIANCES $9.44 \quad 3 \quad 0.0239$
COCHRAN'S Q 0.7714
LARGEST VAR / SMALLEST VAR 107.17
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 1.67980
EFFECTIVE CELL SIZE 3.0 SAMPLE GROUP

TREAT_NO	MEAN	SIZE	STD DEV
1	6.4829	3	0.0706
2	7.8765	3	0.3067
3	8.4780	3	0.0568

```
\begin{tabular}{lrcc}
\multicolumn{1}{c}{4} & 5.5938 & 3 & 0.5876 \\
TOTAL & 7.1078 & 12 & 0.3345 \\
CASES INCLUDED 12 & MISSING CASES
\end{tabular}

HOMOGENEOUS
\begin{tabular}{ccc} 
TREAT_NO & MEAN & GROUPS \\
3 & 8.4780 & I \\
2 & 7.8765 & I \\
1 & 6.4829 & .. I \\
4 & 5.5938 & .... I
\end{tabular}

THERE ARE 3 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.6298
STANDARD ERROR FOR COMPARISON 0.2731
ONE-WAY AOV FOR TH_03 BY TREAT_NO


LSD (T) COMPARISON OF MEANS OF TH_03 BY TREAT_NO
HOMOGENEOUS
TREAT_NO MEAN GROUPS
\(\begin{array}{lll}- & 13.352 & \text { I }\end{array}\)
\(1 \quad 12.880 \quad\) I I
312.401 .. I I
\(4 \quad 11.704\).... I
THERE ARE 3 GROUPS IN WHICH THE MEANS ARE
NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.7393
STANDARD ERROR FOR COMPARISON 0.3206
ONE-WAY AOV FOR DBH_04 BY TREAT_NO


ONE-WAY AOV FOR CH_04 BY TREAT_NO
\begin{tabular}{lrccccc} 
SOURCE & DF & SS & MS & F & P & \\
BETWEEN & 3 & 20.6416 & 6.88054 & 62.09 & 0.0000 & \\
WITHIN & 8 & 0.88648 & 0.11081 & & & \\
TOTAL & 11 & 21.5281 & & & & \\
\multicolumn{6}{c}{ CHI-SQ } & DF \\
BARTLETT'S TEST OF & P & & \\
EQUAL VARIANCES & 3.71 & 3 & 0.2945 & & \\
COCHRAN'S Q & 0.6786 \\
LARGEST VAR / SMALLEST VAR & 22.697 & \\
COMPONENT OF VARIANCE FOR BETWEEN GROUPS & 2.25658 \\
EFFECTIVE CELL SIZE \\
\multicolumn{6}{c}{ SAMPLE } & GROUP \\
TREAT_NO & MEAN & SIZE & STD DEV & \\
\multicolumn{1}{c}{1} & 7.2786 & 3 & 0.1151 & & \\
2 & 8.8086 & 3 & 0.2774 & & \\
3 & 9.7877 & 3 & 0.2286 & & \\
4 & 6.4092 & 3 & 0.5484 & & \\
TOTAL & 8.0710 & 12 & 0.3329 &
\end{tabular}

CASES INCLUDED 12 MISSING CASES 0
------------------------------------------------------------------------1
HOMOGENEOUS
\begin{tabular}{ccc} 
TREAT_NO & MEAN & GROUPS \\
3 & 9.7877 & I \\
2 & 8.8086 & .. I \\
1 & 7.2786 & \(\ldots .\). I \\
4 & 6.4092 & ...... I
\end{tabular}

ALL 4 MEANS ARE SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.6268
STANDARD ERROR FOR COMPARISON 0.2718
ONE-WAY AOV FOR TH_04 BY TREAT_NO
\begin{tabular}{lrcccc} 
SOURCE & DF & SS & MS & F & P \\
BETWEEN & 3 & 5.35842 & 1.78614 & 10.67 & 0.0036 \\
WITHIN & 8 & 1.33869 & 0.16734 & & \\
TOTAL & 11 & 6.69711 & & & \\
& \multicolumn{5}{c}{ CHI-SQ } \\
& DF & P &
\end{tabular}

BARTLETT'S TEST OF
EQUAL VARIANCES \(2.23 \quad 3 \quad 0.5270\)
COCHRAN'S Q 0.5278
LARGEST VAR / SMALLEST VAR 12.408
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.53960
EFFECTIVE CELL SIZE 3.0
\begin{tabular}{crcc} 
& SAMPLE & \multicolumn{2}{c}{ GROUP } \\
TREAT_NO & MEAN & SIZE & STD DEV \\
1 & 14.575 & 3 & 0.4033 \\
2 & 14.920 & 3 & 0.3535 \\
3 & 14.382 & 3 & 0.1687 \\
4 & 13.148 & 3 & 0.5944 \\
TOTAL & 14.256 & 12 & 0.4091
\end{tabular}

CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF TH_04 BY TREAT_NO
HOMOGENEOUS
\begin{tabular}{ccc} 
TREAT_NO & MEAN & GROUPS \\
2 & 14.920 & I \\
1 & 14.575 & I \\
3 & 14.382 & I \\
4 & 13.148 & .. I
\end{tabular}

THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.7702
STANDARD ERROR FOR COMPARISON 0.3340
ONE-WAY AOV FOR DBH_A1 BY TREAT_NO
\begin{tabular}{lccccc} 
SOURCE & DF & SS & MS & F & P \\
BETWEEN & 3 & 6.68437 & 2.22812 & 54.95 & 0.0000
\end{tabular}
```

WITHIN 8
TOTAL 11 7.00876
CHI-SQ DF P
BARTLETT'S TEST OF
EQUAL VARIANCES 2.05 3 0.5630
COCHRAN'S Q 0.6060
LARGEST VAR / SMALLEST VAR 7.1329
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.72919
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREAT_NO MEAN SIZE STD DEV
1 2.1565 3 0.1174
2 3.7468 3 0.1346
3 3.0520 3 0.3135
4 1.8555 3 0.1789
TOTAL 2.7027 12 0.2014
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF DBH_A1 BY TREAT_NO
HOMOGENEOUS
TREAT_NO MEAN GROUPS
2 3.7468 I
3 3.0520 .. I
1 2.1565 I
4 1.8555 I

```

THERE ARE 3 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050

CRITICAL VALUE FOR COMPARISON 0.3791
STANDARD ERROR FOR COMPARISON 0.1644

ONE-WAY AOV FOR CH_A1 BY TREAT_NO

```

LSD (T) COMPARISON OF MEANS OF CH_A1 BY TREAT_NO
HOMOGENEOUS
TREAT_NO MEAN GROUPS
3 4.1725 I
2 3.0412 .. I
1 1.3456 I
4 0.8878 I

```

ALL 4 MEANS ARE SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.4474
STANDARD ERROR FOR COMPARISON 0.1940
ONE-WAY AOV FOR TH_A1 BY TREAT_NO
\begin{tabular}{lrcccc} 
SOURCE & DF & SS & MS & F & P \\
BETWEEN & 3 & 1.96116 & 0.65372 & 10.18 & 0.0042 \\
WITHIN & 8 & 0.51359 & 0.06420 & & \\
TOTAL & 11 & 2.47475 & & & \\
& \multicolumn{5}{c}{ CHI-SQ } \\
& DF & P &
\end{tabular}

BARTLETT'S TEST OF
\(\begin{array}{llll}\text { EQUAL VARIANCES } & 6.57 & 3 & 0.0868\end{array}\)
COCHRAN'S Q 0.7059
LARGEST VAR / SMALLEST VAR 64.164
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.19651
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREAT_NO MEAN SIZE STD DEV
\(\begin{array}{llll}1 & 1.9691 & 3 & 0.0998\end{array}\)
\(\begin{array}{llll}2 & 2.6700 & 3 & 0.2505\end{array}\)
\(\begin{array}{llll}3 & 2.3525 & 3 & 0.4257\end{array}\)
\(\begin{array}{llll}4 & 1.5936 & 3 & 0.0532\end{array}\)
\(\begin{array}{llll}\text { TOTAL } & 2.1463 & 12 & 0.2534\end{array}\)
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF TH_A1 BY TREAT_NO
HOMOGENEOUS
TREAT_NO MEAN GROUPS
\(2 \quad 2.6700 \quad\) I
\(3 \quad 2.3525\) II
1.9691 .. I I
41.5936 .... I

THERE ARE 3 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.4771
STANDARD ERROR FOR COMPARISON 0.2069
ONE-WAY AOV FOR DBH_A2 BY TREAT_NO
\begin{tabular}{lrcccc} 
SOURCE & DF & SS & MS & F & P \\
BETWEEN & 3 & 17.9070 & 5.96901 & 124.32 & 0.0000 \\
WITHIN & 8 & 0.38411 & 0.04801 & & \\
TOTAL & 11 & 18.2911 & & & \\
\multicolumn{5}{c}{ CHI-SQ } & DF \\
& P & & &
\end{tabular}
```

BARTLETT'S TEST OF
EQUAL VARIANCES 4.41 3 0.2209
COCHRAN'S Q 0.5105
LARGEST VAR / SMALLEST VAR 23.013
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 1.97366
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREAT_NO MEAN SIZE STD DEV
1 4.1767 3 0.0653
2 6.0979 3
3 5.5305 3 0.3131
4 2.9531 3 0.2800
TOTAL 4.6896 12 0.2191
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF DBH_A2 BY TREAT_NO
HOMOGENEOUS
TREAT_NO MEAN GROUPS
2 6.0979 I
3.5305 .. I
1 4.1767 I
4 2.9531 I
ALL 4 MEANS ARE SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.4126
STANDARD ERROR FOR COMPARISON 0.1789
ONE-WAY AOV FOR CH_A2 BY TREAT_NO
SOURCE DF SS MS F P
BETWEEN 3}227.3139 9.10463 243.50 0.000
WITHIN 8 0.29913 0.03739
TOTAL 11 27.6130
CHI-SQ DF P
BARTLETT'S TEST OF
EQUAL VARIANCES 12.18 3 0.0068
COCHRAN'S Q 0.9347
LARGEST VAR / SMALLEST VAR 147.65
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 3.02241
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREAT_NO MEAN SIZE STD DEV
1 2.1413 3 0.0870
2 3.9733 3 0.3739
3 5.4821 3 0.0308
4 1.7032 3 0.0352
TOTAL 3.3250 12 0.1934
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF CH_A2 BY TREAT_NO
HOMOGENEOUS
TREAT_NO MEAN GROUPS

```
\begin{tabular}{lll}
2 & 3.9733 & .. I \\
1 & 2.1413 & .... I \\
4 & 1.7032 & ..... I
\end{tabular}

ALL 4 MEANS ARE SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.3641
STANDARD ERROR FOR COMPARISON 0.1579
ONE-WAY AOV FOR TH_A2 BY TREAT_NO
\begin{tabular}{lrcccc} 
SOURCE & DF & SS & MS & F & P \\
BETWEEN & 3 & 3.22138 & 1.07379 & 13.86 & 0.0016 \\
WITHIN & 8 & 0.61967 & 0.07746 & & \\
TOTAL & 11 & 3.84105 & & & \\
\multicolumn{5}{l}{} & CHI-SQ
\end{tabular} DF \(\quad\) P

BARTLETT'S TEST OF
EQUAL VARIANCES \(3.29 \quad 3 \quad 0.3495\)
COCHRAN'S Q 0.3692
LARGEST VAR / SMALLEST VAR 24.027
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.33211
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREAT_NO MEAN SIZE STD DEV
\(13.6646 \quad 3 \quad 0.3020\)
\(\begin{array}{llll}2 & 4.2379 & 3 & 0.3154\end{array}\)
\(\begin{array}{llll}3 & 4.3333 & 3 & 0.3382\end{array}\)
\(\begin{array}{llll}4 & 3.0380 & 3 & 0.0690\end{array}\)
TOTAL \(3.8185 \quad 12 \quad 0.2783\)
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF TH_A2 BY TREAT_NO
HOMOGENEOUS
\begin{tabular}{ccc} 
TREAT_NO & MEAN & GROUPS \\
3 & 4.3333 & I \\
2 & 4.2379 & I \\
1 & 3.6646 & .. I \\
4 & 3.0380 & .... I
\end{tabular}

THERE ARE 3 GROUPS IN WHICH THE MEANS ARE
NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.5240
STANDARD ERROR FOR COMPARISON 0.2272

\section*{Basal area and mean annual volume increments at site II (Had Soa)}

ONE-WAY AOV FOR BA02 BY TREATMENT
\begin{tabular}{llllcc} 
SOURCE & DF & SS & MS & F & P \\
BETWEEN & 3 & \(2.571 \mathrm{E}-05\) & \(8.569 \mathrm{E}-06\) & 2.71 & 0.1152 \\
WITHIN & 8 & \(2.527 \mathrm{E}-05\) & \(3.159 \mathrm{E}-06\) & & \\
TOTAL & 11 & \(5.098 \mathrm{E}-05\) \\
\multicolumn{6}{c}{ CHI-SQ } \\
CHF & DF & P & & \\
BARTLETT'S TEST OF \\
\multicolumn{1}{c}{ EQUAL VARIANCES } & 3.30 & 3 & 0.3475 & &
\end{tabular}
```

COCHRAN'S Q 0.7294
LARGEST VAR / SMALLEST VAR 8.8668
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 1.803E-06
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREATMENT MEAN SIZE STD DEV
1 0.0132 3 1.108E-03
2 0.0107 3 1.074E-03
3 0.0103 3 1.020E-03
4 0.0136 3 3.036E-03
TOTAL 0.0120 12 1.777E-03
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF BA02 BY TREATMENT
HOMOGENEOUS
TREATMENT MEAN GROUPS
4 0.0136 I
1 0.0132 I
2 0.0107 I
3 0.0103 I
THERE ARE NO SIGNIFICANT PAIRWISE DIFFERENCES AMONG THE MEANS.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 3.346E-03
STANDARD ERROR FOR COMPARISON 1.451E-03
ONE-WAY AOV FOR BA03 BY TREATMENT

```

\begin{tabular}{lll}
2 & 0.0114 & .. I \\
3 & 0.0104 & .. I
\end{tabular}

THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER. CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 3.785E-03
STANDARD ERROR FOR COMPARISON 1.642E-03

ONE-WAY AOV FOR BA04 BY TREATMENT
\begin{tabular}{llcccc} 
SOURCE & DF & SS & MS & F & P \\
BETWEEN & 3 & \(1.135 \mathrm{E}-04\) & \(3.783 \mathrm{E}-05\) & 6.42 & 0.0160 \\
WITHIN & 8 & \(4.717 \mathrm{E}-05\) & \(5.896 \mathrm{E}-06\) & & \\
TOTAL & 11 & \(1.606 \mathrm{E}-04\) & & & \\
& CHI-SQ & DF & P & & \\
\end{tabular}

BARTLETT'S TEST OF
EQUAL VARIANCES 3.5930 .3093
COCHRAN'S Q 0.6751
LARGEST VAR / SMALLEST VAR 21.295
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 1.064E-05
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREATMENT MEAN SIZE STD DEV
\(1 \quad 0.0161 \quad 3 \quad 8.647 \mathrm{E}-04\)
\(2 \quad 0.0147 \quad 3 \quad 1.693 \mathrm{E}-03\)
\(3 \quad 0.0127 \quad 3 \quad 2.012 \mathrm{E}-03\)
\(4 \quad 0.0210 \quad 3 \quad 3.990 \mathrm{E}-03\)
TOTAL \(0.0161 \quad 12\) 2.428E-03
CASES INCLUDED 12 MISSING CASES 0

LSD (T) COMPARISON OF MEANS OF BA04 BY TREATMENT
HOMOGENEOUS
TREATMENT MEAN GROUPS
\(4 \quad 0.0210\) I
1 0.0161 .. I
2 0.0147 .. I

3 0.0127 .. I
THERE ARE 2 GROUPS IN WHICH THE MEANS ARE
NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 4.572E-03
STANDARD ERROR FOR COMPARISON 1.983E-03

ONE-WAY AOV FOR MAN VOLUME INCREMANT AT HADSOA 2002-2003 BY TREATMENT
\begin{tabular}{|c|c|c|c|}
\hline SOURCE DF & SS & MS F & P \\
\hline BETWEEN 3 & 0.48978 & 0.16326 & 8.030 .0085 \\
\hline WITHIN 8 & 0.16256 & 0.02032 & \\
\hline TOTAL 11 & 0.65234 & & \\
\hline \multicolumn{4}{|c|}{CHI-SQ} \\
\hline \multicolumn{4}{|l|}{BARTLETT'S TEST OF} \\
\hline EQUAL VAR & IANCES & 0.253 & 0.9697 \\
\hline
\end{tabular}
```

COCHRAN'S Q 0.3044
LARGEST VAR / SMALLEST VAR 2.0456
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.04765
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREATMENT MEAN SIZE STD DEV
1 0.2059 3}00.143
2 0.3625 3 0.1100
3 0.2344 3}00.157
4 0.7138 3 0.1548
TOTAL 0.3792 12 0.1425
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF HADSOA BY TREATMENT
HOMOGENEOUS
TREATMENT MEAN GROUPS
4 0.7138 I
2 0.3625 .. I
3 0.2344 .. I
1 0.2059 .. I
THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.2684
STANDARD ERROR FOR COMPARISON 0.1164

```

ONE-WAY AOV FOR MEAN ANNUAL VOLUME INCREMENT AT HADSOA 2002-2004 BY TREATMENT
```

SOURCE DF SS MS F P
BETWEEN 3
WITHIN
TOTAL 11 0.85335
CHI-SQ DF P
BARTLETT'S TEST OF
EQUAL VARIANCES 0.73 3 0.8665
COCHRAN'S Q 0.4298
LARGEST VAR / SMALLEST VAR 3.3810
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.04392
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREATMENT MEAN SIZE STD DEV
1 0.8751 3 0.1455
2 1.1914 3 0.1665
3 0.7258 3 0.2676
4 1.2144 3
TOTAL 1.0017 12 0.2041
CASES INCLUDED 12 MISSING CASES 0

```
LSD (T) COMPARISON OF MEANS OF HADSOA 2002-2004 BY TREATMENT
                                    HOMOGENEOUS

TREATMENT MEAN GROUPS
\(4 \quad 1.2144\) I
21.1914 I
10.8751 I I
30.7258 .. I

THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.3842
STANDARD ERROR FOR COMPARISON 0.1666

\section*{Appendix3.3: Analysis of statistic in site III (Pak Check)}

ONE-WAY AOV FOR DBH_03 BY TREAT_NO
\begin{tabular}{lrcccc} 
SOURCE & DF & SS & MS & F & P \\
BETWEEN & 3 & 60.1917 & 20.0639 & 30.68 & 0.0001 \\
WITHIN & 8 & 5.23115 & 0.65389 & & \\
TOTAL & 11 & 65.4228 \\
& \multicolumn{5}{c}{ CHI-SQ } \\
& DF & P &
\end{tabular}

BARTLETT'S TEST OF
EQUAL VARIANCES \(0.58 \quad 3 \quad 0.9012\)
COCHRAN'S Q 0.4247
LARGEST VAR / SMALLEST VAR 3.1957
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 6.47000
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
\begin{tabular}{cccr} 
TREAT_NO & MEAN & SIZE & STD DEV \\
1 & 12.534 & 3 & 0.5896 \\
2 & 8.1299 & 3 & 0.7397 \\
3 & 7.4119 & 3 & 1.0540 \\
4 & 11.857 & 3 & 0.7809 \\
TOTAL & 9.9832 & 12 & 0.8086
\end{tabular}

CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF DBH_03 BY TREAT_NO
HOMOGENEOUS
\begin{tabular}{ccc} 
TREAT_NO & MEAN & GROUPS \\
1 & 12.534 & I \\
4 & 11.857 & I \\
2 & 8.1299 & .. I \\
3 & 7.4119 & .. I
\end{tabular}

THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 1.5225
STANDARD ERROR FOR COMPARISON 0.6602
ONE-WAY AOV FOR DBH_04 BY TREAT_NO
\begin{tabular}{lrcccc} 
SOURCE & DF & SS & MS & F & P \\
BETWEEN & 3 & 51.0023 & 17.0008 & 41.67 & 0.0000 \\
WITHIN & 8 & 3.26422 & 0.40803 & & \\
TOTAL & 11 & 54.2666 & & & \\
& \multicolumn{5}{c}{ CHI-SQ } \\
& DF & P &
\end{tabular}

BARTLETT'S TEST OF
EQUAL VARIANCES \(3.09 \quad 3 \quad 0.3778\)
COCHRAN'S Q 0.5770
LARGEST VAR / SMALLEST VAR 10.365
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 5.53092
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
\(\begin{array}{cccr}\text { TREAT_NO } & \text { MEAN } & \text { SIZE } & \text { STD DEV } \\ 1 & 13.986 & 3 & 0.3014 \\ 2 & 10.174 & 3 & 0.7066\end{array}\)
\begin{tabular}{rcrr}
3 & 8.7148 & 3 & 0.3167 \\
4 & 12.665 & 3 & 0.9704 \\
TOTAL & 11.385 & 12 & 0.6388
\end{tabular}

CASES INCLUDED 12 MISSING CASES 0


ALL 4 MEANS ARE SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 1.2027
STANDARD ERROR FOR COMPARISON 0.5216
ONE-WAY AOV FOR CH_03 BY TREAT_NO
\begin{tabular}{lrcccc} 
SOURCE & DF & SS & MS & F & P \\
BETWEEN & 3 & 21.2534 & 7.08447 & 31.08 & 0.0001 \\
WITHIN & 8 & 1.82329 & 0.22791 & & \\
TOTAL & 11 & 23.0767 & & & \\
& \multicolumn{5}{c}{ CHI-SQ }
\end{tabular} DF \(\quad\) P

BARTLETT'S TEST OF
EQUAL VARIANCES \(\begin{array}{llll}3.33 & 3 & 0.3430\end{array}\)
COCHRAN'S Q 0.4364
LARGEST VAR / SMALLEST VAR 23.646
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 2.28552
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
\begin{tabular}{cccr} 
TREAT_NO & MEAN & SIZE & STD DEV \\
1 & 6.9620 & 3 & 0.1297 \\
2 & 4.9243 & 3 & 0.3991 \\
3 & 3.6135 & 3 & 0.5811 \\
4 & 6.5280 & 3 & 0.6307 \\
TOTAL & 5.5070 & 12 & 0.4774
\end{tabular}

CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF CH_03 BY TREAT_NO
HOMOGENEOUS
TREAT_NO MEAN GROUPS
\(1 \quad 6.9620 \quad\) I
\(\begin{array}{ll}4 & 6.5280 \\ \text { I }\end{array}\)
24.9243 .. I

3 3.6135 .... I
THERE ARE 3 GROUPS IN WHICH THE MEANS ARE
NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE \(\quad 2.306\) REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.8989
STANDARD ERROR FOR COMPARISON 0.3898
ONE-WAY AOV FOR CH_04 BY TREAT_NO
```

SOURCE DF SS MS F P
BETWEEN 3 13.6221 4.54071 25.57 0.0002
WITHIN 8 1.42045 0.17756
TOTAL 11 15.0426
CHI-SQ DF P
BARTLETT'S TEST OF
EQUAL VARIANCES 2.66 3 0.4467
COCHRAN'S Q 0.6466
LARGEST VAR / SMALLEST VAR 9.9532
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 1.45439
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP

TREAT_NO	MEAN	SIZE	STD DEV
1	8.8753	3	0.2148
2	7.2606	3	0.3682
3	6.1123	3	0.2632
4	8.3733	3	0.6777
TOTAL	7.6554	12	0.4214

CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF CH_04 BY TREAT_NO
HOMOGENEOUS
TREAT_NO MEAN GROUPS
$1 \quad 8.8753$ I
4 8.3733 I
2 7.2606 .. I
3.1123 I
THERE ARE 3 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.

```0.050
```

```
CRITICAL T VALUE 2.306 REJECTION LEVEL
```

CRITICAL T VALUE 2.306 REJECTION LEVEL
CRITICAL VALUE FOR COMPARISON 0.7934
STANDARD ERROR FOR COMPARISON 0.3441

```

ONE-WAY AOV FOR TH_03 BY TREAT_NO


CASES INCLUDED 12 MISSING CASES 0
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{LSD (T) COMPARISON OF MEANS OF TH_03 BY TREAT_NO} \\
\hline \multicolumn{3}{|r|}{HOMOGENEOUS} \\
\hline TREAT_NO & MEAN & GROUPS \\
\hline 1 & 10.353 & I \\
\hline 4 & 9.5371 & I \\
\hline 2 & 7.0897 & .. I \\
\hline 3 & 6.0154 & .. I \\
\hline
\end{tabular}

THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 1.2470
STANDARD ERROR FOR COMPARISON 0.5407
ONE-WAY AOV FOR TH_04 BY TREAT_NO
\begin{tabular}{lrrcccc} 
SOURCE & DF & SS & MS & F & P & \\
BETWEEN & 3 & 23.9602 & 7.98673 & 24.65 & 0.0002 & \\
WITHIN & 8 & 2.59173 & 0.32397 & & & \\
TOTAL & 11 & 26.5519 & & & & \\
\multicolumn{6}{c}{ CHI-SQ } & DF \\
BARTLETT'S TEST OF & P & & \\
EQUAL VARIANCES & 5.98 & 3 & 0.1125 & & \\
COCHRAN'S Q & 0.8127 \\
LARGEST VAR / SMALLEST VAR & & \\
COMPONENT OF VARIANCE FOR BETWEEN GROUPS & 2.55426
\end{tabular}

EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
\begin{tabular}{crcr} 
TREAT_NO & MEAN & SIZE & STD DEV \\
1 & 12.527 & 3 & 0.2059 \\
2 & 10.355 & 3 & 0.3979 \\
3 & 8.710 & 3 & 0.2049 \\
4 & 11.467 & 3 & 1.0262 \\
TOTAL & 10.765 & 12 & 0.5692
\end{tabular}

CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF TH_04 BY TREAT_NO
HOMOGENEOUS
TREAT_NO MEAN GROUPS
\(1 \quad 12.527 \quad\) I
\(\begin{array}{lll}4 & 11.467 & I\end{array}\)
210.355 .. I
\(3 \quad 8.710\).... I
THERE ARE 3 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 1.0717
STANDARD ERROR FOR COMPARISON 0.4647
ONE-WAY AOV FOR DBH_A1 BY TREAT_NO
SOURCE DF SS MS F P


\section*{LSD (T) COMPARISON OF MEANS OF CH_A1 BY TREAT_NO}

HOMOGENEOUS
\begin{tabular}{ccc} 
TREAT_NO & MEAN & GROUPS \\
3 & 2.4988 & I \\
2 & 2.3363 & I \\
1 & 1.9133 & .. I \\
4 & 1.8453 & .. I
\end{tabular}

THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER. CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.3476
STANDARD ERROR FOR COMPARISON 0.1507

ONE-WAY AOV FOR TH_A1 BY TREAT_NO
\begin{tabular}{lrcccc} 
SOURCE & DF & SS & MS & F & P \\
BETWEEN & 3 & 3.16201 & 1.05400 & 5.29 & 0.0265 \\
WITHIN & 8 & 1.59390 & 0.19924 & & \\
TOTAL & 11 & 4.75591 & & &
\end{tabular}

\section*{BARTLETT'S TEST OF}
EQUAL VARIANCES 4.6130 .2027

COCHRAN'S Q 0.7937
LARGEST VAR / SMALLEST VAR 15.115
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.28492
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
\begin{tabular}{cccr} 
TREAT_NO & MEAN & SIZE & STD DEV \\
1 & 2.1739 & 3 & 0.2652 \\
2 & 3.2655 & 3 & 0.2286 \\
3 & 2.6953 & 3 & 0.7953 \\
4 & 1.9303 & 3 & 0.2046 \\
TOTAL & 2.5162 & 12 & 0.4464
\end{tabular}

CASES INCLUDED 12 MISSING CASES 0

LSD (T) COMPARISON OF MEANS OF TH_A1 BY TREAT_NO

HOMOGENEOUS
TREAT_NO MEAN GROUPS
23.2655 I

3 2.6953 I I
1 2.1739 .. I
4 1.9303 .. I
THERE ARE 2 GROUPS IN WHICH THE MEANS ARE
NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.8404
STANDARD ERROR FOR COMPARISON 0.3645
Basal area and maen annual volume increment at site III (Pak Check)

ONE-WAY AOV FOR BA03 BY TREATMENT
SOURCE DF SS MS F P
```

BETWEEN 3 2.459E-04 8.195E-05 47.17 0.0000
WITHIN 8 1.390E-05 1.737E-06
TOTAL 11 2.598E-04
CHI-SQ DF P
BARTLETT'S TEST OF
EQUAL VARIANCES 0.25 3 0.9699
COCHRAN'S Q 0.3159
LARGEST VAR / SMALLEST VAR 2.0319
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 2.674E-05
EFFECTIVE CELL SIZE3.0
SAMPLE GROUP
TREATMENT MEAN SIZE STD DEV
1 0.0161 3 1.260E-03
2 7.372E-03 3 1.039E-03
3 6.110E-03 3 1.482E-03
4 0.0153 3 1.445E-03
TOTAL 0.0112 12 1.318E-03
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF BA03 BY TREATMENT
HOMOGENEOUS
TREATMENT MEAN GROUPS
10.0161 I
$4 \quad 0.0153$ I
2 7.372E-03 .. I
3 6.110E-03 .. I
THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 2.482E-03
STANDARD ERROR FOR COMPARISON 1.076E-03
ONE-WAY AOV FOR BA_04 BY TREATMENT

```


HOMOGENEOUS
TREATMENT MEAN GROUPS
10.0175 I
\(4 \quad 0.0174 \quad\) I

2 7.947E-03 .. I
3 7.203E-03 .. I
THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 4.226E-03
STANDARD ERROR FOR COMPARISON 1.833E-03

ONE-WAY AOV FOR MAEN ANNUAL VOLUME INCREMENT AT PAKCHECK 2003-2004 BY TREATMENT

SOURCE DF SS MS F P
\(\begin{array}{llllll}\text { BETWEEN } & 3 & 0.05097 & 0.01699 & 1.16 & 0.3834\end{array}\)
WITHIN 800.117240 .01465
TOTAL 110.16820
CHI-SQ DF P
BARTLETT'S TEST OF
EQUAL VARIANCES \(7.13 \quad 30.0677\)
COCHRAN'S Q 0.4666
LARGEST VAR / SMALLEST VAR 132.21
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 7.782E-04
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREATMENT MEAN SIZE STD DEV
\(10.2481 \quad 30.1654\)
\(20.1665 \quad 3 \quad 0.0636\)
\(30.1613 \quad 3 \quad 0.0144\)
\(4 \quad 0.3198 \quad 3 \quad 0.1643\)
TOTAL \(0.2239 \quad 12 \quad 0.1211\)
CASES INCLUDED 12 MISSING CASES 0

LSD (T) COMPARISON OF MEANS OF PC BY TREATMENT
HOMOGENEOUS
TREATMENT MEAN GROUPS
40.3198 I
10.2481 I
20.1665 I
\(3 \quad 0.1613\) I
THERE ARE NO SIGNIFICANT PAIRWISE DIFFERENCES AMONG THE MEANS.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.2279
STANDARD ERROR FOR COMPARISON 0.0988

\section*{Appendix 3.4: Analysis of statistic in site IV (Houay Leuang)}
```

ONE-WAY AOV FOR DBH_03 BY TREAT_NO
SOURCE DF SS MS F P
BETWEEN 3 3.04844 1.01615 2.65 0.1207
WITHIN }8\quad3.07333 0.38417
TOTAL 11 6.12177
CHI-SQ DF P
BARTLETT'S TEST OF
EQUAL VARIANCES 4.33 3 0.2279
COCHRAN'S Q 0.7254
LARGEST VAR / SMALLEST VAR 22.098
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.21066
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREAT_NO MEAN SIZE STD DEV
1 8.3848 3 0.5142
2 9.1295 3 0.2246
3 9.6730 3 0.3272
4 8.5730 3 1.0558
TOTAL 8.9401 12 0.6198
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF DBH_03 BY TREAT_NO
HOMOGENEOUS
TREAT_NO MEAN GROUPS
3 9.6730 I
2 9.1295 I I
4 8.5730 I I
1 8.3848 .. I
THERE ARE 2 GROUPS IN WHICH THE MEANS ARE
NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 1.1670
STANDARD ERROR FOR COMPARISON 0.5061

```

ONE-WAY AOV FOR CH_03 BY TREAT_NO
```

SOURCE DF SS MS F P
BETWEEN 3 1.26408
WITHIN 8 0.78256 0.09782
TOTAL 11 2.04664
CHI-SQ DF P
BARTLETT'S TEST OF
EQUAL VARIANCES 4.83 3 0.1849
COCHRAN'S Q 0.7014
LARGEST VAR / SMALLEST VAR 23.031
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.10785
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREAT_NO MEAN SIZE STD DEV
1 4.3556 3 0.2960
2 4.6764 3 0.1315

```
\begin{tabular}{cccc}
3 & 5.2480 & 3 & 0.1092 \\
4 & 4.8899 & 3 & 0.5239 \\
TOTAL & 4.7925 & 12 & 0.3128 \\
CASES INCLUDED & 12 & \multicolumn{1}{c}{ MISSING CASES 0}
\end{tabular}

LSD (T) COMPARISON OF MEANS OF CH_03 BY TREAT_NO
HOMOGENEOUS
TREAT_NO MEAN GROUPS
\(3 \quad 5.2480\) I
44.8899 I I
24.6764 I I

1 4.3556 .. I
THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.5889
STANDARD ERROR FOR COMPARISON 0.2554

ONE-WAY AOV FOR TH_03 BY TREAT_NO
SOURCE DF SS MS F P
\(\begin{array}{lllllll}\text { BETWEEN } & 3 & 4.28687 & 1.42896 & 2.28 & 0.1559\end{array}\)
WITHIN \(8 \quad 5.00648 \quad 0.62581\)
TOTAL 119.29335
CHI-SQ DF P
BARTLETT'S TEST OF
EQUAL VARIANCES 4.77 3 0.1895
COCHRAN'S Q 0.6199
LARGEST VAR / SMALLEST VAR 38.176
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.26772
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREAT_NO MEAN SIZE STD DEV
\(\begin{array}{llll}1 & 7.8371 & 3 & 0.8498\end{array}\)
\(2 \quad 8.6778 \quad 3 \quad 0.2016\)
\(3 \quad 9.5155 \quad 3 \quad 0.4344\)
\(4 \quad 8.8413 \quad 3 \quad 1.2457\)
\(\begin{array}{llll}\text { TOTAL } & 8.7179 & 12 & 0.7911\end{array}\)
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF TH_03 BY TREAT_NO
HOMOGENEOUS
TREAT_NO MEAN GROUPS
\(3 \quad 9.5155\) I
48.8413 I I
28.6778 I I

1 7.8371 .. I
THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 1.4895
STANDARD ERROR FOR COMPARISON 0.6459

ONE-WAY AOV FOR DBH_04 BY TREAT_NO
```

SOURCE DF SS MS F P
BETWEEN 3 8.09138 2.69713 6.02 0.0189
WITHIN
TOTAL 11 11.6732
CHI-SQ DF P
BARTLETT'S TEST OF
EQUAL VARIANCES 4.25 3 0.2358
COCHRAN'S Q 0.7421
LARGEST VAR / SMALLEST VAR 18.929
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.74980
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREAT_NO MEAN SIZE STD DEV
1 10.879 3 0.5182
2 12.272 3 0.2650
3 11.396 3 0.3509
4 10.007 3 1.1528
TOTAL 11.138 12 0.6691
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF DBH_04 BY TREAT_NO
HOMOGENEOUS
TREAT_NO MEAN GROUPS
2 12.272 I
3 11.396 I I
1 10.879 .. I I
4 10.007 I
THERE ARE 3 GROUPS IN WHICH THE MEANS ARE
NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 1.2598
STANDARD ERROR FOR COMPARISON 0.5463

```

ONE-WAY AOV FOR CH_04 BY TREAT_NO
```

SOURCE DF SS MS F P
BETWEEN 3 1.13333 0.37778 3.10 0.0890
WITHIN 8 0.97393 0.12174
TOTAL 11 2.10727
CHI-SQ DF P
BARTLETT'S TEST OF
EQUAL VARIANCES 3.24 3 0.3568
COCHRAN'S Q 0.5808
LARGEST VAR / SMALLEST VAR 16.130
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.08535
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREAT_NO MEAN SIZE STD DEV
1 5.7451 3 0.3777
2 5.9949 3 0.1324
3 6.4722 3 0.2097
4 5.6969 3 0.5318

```

TOTAL \(5.9773 \quad 12 \quad 0.3489\)
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF CH_04 BY TREAT_NO
HOMOGENEOUS
TREAT_NO MEAN GROUPS
36.4722 I
25.9949 I I
15.7451 .. I
45.6969 .. I

THERE ARE 2 GROUPS IN WHICH THE MEANS ARE
NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.6570
STANDARD ERROR FOR COMPARISON 0.2849

ONE-WAY AOV FOR TH_04 BY TREAT_NO
```

SOURCE DF SS MS F P
BETWEEN 3 2.81825}00.93942 1.33 0.3316
WITHIN
TOTAL 11 8.47832
CHI-SQ DF P
BARTLETT'S TEST OF
EQUAL VARIANCES 4.74 3}00.191
COCHRAN'S Q 0.6231
LARGEST VAR / SMALLEST VAR 39.389
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.07730

```
EFFECTIVE CELL SIZE 3.0
                SAMPLE GROUP
TREAT_NO MEAN SIZE STD DEV
    \(\begin{array}{llll}1 & 9.5840 & 3 & 0.8914\end{array}\)
    \(2 \quad 9.9449 \quad 3 \quad 0.2116\)
    \(3 \quad 10.909 \quad 3 \quad 0.4768\)
    \(4 \quad 10.103 \quad 3 \quad 1.3279\)
TOTAL \(10.135 \quad 12 \quad 0.8411\)
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF TH_04 BY TREAT_NO
    HOMOGENEOUS
TREAT_NO MEAN GROUPS
    \(3 \quad 10.909\) I
    \(4 \quad 10.103\) I
    29.9449 I
    19.5840 I
THERE ARE NO SIGNIFICANT PAIRWISE DIFFERENCES AMONG THE MEANS.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 1.5837
STANDARD ERROR FOR COMPARISON 0.6868
ONE-WAY AOV FOR DBH_A1 BY TREAT_NO
SOURCE DF SS MS F P
```

BETWEEN 3 5.36494 1.78831 374.93 0.0000
WITHIN 8 0.03816 0.00477
TOTAL 11 5.40310
CHI-SQ DF P
BARTLETT'S TEST OF
EQUAL VARIANCES 2.28 3 0.5171
COCHRAN'S Q 0.4950
LARGEST VAR / SMALLEST VAR 12.351
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.59451
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREAT_NO MEAN SIZE STD DEV
1 2.4946 3 0.0754
2 3.1421 3 0.0565
3 1.7229 3 0.0277
4 1.4342 3 0.0972
TOTAL 2.1984 12 0.0691
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF DBH_A1 BY TREAT_NO
HOMOGENEOUS
TREAT_NO MEAN GROUPS
2 3.1421 I
1 2.4946 .. I
3 1.7229 I
4 1.4342 I
ALL 4 MEANS ARE SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.1300
STANDARD ERROR FOR COMPARISON 0.0564
ONE-WAY AOV FOR CH_A1 BY TREAT_NO
SOURCE DF SS MS F P
BETWEEN 3 0.61229}00.20410 18.12 0.0006
WITHIN 8}00.09011 0.0112
TOTAL 11 0.70239
CHI-SQ DF P
BARTLETT'S TEST OF
EQUAL VARIANCES 2.04 3 0.5646
COCHRAN'S Q 0.4186
LARGEST VAR / SMALLEST VAR }8.771
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.06428
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREAT_NO MEAN SIZE STD DEV
1 1.3896 3 0.0817
2 1.3185 3 0.0464
3 1.2242 3 0.1373
4 0.8070 3 0.1318
TOTAL 1.1848 12 0.1061
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF CH_A1 BY TREAT_NO

```

HOMOGENEOUS
TREAT_NO MEAN GROUPS
\(1 \quad 1.3896\) I
21.3185 I
\(3 \quad 1.2242\) I
40.8070 .. I

THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.1998
STANDARD ERROR FOR COMPARISON 0.0867
ONE-WAY AOV FOR TH_A1 BY TREAT_NO
SOURCE DF SS MS F P
BETWEEN \(3 \quad 0.468330 .1561138 .940 .0000\)
\(\begin{array}{llll}\text { WITHIN } & 8 & 0.03207 & 0.00401\end{array}\)
TOTAL 110.50041
CHI-SQ DF P
BARTLETT'S TEST OF
\(\begin{array}{llll}\text { EQUAL VARIANCES } & 0.72 & 3 & 0.8676\end{array}\)
COCHRAN'S Q 0.4388
LARGEST VAR / SMALLEST VAR 3.7548
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.05070
EFFECTIVE CELL SIZE 3.0
SAMPLE GROUP
TREAT_NO MEAN SIZE STD DEV
\(\begin{array}{llll}1 & 1.7470 & 3 & 0.0433\end{array}\)
\(2 \quad 1.2671 \quad 3 \quad 0.0614\)
\(3 \quad 1.3932 \quad 3 \quad 0.0579\)
\(4 \quad 1.2615 \quad 3 \quad 0.0839\)
TOTAL \(1.4172 \quad 120.0633\)
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF TH_A1 BY TREAT_NO
HOMOGENEOUS
TREAT_NO MEAN GROUPS
\(1 \quad 1.7470\) I
31.3932 .. I
21.2671 .... I
\(4 \quad 1.2615\).... I
THERE ARE 3 GROUPS IN WHICH THE MEANS ARE
NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.1192
STANDARD ERROR FOR COMPARISON 0.0517
Basal area and mean annual volume increment at site IV (Houay Leuang)
ONE-WAY AOV FOR BA03 BY TREATMENT
\begin{tabular}{llcccc} 
SOURCE & DF & SS & MS & F & P \\
BETWEEN & 3 & \(7.427 E-06\) & \(2.476 \mathrm{E}-06\) & 2.20 & 0.1664
\end{tabular}
```

WITHIN 8 9.022E-06 1.128E-06
TOTAL 11 1.645E-05
CHI-SQ DF P
BARTLETT'S TEST OF
EQUAL VARIANCES 6.33 3 0.0967
COCHRAN'S Q 0.7941
LARGEST VAR / SMALLEST VAR 69.577
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 4.493E-07
EFFECTIVE CELL SIZE3.0
SAMPLE GROUP
TREATMENT MEAN SIZE STD DEV
1 7.447E-03 3 6.820E-04
2 8.412E-03 3 2.269E-04
3 9.513E-03 3 6.419E-04
4 7.785E-03 3 1.893E-03
TOTAL 8.289E-03 12 1.062E-03
CASES INCLUDED 12 MISSING CASES 0

```

\section*{LSD (T) COMPARISON OF MEANS OF BA03 BY TREATMENT}

HOMOGENEOUS
TREATMENT MEAN GROUPS
3 9.513E-03 I

2 8.412E-03 I I
4 7.785E-03 I I
1 7.447E-03 .. I
THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 2.000E-03
STANDARD ERROR FOR COMPARISON 8.671E-04

ONE-WAY AOV FOR BA04 BY TREATMENT


HOMOGENEOUS
\begin{tabular}{ccc} 
TREATMENT & MEAN & GROUPS \\
3 & 0.0117 & I \\
4 & 0.0105 & I \\
2 & \(9.973 \mathrm{E}-03\) & I \\
1 & \(9.038 \mathrm{E}-03\) & I
\end{tabular}

THERE ARE NO SIGNIFICANT PAIRWISE DIFFERENCES AMONG THE MEANS.
CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 2.728E-03
STANDARD ERROR FOR COMPARISON 1.183E-03
ONE-WAY AOV FOR MEAN ANNUAL VOLUME INCREMENT AT HOUAU LEUANG 2003-2004 BY TREATMENT
```

SOURCE DF SS MS F P
BETWEEN 3
WITHIN 8 0.04265 0.00533
TOTAL 11 0.07426

```
CHI-SQ DF P
BARTLETT'S TEST OF
    EQUAL VARIANCES \(3.17 \quad 3 \quad 0.3655\)
COCHRAN'S Q 0.4358
LARGEST VAR / SMALLEST VAR 20.141
COMPONENT OF VARIANCE FOR BETWEEN GROUPS 0.00174
EFFECTIVE CELL SIZE 3.0
    SAMPLE GROUP
TREATMENT MEAN SIZE STD DEV
    \(\begin{array}{llll}1 & 0.2310 & 3 & 0.0905\end{array}\)
    \(20.1644 \quad 3 \quad 0.0581\)
    \(30.1949 \quad 3 \quad 0.0215\)
    \(4 \quad 0.3021 \quad 3 \quad 0.0964\)
\(\begin{array}{llll}\text { TOTAL } & 0.2231 & 12 & 0.0730\end{array}\)
CASES INCLUDED 12 MISSING CASES 0
LSD (T) COMPARISON OF MEANS OF HL BY TREATMENT
    HOMOGENEOUS
TREATMENT MEAN GROUPS
    \(4 \quad 0.3021\) I
    10.2310 I I
    30.1949 I I
    20.1644 .. I

THERE ARE 2 GROUPS IN WHICH THE MEANS ARE NOT SIGNIFICANTLY DIFFERENT FROM ONE ANOTHER.

CRITICAL T VALUE 2.306 REJECTION LEVEL 0.050
CRITICAL VALUE FOR COMPARISON 0.1375
STANDARD ERROR FOR COMPARISON 0.0596```

