Cytokinuttryck vid vaccination med olika vaccinkoncept mot FIP

Marie Karlsson

Handledare: Mikael Berg
Inst. för biomedicin och veterinär folkhälsovetenskap
Biträdande handledare: Jonas Johansson Wensman
Inst. för biomedicin och veterinär folkhälsovetenskap
<table>
<thead>
<tr>
<th>INNEHÅLLSFÖRTECKNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sammanfattning ..</td>
</tr>
<tr>
<td>Summary ...</td>
</tr>
<tr>
<td>Inledning ...</td>
</tr>
<tr>
<td>Litteraturöversikt ...</td>
</tr>
<tr>
<td>Felin infektiös peritonit – sjukdom med många frågetecken</td>
</tr>
<tr>
<td>Felint coronavirus ...</td>
</tr>
<tr>
<td>Epidemiologi ...</td>
</tr>
<tr>
<td>Patogenes ..</td>
</tr>
<tr>
<td>Cytokinforekomst vid FIP ..</td>
</tr>
<tr>
<td>Vaccination mot FIP – dröm eller verklighet?</td>
</tr>
<tr>
<td>Vaccination idag ...</td>
</tr>
<tr>
<td>ISCOM-vaccin ...</td>
</tr>
<tr>
<td>ELISA ..</td>
</tr>
<tr>
<td>Realtids-PCR – analysmetod med stora möjligheter</td>
</tr>
<tr>
<td>SYBR green realtids-PCR ..</td>
</tr>
<tr>
<td>TaqMan realtids-PCR ..</td>
</tr>
<tr>
<td>PriProET realtids-PCR ...</td>
</tr>
<tr>
<td>Referensgener – standard att jämföra med</td>
</tr>
<tr>
<td>Material och Metoder ...</td>
</tr>
<tr>
<td>Djurmaterial och provtagning ..</td>
</tr>
<tr>
<td>Djurmaterial ..</td>
</tr>
<tr>
<td>Vaccination och challenge ...</td>
</tr>
<tr>
<td>Provtagning ..</td>
</tr>
<tr>
<td>ELISA ..</td>
</tr>
<tr>
<td>Realtids PCR ...</td>
</tr>
<tr>
<td>RNA-extraktion ...</td>
</tr>
</tbody>
</table>
SAMMANFATTNING

Felin infektiös peritonit (FIP) är en virussjukdom hos katt med hög dödlighet som det varken finns behandling eller effektivt vaccin mot. Många frågor är obesvarade när det gäller den här sjukdomen och immunsvaret hos drabbade katter.

Syftet med arbetet är att utvärdera två olika tekniker för att studera cytokinuttryck hos katter vaccinerade med vaccinkoncept mot FIPV. Mer information om immunsvaret hos dessa katter skulle kunna vara till hjälp vid förståelsen för sjukdomens patogenes och framställningen av ett effektivt vaccin.

Med hjälp av kvantitativ realtids-PCR och antigen ELISA har nivåerna av cytokinerna IFN-γ och IL-10 i blod studerats hos SPF-katter immuniserade med ett ISCOM-vaccin mot FIPV och därefter experimentellt infekterade.

Nivåerna av IFN-γ och IL-10 i serum var för låga att kunna analyserad med den testade ELISA:n. Med realtids-PCR, som är en mycket känslig metod, sågs genuttryck för IFN-γ och IL-10 hos alla katterna i försöket vid ett eller flera provtagningstillfällen. Inga påtagliga skillnader sågs mellan vaccinerade katter jämfört med kontroller.

Kommersiella ELISA kan ha för hög lägsta detektionsnivå än vad som är användbart vid analys av cytokiner hos katter som inte utvecklat FIP. För vidare analys av cytokiner i mycket låga koncentrationer i serum krävs en känsligare metod där proximitetsligerings assay är ett tänkbart alternativ.
SUMMARY

Feline infectious peritonitis (FIP) is a feline viral disease with high mortality. There is no cure or any effective vaccine available today. Many questions are yet to be answered about this disease and the immune response in affected cats.

The aim of the study is to evaluate two different techniques for the study of cytokine profiles in cats vaccinated with a vaccine concept against FIPV. More information about the immune response in these cats could give valuable information to better understand the pathogenesis of the disease and the development of an effective vaccine.

With quantitative real-time PCR and antigen ELISA has the levels of the cytokines IFN-γ and IL-10 been studied in blood from SPF cats immunised with an ISCOM vaccine against FIPV and then challenged.

The levels of IFN-γ and IL-10 were too low in the serum samples to be able to analyze with the ELISA used. With real-time PCR, which is a very sensitive method, all the cats in the trial expressed IFN-γ and IL-10 at one or more samplings. No apparent difference was seen between the vaccinated and control cats.

Commercial ELISA can have a too high lowest detection level than what’s useful when analyzing cytokines in samples from cats that have not developed FIP. For further analyzes of cytokines in very low concentrations a more sensitive method is needed, where proximity ligation assay is one possible alternative.
INLEDNING

I dagsläget finns inget effektivt vaccin mot FIP och mycket är ännu oklart angående sjukdomens patogenes. FIP är en allvarlig sjukdom med hög dödlighet som det inte finns någon behandling mot. Sättet vi håller katter idag med större andel innekatter och flera katter i samma hushåll gynnar spridningen av FCoV och uppkomsten av FIP i kattpopulationen. Detta gör det mycket angeläget att få fram ett effektivt vaccin. Då behövs mer kunskap om de bakomliggande faktorerna vid FIP och man vet att katternas immunförsvaret är det som avgör infektionens utgång. Studier av katters immunvar vid FIP är en viktig del i arbetet för att bättre kunna förstå sjukdomen.

Syftet med arbetet är att utvärdera två olika tekniker, ELISA och realtids-PCR för att studera cytokininuttryck hos katter vaccinerade med vaccinkoncept mot FIPV. Eftersom FIP är en sjukdom där många frågor fortfarande är obesvarade behövs mer information om bl.a. vilka cytokiner som förekommer för att bättre kunna förstå sjukdomens patogenes och i framtiden ta fram ett effektivt vaccin.
LITTERATURÖVERSIKT

Fel in infektiös peritonit – sjukdom med många frågetecken

Felint coronavirus

Felint coronavirus (FCoV) förekommer i två biotyper med olika patogenicitet. Felint enteriskt coronavirus (FECV) är mycket spritt i kattpopulationen och är endemiskt förekommande i de flesta katterier men ger sällan upphov till kliniska symptomer (Addie et al., 2003). Smittvägen för FECV är huvudsakligen fekal-oral (figur 1) (Hoskins, 1993; Rottier, 1999).

![Figur 1. Smitta med FECV sker ffa. via munnen](image)

Den patogena formen av viruset felint infektiöst peritonitvirus (FIPV), som orsakar FIP, uppkommer från en mutation av FECV, vilket sker i upp till 10 % av de infekterade katterna och inte sprids vidare mellan katter (Vennema et al., 1998). Båda biotyperna förekommer i åtminstone två serotyper (I och II) (Addie et al., 2003). Serotyp I är betydligt vanligare förekommande (Rottier, 1999).

FECV replikerar ffa. i tarmepitelceller (Herrwegh et al., 1997). FIPV kan, till skillnad från FECV, replikera i makrofager (Stoddart & Scott, 1989). Antikroppar mot FCoV gynnar upptag av viruset i makrofagerna (Hohdatsu et al., 1994).

Epidemiologi

Omkring 25 % av katterna i kattpopulationen har antikroppar mot FCoV. I katterier är andelen seropositiva katter mellan 80-90 %. Däremot utvecklar endast upp mot 10 % av dessa katter FIP (Pedersen & Boyle, 1979). I en studie av svenska katter var andelen seropositiva 31 %. Bland raskatter var 65 % seropositiva jämfört med 17 % hos blandraskatter (Ström Holst et al., 2006).

Virus utsöndras i ffa. faeces men även saliv och ev. andra kroppsvätskor från infekterade katter. Vissa katter blir persistenta bärare och utsöndrar konstant höga nivåer av virus, vilket utgörs av ca 10-15 % av de infekterade katterna. En liten andel av infekterade katter verkar immuna mot viruset och utsöndrar därmed
aldrig virus (< 5 %). Majoriteten av de infekterade katterna (ca 70-80 %) gör sig av med infektionen men blir infekterade igen upprepade gånger (Poland et al., 1996; Addie & Jarrett., 2001). Efter några år (2-4) kan katterna troligtvis utveckla tillräcklig immunitet för att stå emot ytterligare coronavirusinfektion. Därför är det ffa. unga katter (yngre än tre år) och kattungar som står för den huvudsakliga virusutssöndringen (Kass & Dent, 1995). De upprepade återinfektionerna bibehåller viruset i kattgruppen, ffa. om flera katter delar samma kattläda (Ström Holst et al., 2006). Kroniskt infekterade katter som konstant utsöndrar virus spelar också en betydande roll vid endemiska infektioner (Herrewegh et al., 1997).

Eftersom det inte finns något effektivt vaccin eller någon behandling mot FIP är kontroll av FECV-spridningen enda sättet att i dagsläget försöka kontrollera sjukdomen. Det uppnås bl.a. genom den uppfödningsform baserad på isolering av dräktiga honor och kattungar som beskrivs i avsnittet Vaccination idag. I samma hem/uppfödning bör det inte finnas mer än 5-6 katter eftersom fler katter än så betyder en ökad risk för förekomst av katter med hög eller persistent utsöndring av FCoV, vilket ökar smittrycket (Addie et al., 2003). Andelen katter med antikroppar mot FCoV ökar i grupper med fem eller fler katter (Ström Holst et al., 2006). För att minska förekomsten av FCoV i en kattgrupp är det mycket viktigt att få bort persistenta virusutssöndrare (Foley et al., 1997).

Mottagligheten för FIP verkar vara delvis ärtlig. Ärflichkeit för FIP-mottaglighet är ca 50 %, dvs. genetiskt känsliga katter löper dubbelt så hög risk att utveckla FIP (Foley et al., 1996). Därför bör man inte avläsa på katter som fött ungar som senare drabbats av FIP (Addie et al., 2003). Bland raskatter är förekomsten av FIP högre jämfört med blandraskatter (figur 2). Detta kan bero på ärftliga faktorer men även det faktum att raskatter ofta är uppfödda i katterier/flerkattshushåll och därmed utsätts för ett högre smittryck (Pesteanu-Somogyi et al., 2005).

Figur 2. Blandraskatter löper lägre risk att drabbas av FIP jämfört med raskatter
Katter i katterier, hem med många katter och katter som vistats i kathem drabbas oftare av FIP jämfört med andra katter pga. högre förekomst av FCoV. När katter placeras i kathem resulterar det i en hög utsöndring av bl.a. FCoV, framför allt hos kattungar och unga katter (Pedersen et al., 2004). Riskfaktorer för att utveckla FIP hos katter i flerkattshushåll är kattens ålder (yngre katter löper högre risk att drabbas), kattens coronavirustiter (högre titer tyder på ökad risk), prevalensen utsöndring av FCoV i faeces i kattgruppen och andelen av katterna som utsöndrar virus persistent (Foley et al, 1997).

Alla katter kan drabbas av FIP, men vanligast är sjukdomen hos katter mellan sex månader och tre år gamla, som kommer från kathem eller katterier (Addie et al., 2003). Mortaliteten är över 95 % (Addie et al., 2003). FIP är en vanlig orsak till dödsfall hos unga katter från katthem och katterier (Vennema et al., 1998).

Patogenes

FIP-virusets förmåga att replikera i makrofager gör att infektionen blir systemisk genom att infekterade makrofager sprids via blodet till blodkärlsendotel i olika delar av kroppen (Greene, 2006). Viruset infekterar endotelceller och fortsätter där sin replikation. Immunsavaret reagerar och ett starkt cellmedierat immunsvaret tidigt i FIPV-infektionen anses eliminera viruset (Andrew, 2000). Om inte detta sker kommer de makrofager, neutrofiler, antikroppar och komplement som rekryterats till den skadade vävnaden att spela en avgörande roll i sjukdomens patogenes (figur 3) (Greene, 2006). Infektion av endotel sker i peritoneum, pleura, serosan på olika organ i bukhåla och thorax, CNS och uveala strukturer i ögat (Pedersen, 1995).

Figur 3. Patogenes vid FIP
Patogenesen vid FIP är immunmedierad och dessutom mycket varierande och komplex. Antikroppar mot FIPV spelar en betydande roll i sjukdomens patogenees eftersom de bildar komplek med virusantigen och komplementfaktorer. Dessa komplex samt övriga delar av immunförsvar riktat mot viruset skadar blodkärl och orsakar vaskulit med bildning av pyogranulom (Greene, 2006; Pedersen et al., 1979). Komplementfixering resulterar i frisättning av vasoaktiva aminer, som ger ökad kärlpermeabilitet och därmed läckage av vätska och plasmaproteiner (Andrew, 2000).

Våt FIP karaktäriseras av kraftiga kärlskador pga. vaskulit med läckage av vätska och plasmaproteiner vilket ger ansamling av det typiska proteinrika exsudatet i ffa. bukhålan (75 %) men i en del fall i thorax (25 %) (Pedersen, 1995). Efterhand som alltmer exsudat ansamlas uppstår symtom i form av utspänd buk eller andningssvårigheter om det är i thorax vätskeansamlingen sker (Pedersen, 1995).

Vissa virus kan påverka värddjurets immunförsvar för att minska möjligheterna för kroppen att göra sig av med infektionen (Greene, 2006). Vid FIP ses en kraftig minskning av antalet CD4+ och CD8+ T-celler redan mycket tidigt i infektionen. Minskningen kan korreleras till ökad virusreplikation men man vet ännu inte hur FIPV ger upphov till förlust av T-celler. I slutfasen av sjukdomen är T-cellerna praktiskt taget försvunna i vävnaden inklusive lymfatisk vävnad (De Groot-Mijnes et al., 2004). En hypotes är att de virusinfekterade cellerna frisätter någon substans som ger upphov till apoptos av T-celler (Haagmans et al., 1996).

Vid FIP uppkommer en rad hematologiska förändringar såsom anemi, neutrofili, lymfopeni, förhöjt total protein med ökning av α2- och γ-globuliner, men dessa parametrar är inte specifika för FIP (Paltrinieri et al., 2002). I slutfasen av sjukdomen är koagulationen mycket nedsatt, troligtvis orsakat av DIC (disseminated intravascular coagulation) pga. complementaktivering (Pedersen et al., 1979).
Cytokininförekomst vid FIP

Vid FIP ses signifikant lägre nivåer av IL-2, IL-4, IL-10, IL-12 och IFN-γ i blodet. Vid FIPV-infection ses en tidig sänkning av dessa cytokiner och cytokinnivåerna fortsätter att sjunka efterhand som symtom utvecklas (Gun-Moore et al. 1998). Flera studier har visat låga nivåer av IFN-γ i blodet (uttryck av IFN-γ mRNA i leukocyter) hos katter med FIP men höga hos kliniskt friska FCoV-infekterade katter (Gunn-Moore et al., 1998; Kiss et al., 2004; Gelain et al. 2006; Giordano & Paltrinieri, 2008). Orsaken till den låga IFN-γ koncentrationen i serum hos FIP-katter kan bero på en låg produktion från leukocyterna i blodet (Gelaine et al., 2006) eller ett minskat antal leukocyter i blodet eller lymfknutorna (Kipar et al., 2001, Paltrinieri et al., 2003, De Groot-Mijnes et al., 2005).

Kliniskt friska FCoV-infekterade katter med hög prevalens FIP har högre nivåer av IFN-γ i serum än katter med FIP (Giordano & Paltrinieri, 2008). Detta tyder på att de friska katterna har ett starkt ”systemiskt” cellmedierat immunsvaret. Däremot ses ingen signifikant skillnad i IFN-γ nivåerna i serum hos FIP-katter och friska FCoV-infekterade katter som lever i katterier med låg förekomst av FIP (Giordano & Paltrinieri, 2008). Vid jämförelser med SPF-katter ses även en ökad produktion av ffa. IL-12p40, IL-4, IL-1β hos symtomfria FCoV-infekterade katter (Gelaine et al., 2006).

Cytokininförekomsterna i blod hos friska FCoV-infekterade katter och katter med FIP uppvisar stor individuell variation som troligtvis inte kan förklaras av ålders- eller rasrelaterade skillnader (Gelaine et al., 2006).

Cytokinprofilerna i blod verkar skilja sig från de i vävnader (Foley et al 2003, Berg et al 2005). Vid studier av cytokinnivåer i hjärnvävnad hos katter med FIP har ökade nivåer påvisats av flera olika cytokiner med blandade mönster av Th1 och Th2 typ, ffa. ökad transkription av TNF-α, IL-6 och IL-18. Katter med neurologisk FIP hade en kraftig upprepning av IL-6, IL-1, IL-18 och IFN-α, men lägre nivåer av IFN-γ dock inte signifikant skillnad jämfört med friska katter (Foley et al., 2003). I ascitesvätska från katter med FIP är nivåerna av IFN-γ signifikant högre än nivåerna i serum (Giordano & Paltrinieri, 2008). Detta troligtvis på grund av produktion av cytokinet från leukocyter i den skadade vävnaden eftersom man i områden med vävnadsskada vid FIP ser ett ökat uttryck av IFN-γ (Berg et al., 2005). Den höga nivån av IFN-γ i vävnaden tyder på att det cellmedierade immunsvar även är delaktig i patogenesen vid FIP. IFN-γ verkar skydda mot FIP i vissa lägen men bidra till sjukdomens utveckling i andra (Giordano & Paltrinieri, 2008).

Vaccination mot FIP – dröm eller verklighet?

Ännu finns inget effektivt vaccin mot FIP. Försök att få fram ett fungerande vaccin har hittills misslyckats (exempel: Vennema et al., 1989; Gunn-Moore et al., 1998; Glansbeek et al., 2002; Hebben et al., 2004; Gelaine et al., 2006). Vissa vaccinkoncept har även förvärrat infektionen och sjukdomsförlöptet vid experimentell infektion med FIPV, s.k. early death fenomenet, och antas orsakas av antikroppar mot FIPV (Vennema et al., 1989).

En av de stora svårigheterna med att utveckla ett FIP-vaccin är att antikroppar mot FCoV inte är skyddande utan snarare förvärrar sjukdomsutvecklingen.

Vaccination idag

Endast ett vaccin mot FIP finns på marknaden (Primucell FIP™, Pfizer Animal Health) och detta vaccin har stora begränsningar då det endast har effekt om det ges till katter som inte utsatts för FECV-smitta dvs. inte har några eller endast låga nivåer av antikroppar mot viruset (Fehr et al., 1997).

Eftersom majoriteten av alla katter i katterier (65-90 %) är seropositive krävs det speciella uppfödningsrestriktioner för att få fram seronegativa kattungar som vaccinet kan användas till (Pedersen & Boyle, 1979; Ström Holst et al., 2005). Vid denna uppfödningsform isoleras den dräktiga honan från andra katter 2-3 veckor innan förlossningen i en FCoV-fri miljö. Modern och ungarna hålls sedan i strikt karantän och ungar avvänjs mycket tidigt (4-6 veckors ålder). Den tidiga avvänjningen ska förhindra att ungar infekteras av FCoV efter att det maternella skyddet minskat. Risken är dock stor att en så pass tidig avvänjning påverkar kattungarnas utveckling av normala beteenden negativt. Det krävs även mer tid, utrymme och arbete för att klara av det här sättet att föda upp ungar i ett katteri. Antikroppstest vid 12 veckors ålder ska vara negativt för FCoV-antikroppar om den FCoV-fria uppfödningen lyckats (Addie et al., 2003).

Figur 4. Dagens vaccin kan användas till seronegativa kattungar äldre än 16 veckor

Vaccination kan inte utföras förrän vid 16 veckors ålder för att få ett effektivt immunsvar. Kattungarna måste alltså hållas åtskilda från andra katter i över 16 veckor (Pedersen, 1995).
ISCOM-vaccin

För att få ett skyddande (dvs. cellmedierat) och inte skadligt immunsvar vid vaccination mot FIP kan möjligtvis s.k. ISCOM-vaccin vara användbara. Vid framställning av ISCOM-vaccin inkorporeras antigenet i ett immunstimulerande komplex (ISCOM) (Morein et al., 1984). ISCOM står för immunostimulering complexes och är strukturer som har förmåga att stimulera MHC klass I presentation för CD8+ T-cellers, dvs. stimulerar till ett cellmedierat immunsvar. Troligtvis sker detta genom att antigenet förs in i cellmembran och på så vis presenteras på cellernas yta. MHC klass I är molekylkomplex som finns på alla kännsjukande cellers yta och när de binder viruspeptider uppfattas cellerna som främmande av cytotoxiska T-cellers (Pastoret et al., 1997). I kombination med ISCOM fås ett starkare immunsvar än vad antigenet i sig hade gett (Murphy et al., 1999).

ELISA

ELISA (enzyme-linked immunosorbent assay) är en immunoassay dvs. en analysmetod baserad på specifika antikroppar riktade mot det antigen, t.ex. ett cytokin, som ska detekteras. Den här typen av analyser är lätt och relativt snabba att utföra och dessutom billiga.

Det finns olika typer av ELISA; direkta och indirekta. Vid direkt ELISA (antikropps-ELISA) binds antigenet till botten av brunnarna i 96-håls plattor och detektering sker med specifika antikropper konjugerade till ett enzym. Indirekt ELISA (antigen-ELISA) har istället specifika s.k. capture antikroppar bundna i brunnarna (figur 5). Antikropparna binder antigenet i provet och därefter tillsätts en detektionsantikropp konjugerad till ett enzym. I vissa ELISA är detektionsantikroppen konjugerad till biotin istället för direkt till ett enzym. Då tillkommer ytterligare ett steg där avidin eller streptavidin bundet till enzymet tillsätts. Eftersom biotin och avidin/streptavidin har en mycket stark affinitet ökar detta ofta analysens sensitivitet.

![Figur 5. Principen för antigen-ELISA](image-url)
Realtids-PCR – analysmetod med stora möjligheter

Real-time reverse transcription polymerase chain reaction (rRT-PCR) används ofta vid undersökningar av cytokininuttryck eftersom det är en förhållandevis lätt och snabb metod med hög sensitivitet som kan detektera de mycket låga nivåer av cytokin-mRNA som förekommer i vävnader och kroppsvätskor (Giulietti et al., 2001).

Realtids-PCR består av tre steg: 1) omvandla RNA till cDNA (complementary DNA) med hjälp av enzymet omvänt transkriptas, 2) amplifiera (mångfaldiga) cDNA med PCR-teknik och 3) detektera och kvantifiera amplifierade produkter i realtid dvs. i takt med att de bildas (Nolan et al. 2006).

![Diagram of PCR reaction](image)

Figur 6. Schematisk bild över PCR-reaktionen

Värdena som fås från rRT-PCR måste analyseras vidare för att få reda på antalet kopior av en specifik RNA-sekvens i ursprungsprovet eller mängden specifikt RNA i förhållande till övriga prover s.k. relativa nivåer (t.ex. prov 1 innehöll dubbelt så mycket mRNA som prov 2). Vanligast är att man använder sig av relativa vården och den vanligaste metoden för att få fram dessa är 2^{-ΔΔC_{T}}. Med den här metoden räknas vårdena ut med hjälp av provernas C_{T}-värdet (crossing threshold). C_{T}-värdet är antalet cykler det tar innan fluorescensen för ett prov når upp till ett visst tröskelvärde, som man själv har angett. C_{T}-värdet blir lägre desto mer mRNA för den specifika gen man letar efter som finns i provet eftersom fluorescensen då ökar snabbare. För att 2^{-ΔΔC_{T}} metoden ska fungera måste man ha gener som uttrycks i konstant nivå i alla proverna. Dessa s.k. referensgener används som kontroller för att korrigera för skillnader som uppstår p.g.a. provhanteringen (VanGuilder et al., 2008).

SYBR green realtids-PCR

Det finns olika typer av realtids-PCR. En av dessa är SYBR green som bygger på en teknik med DNA-bindande molekyler i ett fluorescerande färgmedel. SYBR green binder till dubbelsträngat DNA (dsDNA). När molekylerna är i sin fria form avger de ingen fluorescens, utan det är först när de bundit till dsDNA som fluorescerande ljus uppstår (Figur 7), (Giulietti et al., 2001). Fluorescensen mäts kontinuerligt (i realtid) och är proportionell mot mängden DNA som bildas (Nolan et al., 2006).

Fördelarna med SYBR green är att systemet kan användas med alla primrar och målsekvenser. Men eftersom SYBR green binder till allt dsDNA blir specificiteten sämre, risken finns att molekylerna bundit till ickespecifika PCR-produkter och primer dimerer (två primrar som bundit till varandra). Smältkurvorerna för de olikstora sekvenserna kommer att skilja sig åt vilket gör att man kan se vilken fluorescens som hörrör från målsekvensen och vilken som beror på ickespecifika sekvenser (Giulietti et al., 2001). Kortare sekvenser har en lägre smältpunkt än längre sekvenser.
Figur 7. Principen för SYBR green reaktionen (efter Giulietti et al., 2001)

TaqMan realtids-PCR

RT-PCR med TaqMan prober är en annan typ av realtids-PCR som används flitigt vid bland annat kvantifiering av cytokiner. Här använder man sig av en forward primer, en reverse primer och en probe, som alla är specifika för målsekvensen och binder in till den. Proben är en oligonukleotid med en reporterfluorofor i ena änden och en quencherfluorofor i den andra. När proben är intakt skickas ingen fluorescens ut eftersom quencherfluoroforen absorberar fluoroscensen från reporteren. Vid PCR-reaktionen klyver DNA-polymeraset proben och reporteren kommer då långt ifrån quenchern, vilket gör att fluorescens skickas ut (Figur 8), (Giulietti et al., 2001). Fluorescensen mäts för att kvantifiera mängden DNA som bildas.

Figur 8. Principen för RT-PCR med TaqMan-probe (efter Giulietti et al., 2001)

SYBR green

SYBR green molekylerna är obundna och ger då inte ifrån sig något fluorescerande ljus.

SYBR green

SYBR green molekylerna är bundit till dubbelsträngat DNA uppstår fluorescens.
PriProET realtids-PCR

Figur 9. Principen för PriProET realtids-PCR

Referensgener – standard att jämföra med

Referensgener, även kallade housekeepinggener, är gener som används för att korrigera för de variationer i genuttryck som förekommer vid analyser med realtids-PCR (Penning et al., 2007). Dessa variationer uppstår bl.a. vid den omvända transkriptionen då RNA blir cDNA, där reaktionen kan variera i effektivitet (Giulietti et al., 2001). Referensgener ska fungera som en intern kontroll/standard. Kriteriet för att en gen ska gå att använda som en referensgen är
att den ska uttryckas konstant i alla celler i en viss vävnad oavsett individ (Penning et al., 2007). Genen får inte heller påverkas av själva metodens tillvägagångssätt. Oftast måste man prova sig fram för att hitta de referensgener som passar bäst för den analys man ska göra (Giulietti et al., 2001).

MATERIAL OCH METODER

Studien ingår som en del i ett försök som utförts i Ungern, Animal Facility of CAO-Directorate of Veterinary Medicinal Products, Gödöllő. Försöket har pågått under 2008 och prover har skickats till SLU i Sverige för analys av cytokiner.

Djurmaterial och provtagnings

Djurmaterial

Tio stycken sex veckor gamla specific pathogen-free (SPF) honkatter ingick i försöket. Katterna delades in i tre grupper (tabell 1).

<table>
<thead>
<tr>
<th>Grupp</th>
<th>Antal katter</th>
<th>Kattnummer</th>
<th>Vaccination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>1-4</td>
<td>ISCOM-A/Gm1+rCTB (25 µg corona-Ag)</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5-8</td>
<td>AbISCO adjuvans + 25 µg corona-Ag</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>9-10</td>
<td>Ovaccinerad kontrollgrupp</td>
</tr>
</tbody>
</table>

Vaccination och challenge

Katterna i grupp 1 och 2 vaccinerades med två olika ISCOM-vaccinkoncept mot FIPV enligt tabell 1 efter fjorton dagars acklimatiseringsperiod efter ankomst. Första vaccinationsdagen motsvarar dag 0, andra vaccinationen utfördes dag 28. Dag 42 infekterades katterna, s.k. challenge, oronasalt med FIPV-stammen DF2 (220 TCID₅₀ i 1 ml DMEM).

Provtagnings

I den här studien har helblod och serumprover använts för rRT-PCR-analys respektive ELISA. Helblodet var insamlade dag 68, 85 och 111 efter första vaccinationen. Serumproverna som analyserades var tagna dag 14, 42, 69, 79 och 92. Proverna förvarades vid -70°C. Prov på ascitesvätska från två FIP-positiva katter och serumprover från fem katter inskickade för FCoV-serologi har använts.
vid ELISA-analysen. Dessa prover var prover som skickats in till SVA:s diagnostikavdelning för analys.

ELISA

För analys av cytokinkoncentrationen i serum användes två ELISA från R&D Systems, speciellt framtagna för felint IFN-γ och IL-10.

IFN-γ valdes ut eftersom det är ett Th1-cytokin och Th1-svar är lika med ett cellmedierat immunsvaret. IL-10 produceras vid ett Th2-svar, vilket motsvarar ett humoralt immunsvaret dvs. med antikroppsproduktion från B-celler (Partoret et al., 1997). Höga nivåer av IFN-γ eller IL-10 tyder på ett cellmedierat respektive humoralt immunsvaret.

96-håls platta coatades med 100 µL 4,0 µg/mL capture antikropp spädd i PBS och inkuberades över natt i rumstemperatur. Efter tvätt med PBS-Tween (0,05 % Tween) tre gånger, blockades plattan med 300 µL block buffert (1% BSA i PBS) per brunn och inkuberades i rumtemperatur i 2 h. Tvättsteget upprepades och 100 µL IFN-γ standard i spädningsserie (spädd i 0,1 % BSA 0,05 % Tween i TBS) och prover fördes över till ELISA-plattan. Plattan inkuberades i rumtemperatur i 2 h. 100 µL detektionsantikropp spädd i 0,1 % BSA 0,05 % Tween i TBS med 2 % getserum (som värmeinaktiverats 30 minuter vid 56°C) tillsattes i brunnarna, följt av inkubation 2 h i rumtemperatur. Plattan tvättades och 100 µL Streptavidin-HPR spädd 1/200 med 0,1 % BSA 0,05% Tween i TBS tillsattes i brunnarna. Efter inkubering mörkt i rumstemperatur i 20 minuter, tvättades plattan ytterligare en gång. 100 µL substratlösning tillsattes i varje brunn, följt av inkubering mörkt i rumstemperatur i 10-15 minuter. Till sist tillsattes 50 µL stopplösning (H₂SO₄) till brunnarna och absorbansen på färgomslaget avlästes med en spektrofotometer vid 450 och 540 nm.

Värdena korrigerades genom att värdet vid 540 nm subtraherades från värdet vid 450 nm. Differensen subtraherades därefter med det uppmätta värdet i blanken (den brunn där endast spädningssuffert tillsats).

Realtids PCR

RNA-extraktion

RNA extraherades från helblod med hjälp av Qiazol och RNeasy® Mini Kit från Qiagen.

250 µl Qiazol och 250 µl helblod homogeniserades genom upprepade pipetteringar i eppendorfrör så att cellerna lyseras. Därefter tillsattes ytterligare 500 µl Qiazol och pipetteringarna upprepades för att göra proverna ännu mer homogeniserade. Efter 5 minuters inkubation i rumstemperatur tillsattes 150 µl kloroform i varje rör för att separera RNA från övriga fraktioner. Efter 3 minuters inkubation i rumstemperatur centrifugeres rören vid 12000g i 15 min vid 4°C. Den översatta vätskfasen innehållande RNA, fördes över till nya rör och blandades med lika delar 70% ethanol. Proverna pipetterades över till RNeasy Mini Spin Column. Därefter centrifugeres rören vid ≥8000g i 15 s i rumtemperatur varvid RNA binder in till ett membran i rören. 350 µl RW1 buffert tillsattes och rören centrifugeres i 15 s vid ≥8000g. 10 µl DNase I stock solution blandades med 70 µl RDD buffert. 80 µl DNase I incubation mix tillsattes på membranet i RNeasy.
Mini Spin Column för att avlägsna kontaminerande DNA. Efter 15 minuters inkubering i rumstemperatur tillsattes 350 µlRW1 buffert och rören centrifugerades vid ≥ 8000g i 15 s. 500 µl RPE buffert tillsattes och rören centrifugerades vid ≥ 8000g i 15 s. Ytterligare 500 µl RPE buffert tillsattes och rören centrifugerades vid ≥ 8000g i 2 min för att torka membranet. RNeasy Mini Spin Column placerades i nya uppsamlingsrörs och centrifugerades vid högsta fart i 1 min. RNeasy Mini Spin Column sattes återigen i nya 1,5 ml uppsamlingsrörs. 30 µl RNase-fritt vatten tillsattes direkt på membranet och rören centrifugerades i 1 min vid ≥ 8000g för att eluera (lösöra) RNA från membranet. RNA koncentrationen och renheten mättes med spektrofotometri (NanoDrop®).

cDNA-syntes

För att RNA från provmaterial ska kunna analyseras med realtids-PCR måste det omvandlas till cDNA (complementary DNA). Vid cDNA-syntesen omvandlas RNA till cDNA genom omvänd transkription med hjälp av enzymet omvänt transkriptas (Bustin, 2002).

Först gjordes en mix av 2,5 µl OligodT (primers), som är mRNA specifika T- sekvenser (komplementära till mRNAs poly A-svans), och 2,5 µl dNTP (nukleotider). 125 ng extraherat RNA tillsattes tillsammans med 28 µl DEPC vatten och proverna inkuberades i Mini-cycler vid 65°C i 5 minuter. Därefter inkuberades rören vid 4°C i 5 minuter, då tillsattes en mix av 10 µl 5 x first strandbuffert, 2,5 µl RNase out (enzym som inhiberar RNase) och 2,5 µl 0,1 M DTT. 10 µl från varje rör fördes över till ”minusrör” som negativ kontroll för att påvisa eventuell DNA-kontamination. 2 µl Superscript III (reverse transkriptas) tillsattes i alla rör utom minusrören. Rören inkuberades vid 25°C i 5 minuter, 50°C i 30 minuter, 55°C i 30 minuter och 70°C i 15 minuter.

SYBR green realtid-PCR

Referensgenerna HPRT, RPL17, RPL30, RPS7 och YWHAZ analyserades med SYBR green RT-PCR.

PCR-mix förbereddes bestående av Power SYBR green MM, DEPC vatten, forward primer (0,4 µM) och reverse primer (0,4 µM). Till 0,1 ml rör tillsattes 10 µl cDNA spätt 1:10 i DEPC-vatten och 15 µl av PCR-mixen.

Reaktionerna utfördes i PCR-systemet Rotor-Gene från Corbett Research. Aktivering vid 95°C i 10 minuter. 40 cykler med denaturation vid 95°C i 15 sekunder och annealing vid temperaturer (T_m) för respektive referensgen i 30 sekunder enligt tabell 3. Efter annealing-steget avlästes fluorescensen. Smältkurveanalys vid 60°C-99°C.

TaqMan realtids-PCR

Cytokinerna IL-10 och IFN-γ samt referensgenen GAPDH analyserades med TaqMan RT-PCR.

PCR-mixen bestod av QuantiTect PCR MM, probe (0,2 µM), forward primer (0,4 µM) och reverse primer (0,4 µM). 15 µl av mastermixen samt 10 µl cDNA spätt 1:10 i DEPC-vatten tillsattes i 0,1 ml rör.
Reaktionerna utfördes i PCR-systemet Rotor-Gene från Corbett Research. Aktivering vid 95ºC i 15 minuter. 45 cykler med denaturation vid 95ºC i 15 s och annealing vid 60ºC i 30 s, varefter fluorescens avlästes.

Tabell 2. PCR-primers och TaqMan probes (efter Leutenegger et al. 1999)

<table>
<thead>
<tr>
<th>Gen</th>
<th>Primer</th>
<th>Sekvens</th>
<th>Probe</th>
<th>Probe sekvens</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-10</td>
<td>IL10.182f</td>
<td>TGCACAGCATATTGGTGACCAG</td>
<td>IL10.209p</td>
<td>ACCCAGGTAACCCCTTAA</td>
</tr>
<tr>
<td></td>
<td>IL10.257r</td>
<td>ATCTCGGACAAGGGTTGGC</td>
<td></td>
<td>GGTCCCTCCAGCA</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>IFN.141f</td>
<td>TGGTGCTGCTTTTCTGAG</td>
<td>IFN.152p</td>
<td>CATTTGAAGCTGAAAG</td>
</tr>
<tr>
<td></td>
<td>IFN.225r</td>
<td>GAAGGAGACAATTGGCTTTGAA</td>
<td></td>
<td>AGGAGAGTGATAAAAACAAT</td>
</tr>
<tr>
<td>GAPDH</td>
<td>GAPDH.57f</td>
<td>GCCGTGGAATTGGCCGT</td>
<td>GAPDH.77p</td>
<td>CTCACACTACATGTTCTA</td>
</tr>
<tr>
<td></td>
<td>GAPDH.138.r</td>
<td>GCCATCAATGACCCCTTCAT</td>
<td></td>
<td>CATGTTCCAGTATGATCC</td>
</tr>
</tbody>
</table>

PriProET realtids-PCR

För att kontrollera om någon av katterna i försöket lyckats bli infekterad vid challenge analyserades FCoV-mRNA i blod med hjälp av PriProET realtids-PCR (Akos Hornyak, Attila Farsang & Sándor Belák, opublicerade data).

PriProET PCR-mixen innehöll DEPC-vatten, 10 x PCR buffert, 0,5 mM dNTP, 0,1 µM forward primer, 0,5 µM reverse primer, 0,5 µM probe samt Titanium Taq DNA-polymeras. 2 µl cDNA och 18 µl PCR-mix tillsattes i 0,1 ml rör.

Reaktionerna utfördes i PCR-systemet Rotor-Gene från Corbett Research. Aktivering vid 95ºC i 2 minuter. 55 cykler med 94ºC i 15 s, 55ºC i 30 s och 72ºC i 20 s. Smältkurveanalys vid 45-95ºC.

Referensgener

Sex gener (tabell 3, för GAPDH se tabell 2) testades för att få fram de bäst lämpade referensgenerna. Testerna utfördes på fem prover i duplikat från ett provtagningsfälle i försöket.

Tabell 3. Referensgener, primers och annealingstemperaturer (efter Penning et al. 2007)

<table>
<thead>
<tr>
<th>Gen</th>
<th>Nummer</th>
<th>Forward primer</th>
<th>Reverse primer</th>
<th>Ti (ºC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPRT</td>
<td>EF45697</td>
<td>ACTGTAATGACCAGTCAACAGGGG</td>
<td>TGTATCCAACACTCCAGGAGTCC</td>
<td>60</td>
</tr>
<tr>
<td>RPL17</td>
<td>AY738264</td>
<td>CTCGTCATGAAGCCACATCC</td>
<td>TCAATGTGCCAGGGGAGAC</td>
<td>58</td>
</tr>
<tr>
<td>RPL30</td>
<td>AY700577</td>
<td>CCTCGAGAATTGGACTGTC</td>
<td>TGAATGCCCTTGGAAATGGAC</td>
<td>64</td>
</tr>
<tr>
<td>RPS7</td>
<td>AY800278</td>
<td>GTCCCGACGGCGACTTGGAC</td>
<td>CTCTGCCACAAATCTGCTTG</td>
<td>69</td>
</tr>
<tr>
<td>YWHAZ</td>
<td>EF458621</td>
<td>GAAGAGTCCTACAAAGACAGCAG</td>
<td>AATTTCCCTTCCCTTCTCTGC</td>
<td>65</td>
</tr>
</tbody>
</table>

Referensgenernas stabilitet i uttryck (Figuur 10) analyserades med hjälp av dataprogrammet geNorm 3.5 (http://medgen.ugent.be/genorm) utifrån provernas Δ-CT-värden. Δ-CT är CT-värdet för ett prov dividerat med CT-värdet för provet med lägst CT-värde, vilket motsvarar provet med högst uttryck av genen.
Figur 10. Diagram från geNorm över referensgenernas stabilitet i uttryck
Utifrån resultaten valdes RPS7, som kodar för ribosomalt protein, och två icke-ribosomala gener; YWHAZ och GAPDH, ut som referensgener. GAPDH är en gen som kodar för ett glykolytiskt enzym (glyceraldehyde-3-fosfatdehydrogenas) och YWHAZ kodar för ett protein (tryptofan-5´-monooxygenas aktiverande protein Z isoform) som aktiverar ett enzym. Ingen förbättring hade uppnåtts genom att välja fler referensgener eftersom skillnaden i stabilitet var så liten mellan generna. 0,15 anges i manualen för geNorm som ett gränsvärde för den parvisa variationen (Figur 11) mellan referensgenerna, ett högre värde betyder att ytterligare en referensgen behövs för normalisering (ex. om V3/4 är 0,20 bör man använda fyra referensgener).

Figur 11. Diagram från geNorm över referensgenernas parvisa variation
Följande uträkningar användes för att standardisera genuttrycket av cytokinerna med hjälp av referensgenerna: C_T-värdet för referensgenen i respektive prov subtraheras från antalet cykler i rRT-PCR för att få höga värden i de prov där genuttrycket var högre och vice versa. Samma uträkning gjordes för cytokinerna. Ett medelvärde beräknades från de erhållna värdena för referensgenerna från varje prov och detta värde dividerade man värdena för IFN-γ och IL-10 med. Genom att dividera cytokinernas värde med referensgenernas medelvärde uppnåddes en slags normalisering där genuttrycket angavs som ”del av ett standarduttryck”. Det lägsta erhållna värdet sattes till 1.

RESULTAT

Nivåerna av IFN-γ och IL-10 var för låga i alla testade serumprover (både prover från vaccinationsförsöket och de inskickade till diagnostiken för serologi) för att kunna detekteras med den kommersiella ELISA:n från R&D systems. Baserat på den bakgrund som erhölls i. De uppmätta absorbansvärdena i brunnarna med prov var lägre än det uppmätta värdet i brunnarna med endast spädningsbuffert (blank), vilket resulterade i negativa värden efter korrering, dvs. koncentrationerna av cytokin gick inte att mäta. För IL-10 hade det krävts korrigerade absorbansvärden (absorbansvärdet vid 450 nm subtraherat med värdet vid 540 nm) över 0,114 (medelvärde av uppmätta och korrigerade absorbansvärden i blanken). För att kunna mäta IFN-γ-koncentrationer hade de korrigerade absorbansvärdena behövt vara över 0,167. Tillverkarna av ELISA:n rekommenderar en spädningsserie där lägsta koncentrationen blir 62,5 pg/ml för IFN-γ och för IL-10 125 pg/ml, vilket kan anses motsvara den lägsta detektionsnivån de anger.

I ascitesvätska från två katter med FIP kunde höga nivåer av IFN-γ uppmätas med ELISA. Av IL-10 kunde endast låg koncentration påvisas i ett av de två proverna (Figur 12).

![Figur 12. IFN-γ och IL-10 i ascitesvätska analyserat med antigen-ELISA](image-url)
Realtids PCR-analysen visade att alla katterna i försöket uttryckte mRNA för IFN-γ och IL-10 i blodet vid ett eller flera provtagningstillfällen (Figur 13 och 14). Flera av proverna var även negativa vid ett eller flera provtagningstillfällen. Ingen signifikant skillnad kunde ses mellan de olika grupperna.

Figur 13. Uttryck av IFN-γ mRNA i blod vid tre provtagningstillfällen analyserat med TaqMan rRT-PCR

Figur 14. Uttryck av IL-10 mRNA i blod vid tre provtagningstillfällen analyserat med TaqMan rRT-PCR

PriProET realtids-PCR-analysen visade att ingen av katterna i försöket hade förekomst av FCoV-mRNA i blodet.
DISKUSSION

Tack vare att rRT-PCR är en så känslig teknik kunde cytokininuttryck analyseras i blodproverna från katterna i vaccinationsförsöket. Eftersom det endast fanns tillgång till blodprover från tre provtagningstillfällen, varav samtliga var tagna efter vaccination, går det inte att dra några egentliga slutsatser utifrån PCR-resultaten. Alla katterna i försöket uttryckte IFN-γ och IL-10 vid ett eller flera provtagningstillfällen, vilket gällde både de vaccinerade katterna och kontrollerna. Hos friska SPF-katter har ffa. IL-1β och TNF-α detekterats i tidigare studier, IL-10 förekom endast i låga eller ej detekterbara nivåer hos dessa katter (Kipar et al., 2001; Gelaine et al., 2006). Det kan alltså antas att katterna i försöket inte hade någon förekomst av IFN-γ eller IL-10 om inte immunsvaret aktiverats vid vaccinationerna eller infektionen. Stor variation i monocyternas cytokinproduktion mellan olika individer och hos samma individ vid olika tidpunkter ses hos friska SPF-katter (Kipar et al., 2001), vilket kan förklara de variationer i cytokininuttryck som förekom hos alla katterna i försöket.

Samtliga sex referensgener som testades (GAPDH, YWHAZ, HPRT, RPL30, RPL17, RPS7) var tillräckligt stabila i uttryck för att vara användbara vid analys av genuttryck i leukocyter i blod hos katter. Skillnaden i stabilitet var mycket liten mellan de olika generna (0,009-0,013) och låg långt under det gränsvärde för den parvisa variationen som analysprogrammet geNorm angav (0,15). Val av referensgener bör göras utifrån vilken vävnad eller typ av provmaterial som ska studeras. Helst bör flera referensgener utvärderas för den önskade vävnaden så att de bäst lämpade kan väljas ut för vidare analys. Det finns ingen ensam referensgen som lämpar sig för alla typer av vävnader. Vid utvärdering av flera olika referensgener för katt i olika vävnader, men inte blod, blev resultatet att två till fem referensgener krävdes för att uppnå tillförlitlig normalisering av genuttryck. Hur många referensgener som behövdes berodde på typ av vävnad (Penning et al., 2007). I det försöket hade man i alla testade vävnader betydligt lägre stabilitet i uttryck, dvs. högre average expression stability value (M), än vad som analyserades i proverna från vaccinationsförsöket. Vidare rekommenderas att referensgener väljs från olika funktionella grupper så att t.ex. inte alla valda gener är gener som kodar för ribosomala protein (Penning et al., 2007).

Nivåerna av IFN-γ och IL-10 var för låga i serum hos katterna i försöket för att kunna analyseras med ELISA. I andra studier har man analyserat IFN-γ hos katter med FCoV-infektion med samma kommersiella ELISA som användes i det här arbetet och fått mätbara nivåer, lägsta koncentrationen som uppmättes var 50 pg/ml (Giordano & Paltrinieri, 2008). Dessa katter var dock naturligt infekterade med FCoV varav ca 80% hade utvecklad FIP.
Tillverkarna av ELISA:n, R&D systems, anger en lägsta detektionsnivå på 62,5 pg/ml, vilket var för högt för att metoden skulle vara användbar för proverna i det här arbetet. Den höga bakgrunden som återkom vid utförandet av ELISA:n både för IFN-γ och IL-10 gjorde det omöjligt att analysera några av de serumprover som testades, oavsett om de var från vaccinationsförsöket eller från prover inskickade för FCoV serologi. Olika sätt att få ner bakgrunden, så som användning av 10 % fetalt kalvserum i PBS vid spädning av capture antikroppen och noggrannare tvättsteg, gav inga resultat. ELISA:n är framtagen för analys av cytokin i cellsupernatanter, vilket kan påverka metodens användning vid analys av serum. Dock borde analyser av serum vara ett mer användbart användningsområde för den här typen av analysmetoder.

ELISA-kiten kunde mäta IFN-γ i ascitesvätska, vilket visar att metoden fungerade men inte var tillräckligt känslig för att detektera de mycket låga cytokinnivåerna i serumproverna. Hos katterna med FIP är IFN-γ koncentrationen signifikant högre i ascitesvätska jämfört med serum (Giordano & Paltrinieri, 2008). Även om det i det här arbetet endast analyserade två prover med ascitesvätska från katter med FIP och serum från samma katter inte fanns att tillgå tyder resultatet på att IFN-γ koncentrationen är hög i ascitesvätska vid FIP. Koncentrationen av IL-10 i ascitesvätska var mycket låg eller ej mätbar hos de två katterna. Detta stämmer med det faktum att IFN-γ, som produceras vid ett Th1-svar (celledierat immunsvar), hämmar Th2-svar (humoral immunsvar) och därmed produktion av IL-10 (Roitt et al., 2001).

Fortsatt analys av cytokinkoncentrationer i serum och cytokinuttryck i leukocyter i blod från katter i försöket kan förhoppningsvis visa på signifikanta skillnader mellan grupperna och ge ytterligare information om cytokinprofilerna vid FIP. Dessutom är förhoppningarna att det utökade vaccinationsförsöket ska visa på ett lovande resultat inför utveckling av ett effektivt vaccin mot FIP i framtiden.
LITTERATURFÖRTECKNING

