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Simulations of drainage and phosphorus leaching with the 

ICECREAM model for 15 years at the Mellby experimental field  

Abstract 

Phosphorus (P) losses from agricultural fields have been recognised as one of the most 

important sources of P causing eutrophication in water bodies. Water transport in soil plays 

an important role in P leaching from drained fields. In this study, the ICECREAM model was 

employed to simulate 15-year drainage and P leaching from a sandy loam soil at the Mellby 

experimental site in south-western Sweden. The results were compared with measured data in 

order to test the applicability of the model at the Mellby site, identify important processes 

controlling drainage and P leaching at Mellby, and suggest potential future improvements to 

the model to better suit the Mellby soil. 

Sensitivity analysis showed that parameters related to soil physical properties (soil texture, 

soil porosity, field capacity, wilting point and saturated conductivity), infiltration capacity 

(CN2) in connection with field management practices and macropore flow moderately or 

significantly affected the total amount of drainage. These parameters also indirectly affected 

P leaching, which was closely correlated to drainage. Soluble P leaching was also greatly 

sensitive to base saturation, while particle P leaching was greatly affected by parameters 

related to particle generation for macropore transport (detachability and particle extraction 

depth). 

The model accurately simulated total drainage and drainage dynamics for the 15-year study 

period when the drainage partition coefficients for deep percolation (K1 and K2) and the 

parameters related to macropore flow (tresh_watin and frac) were calibrated. The simulation 

showed that considerable amounts of drainage water (17%) bypassed tile drains and that 

water was able to move very fast along preferential flow paths in this sandy soil.  

The model accurately simulated the transport dynamics of soluble PO4
3-

-P and total P, but 

failed to simulate total amounts and concentrations. Leaching of both soluble P and total P 

was overestimated. One clear conclusion from this work was that new parameters are greatly 

needed in the model to better describe sorption-desorption processes for P to Fe-oxides or 

(and) Al-oxides in the soil. This would allow P leaching from a soil like this to be simulated 

with higher precision. It was also concluded that parameters related to particle generation 

need careful calibration in future simulations.   

The simulations for the Mellby site showed that when the soil P pools were large, it was 

difficult to distinguish the effects of reduced P fertilisation on leaching. They also showed 

that management practices such as crop type, tillage practices, etc. can influence P losses. 

The model should be further tested on field data to determine the accuracy of such 

estimations.  
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Introduction 
 

Since the general agreement reached in the 1970s that phosphorus (P) is limiting 

eutrophication by affecting phytoplankton growth in the majority of lakes (Schindler, 1977), 

it has been widely recognised that anthropogenic P inputs to aquatic ecosystems should be 

reduced to prevent further eutrophication and guarantee good drinking water supplies 

(Conley et al., 2009). The implementation of new and highly efficient technologies in 

production processes and industrial wastewater treatment have resulted in a massive 

reduction in point sources of P pollution, making the contribution of diffuse P losses from 

agricultural production even more important. For instance, in Sweden in 2006, 32% of the 

gross load of P to the Baltic Sea was from arable land (SNV, 2008a). Moreover, the highly 

intensive and specialised agricultural production since the 1950s has resulted in an increased 

potential for P losses to recipient water bodies (Bergström and Kirchmann, 2006), due to a 

long history of animal manure accumulation, excessive applications of fertiliser and, in some 

cases, use of animal feed additives such as urea phosphate. In Sweden, 50% of all agricultural 

soils have a high risk of P losses due to high or very high soil P content (Djodjic et al., 2004).  

The P concentrations in the water percolating through soil and the P losses through 

subsurface drainage are generally small compared with the losses through surface runoff and 

soil erosion, due to P sorption by non-saturated subsoils containing iron and (or) aluminium 

oxides (Sharpley et al., 2001). However, drainage losses can be similar or even greater than 

those in surface runoff when the soil has a low sorption capacity (organic soils and sandy 

soils) or has been saturated with P (overfertilised), and when depth and hydrological 

conditions are suitable for leaching (Sims et al., 1998; Dils and Heathwaite, 1999).  In 

addition, significant P losses through drainage can occur in unsaturated, structured soils 

because of preferential flow through macropores such as root and earthworm channels, 

fissures and interaggregate voids, especially when heavy rain occurs shortly after the 

application of animal manure or mineral fertilisers (Haygarth, 1997). For example, in a 

comparison of P leaching through a clay soil and a sandy soil, Djodjic et al. (1999) found that 

the average P leaching load in clay columns was 4.0 kg ha
-1

, which was much higher than the 

mean 0.056 kg ha
-1

 found in sand columns. This was because the preferential flow in the 

well-structured clay soil greatly increased P leaching compared with the piston flow in the 

sandy soil. In Sweden, 1.2 million hectares of arable land are situated on permeable soils 

which need no artificial drainage, while 1.1 million hectares are artificially tile-drained. This 

collectively accounts for 85% of the total arable land area (Wesström, 2002). Good drainage 

conditions play an important role in removing excess soil water, eliminating waterlogging 

conditions and thus promoting crop production, but on the other hand they can greatly 

facilitate P losses by leaching through the soil profile. It has been estimated using the 

ICECREAM model (Bärlund and Tattari, 2001) that a mean rate of 0.52 kg P per hectare 

leached out (including both rootzone leaching and losses through surface runoff) from 

Swedish agricultural land in 2005 (SNV, 2008b). The simulated leaching showed great 
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variation, ranging from 0.10 kg P per hectare in Öland and Gotland, which have low soil P 

content and small annual drainage amounts, to 1.31 kg P per hectare in western Sweden, 

where intensive crop and animal production is practised and where annual drainage amounts 

are large. The mean annual P concentration in drainage water is estimated to be 0.17 mg L
-1

, 

with regional variations from 0.06 to 0.34 mg L
-1

 (SNV, 2008b), which can cause detrimental 

eutrophication of P-sensitive recipient waters.  

There are many computer-based models for estimating nutrient loads from land to water in 

common use on a regional or national scale. In Sweden, the ICECREAM model has been 

used for calculations of P leaching losses from arable land at a regional and national scale. 

However, so far few model applications have been made at the field scale and information is 

lacking about model performance at this scale. In the present study, the ICECREAM model 

was used to simulate 15-year water drainage and P leaching from a sandy field at Mellby, 

south-west Sweden, and the simulated results were compared with field measurements. The 

objectives were: (1) to test the applicability of the ICECREAM model for simulating water 

drainage and P leaching at the Mellby site; (2) to identify the most important processes and 

soil characteristics for inclusion in order to simulate field conditions at the Mellby site 

successfully; and (3) to examine the limitations of the ICECREAM model for applications on 

the Mellby soil and to suggest potential improvements to the model. 
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 Materials and methods 

1. Site description  
The Mellby experimental site (56°29′N, 13°00′E) is located 25 km south of Halmstad on the 

south-west coast of Sweden. It has mild and wet autumns and winters. The mean annual 

temperature is 7.2 °C and the mean annual precipitation is 803 mm. The field site was 

established in 1982 on a sandy soil.  The soil profile is a Fluventic Haplumbrept (USDA), 

with 90-130 cm thick sandy deposits overlying a glacifluvial clay. Ten plots (30 m x 30 m) 

were separately tile-drained at about 90 cm depth and measurements of drainage from each 

plot and water sampling started in 1983. Since the start of the experiment, the site has been 

used to study the long-term effects of application of pig slurry and the use of catch crops on 

nutrient leaching. The field had a long history of manure application even before the leaching 

experiment started (Aronsson and Torstensson, 1998; Ulén et al., 2006).  

Plot 9 was selected for the simulation work because the drainage dynamics and total amounts 

of drainage water were close to the average for the 10 plots at the field site. Plot 9 has 

received pig slurry in spring each year since 1983 at an average rate of 40 tonnes per hectare, 

which is equivalent to about 58 kg P per hectare and year. This is considered to be above the 

optimum level for the crops grown, which were mainly spring cereals and potatoes. No catch 

crops were used on this plot. After harvest in August-September, the soil was tilled by 

stubble cultivation followed by mouldboard ploughing to 30 cm depth. Thereafter the soil 

was left undisturbed until seedbed preparation in spring.   

   

2. Water discharge and P leaching measurements  
Water discharge from each plot at the site is measured using tipping-buckets connected to a 

datalogger which records daily values of drainage. Until 1998, water was sampled every one 

or two weeks (during high flow) by manual sampling at the outflow of each tile drain, 

illustrating the P concentration at that moment (Aronsson and Torstensson, 1998). In 1999, 

automatic flow-proportional water sampling was introduced. For each 0.2 mm of discharge, a 

sub-sample (10 mL) of water is taken using a peristaltic pump connected to the datalogger. 

These sub-samples are collected in a bottle which is emptied every two weeks, giving a 

composite water sample with the average P concentration for the preceding two weeks 

(Bergström et al., 2006). Phosphorus analyses differed during the experimental period used 

for the simulations. During the period 2001-2003, water was only analysed for total P, while 

during the period 1989-2000 it was analysed for total P and PO4
3-

-P. The difference between 

total P and PO4
3-

-P was defined as particulate P (or particle P).  

Monthly values of measured and simulated P concentrations and the amounts of P leached 

were calculated and compared. Different methods were used in calculating measured monthly 

P transport due to differences in sampling methods. For the manual sampling period (1989-

1998), daily P concentration was interpolated from the measurements and monthly transport 

was calculated as the sum of daily transport in each month:  
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Monthly P transport (kg ha
-1

) = (Drainagei (mm) × P concentrationi 

(mg L
-1

) × 10
-2

) (1); 

For the period with flow proportional sampling (1999-2003), monthly P transport was taken 

as the sum of transport in each sampling interval in the month, with total drainage for the 

interval calculated first and then multiplied by the concentration measured for that interval:  

 Monthly P transport (kg ha
-1

) = (Total drainage for the 

intervali (mm) × P concentrationi (mg L
-1

) × 10
-2

) (2). 

Mean monthly P concentration for the whole period was obtained by dividing monthly P 

transport by total drainage in the month: 

Monthly P mean concentration (mg L
-1

) = Monthly P transport (kg ha
-1

) / Monthly total 

drainage (mm) × 100 (3). 

Equations (1) and (3) were used for calculating simulated monthly P transport and mean P 

concentration in drainage water.  

3. Description of the ICECREAM model and input parameter and variable 

values 

3.1 Model description 

The ICECREAM model is a nutrient management model mainly used for simulating P losses 

through runoff and leaching from agricultural land. It is based on the models CREAMS 

(Knisel, 1980), GLEAMS (Leonard et al., 1987; Knisel, 1993) and EPIC (Jones et al., 1984) 

and has been refined and adjusted for a cold, humid Nordic climate (Yli-Halla et al., 2005). 

Rekolainen and Posch (1993) describe the main adjustments compared with the CREAMS 

model, i.e. snow accumulation and snowmelt, soil frost, evapotranspiration, leaf area index 

and Universal Soil Loss Equation (USLE) parameters (Wischmeier and Smith, 1958).  

In the model as it was applied here, the soil profile (0-100 cm depth) was divided into 4 

layers (Fig. 1A) with a thickness of 1 cm, 29 cm, 35 cm and 35 cm, respectively. Layer 1 is 

most important for the occurrence of erosion and the detachment of soil particles, and 

together with layer 2 comprises the plough layer. Layers 3 and 4 are subsoil layers. Water and 

P are lost either to tile drains or to deep percolation from layer 4. The model consists of water 

and P balance systems with pools for water storage and different forms of organic and 

mineral P in each soil layer (Fig. 1B). The water balance components are precipitation as 

input, and evapotranspiration, surface runoff and percolation from the profile as outputs. 

Water percolates through micropore and macropore flow (Fig. 1A). The phosphorus balance 

components are fertilisation with inorganic and organic P as input, and P extracted from the 

soil with the harvested crop and soluble and particle-bound P losses in surface runoff and 

leaching as outputs (Fig. 1A). The P submodel consists of seven P pools (Fig. 1B); P in plants 

(P-PLANT), fresh organic P pool (PFO), the slowly mineralisable organic humus pool (PSO), 

the manure pool (PMAN), mobile and thus plant-available P (PL), the long-term stable mineral 
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pool (PS) and the active P pool (PA) (Bärlund and Tattari, 2001; SNV, 2008b). Chemical 

processes such as sorption-desorption and biological processes such as mineralisation-

immobilisation are involved in P flows between different pools (Bärlund and Tattari, 2001).  

 
(A)                                                                                        (B) 

Figure 1. (A) Main water and P processes and (B) pools and flows of P (from SNV, 2008) in 

the ICECREAM model.  

3.2 Description of important parameters  

The partitioning of precipitation between surface runoff and infiltration into the soil is 

determined by the Soil Conservation Service (SCS) Curve Number model (USDA Soil 

Conservation Service, 1972). The parameter CN2 (SCS curve number in moisture condition 2) 

is central in the runoff calculations since together with the calculated soil moisture content, it 

determines the infiltration capacity of the soil. The CN2 parameter is set according to the soil 

properties governing the infiltration capacity of the soil, but it also changes with agricultural 

management practices such as sowing, harvesting and soil tillage, as well as with crop type. 

The simulated erosion determines the losses of particulate P in runoff. The erosion is 

calculated by the Universal Soil Loss Equation (USLE) in the model. The parameter 

Manning´s Number (MN) determines the soil surface roughness and hence the sensitivity to 

erosion of the soil. The MN value is also set according to soil properties, as well as crop type, 

sowing, harvesting and soil tillage operations such as ploughing, harrowing and stubble 

cultivation. 

The percolation of water through the soil is determined by the water storage capacity of the 

soil, i.e. the pore volume (m
3
 m

-3
) available for water storage. The maximum storage capacity 

at drainage equilibrium equals the field capacity minus the wilting point, and water percolates 

from one layer to the next when the water content exceeds the field capacity. The volumetric 

soil water content at 33 KPa matric potential is defined in the model as the field capacity and 

that at 1.5 MPa as the wilting point. The difference between field capacity and wilting point 

is also the volumetric plant-available water content. Soil porosity is the volumetric ratio of 
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total pore space per unit volume of soil (m
3
 m

-3
). The water content of total soil porosity is 

used for calculation of the water retention value of the soil, which is used together with the 

CN2 parameter to calculate the surface runoff. The saturated hydraulic conductivity is given 

for the micropore region and determines the rate at which the percolating water moves 

between layers and out to tile drains. For macropores, water transport is assumed to be 

instantaneously and directly lost to tile drains.  

Percolation water partitioning between tile drains and bypass drainage can be adjusted by 

changing the model parameters K1, K2, K3 and K4. Specifically, K1 is a coefficient for 

water flow from an imaginary groundwater pool existing at drain depth to tile drains in the 

micropore region, and K2 is a coefficient for water bypassing the drainage from the pool in 

the micropore region. K3 and K4 are for water partitioning in the macropore region, with 

water ending in drains and bypassing them, respectively. Furthermore, w_thresh_mic and 

w_thresh_mac are the threshold values for the occurrence of outflow from the groundwater 

pool in the micropore region and the macropore region, respectively.  

Macropore flow (Larsson et al., 2007) is mainly simulated in the ICECREAM model by the 

parameters ‘tresh_watin’, ‘frac’, ‘fcfrac’, w_tresh_mac and K4. Tresh_watin is the 

precipitation threshold value, above which macropore flow is initiated; frac is the fraction of 

precipitation above the threshold, which is routed to the macropores; and fcfrac is the fraction 

of the field capacity in the uppermost soil layer that must be reached before macropore flow 

occurs.  

The P submodel, involving different P flows and processes between the P pools and losses 

from the profile, demands a number of descriptive parameters. Base saturation, together with 

clay content and pH, determines the transformation of P between stable (PS), active (PA) and 

labile (PL) pools by its use in calculating the P sorption distribution coefficient in sorption-

desorption processes. Soluble P extraction depth describes the thickness of the soil layer from 

which soluble P going to macropores is extracted.  

There are several important parameters related to soil particles in macropores and thus 

affecting particle P leaching, such as the replenishment coefficient governing generation of 

particles for macropore flow, the detachability coefficient governing detachment of available 

particles and particle extraction depth illustrating the thickness of the soil layer for the 

generation of particles. Moreover, together with drain depth (the depth of the drainage system 

in the soil profile), the filter coefficient is involved in calculating particle retention in the 

macropores.  

3.3 Input values for databases 

There are four databases in the model: climate, crop, variable and parameter. Climate data 

(temperature, precipitation, humidity, wind speed and cloudiness) for the whole simulation 

period (1989-2003) were collected from the local meteorological station at Mellby. Recorded 

field cropping data on crop types and yield, fertilisation, soil tillage dates and actions were 

used in the crop database. The variable database is for outputting various variables calculated 

by the model.  The data in the parameter database were mainly based on the parameterisation 
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for sandy loam soils used in the national calculations for PLC5 in Sweden (SNV, 2008b), 

here called standard parameterisation. Parameter values were also adjusted based on available 

field measurements and literature data to the greatest extent possible and some of them were 

estimated by calibration in the appropriate value ranges based on experiences at the 

Department of Soil & Environment. The adjusted values or value ranges for calibration of 

important model parameters for simulations of drainage and P losses are presented in Table 1. 

Table 1. Adjusted parameter values differing from those used for the national calculations of 

PLC5 in Sweden (SNV, 2008b) and the appropriate parameter value ranges to be calibrated 

in  

Parameter Unit Adjusted value or value 

ranges to be calibrated in 

Source for change 

Sspg (soil specific density) t m
-3

 2.51, 2.55, 2.65, 2.66* Measurement 

Clay  m
3
 m

-3
 0.1, 0.1, 0.02, 0.01* Measurement 

Sand  m
3
 m

-3
 0.77, 0.77, 0.91, 0.86* Measurement 

Organic matter m
3
 m

-3
 0.05, 0.05, 0.01, 0.005* Measurement 

Field capacity m
3
 m

-3
 0.258, 0.227, 0.056, 0.079* Measurement 

Soil porosity m
3
 m

-3
 0.418, 0.398, 0.324, 0.36* Measurement 

Wilting point m
3
 m

-3
 0.079, 0.078, 0.014, 0.015* Measurement 

Tresh_watin m 0~0.05** Experience 

Frac  % 0~1** Experience 

Fcfrac  % 0.99-0.999** Experience 

Filter coefficient m
-1

 0~1** Experience 

K1  d
-1

 0~1** Experience 

K2 d
-1

 0~1** Experience 

Replenishment g∙m
-2

∙h
-1

 0~1** Experience 

Detachability  g∙J
-1

∙mm
-1

 0~1** Experience 

Particle extraction depth mm 0.1~1** Experience 

Base saturation % 75~100** Experience 

*The four values are for layer 1 (0-1 cm), layer 2 (2-30 cm), layer 3 (31-65 cm) and layer 4 (66-100 

cm), respectively. These specific values were used for all the simulations in this work, including 

sensitivity analysis.  

**The ranges of values represent the values that can be selected in the range. They were used in the 

model calibration part of this work, where the most appropriate values in the ranges were selected 

and used in later simulations. They were not used in the sensitivity analysis part, where standard 

values for these parameters were used instead.  

 

The soil type used in the simulations was mainly sandy loam based on texture analyses (Ulén 

et al., 2006). The preliminary simulations using standard parameterisation (SNV, 2008b) for 

sandy loam also generated better results in terms of matching field measurements than using 

loamy sand. The slope class of plot 9 was low (1.43%). The simulation period started with 

1989, when the plot was drained and hydrologically isolated, and ended in 2003. 
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4. Sensitivity analysis 
The method of changing a single parameter value was employed to perform an analysis on 

the sensitivity of the output variables (Appendix A1) drainage and P losses with respect to the 

changes in parameter values. Specifically, parameter values were individually changed by 

±50% or ±20% within an allowable range, while keeping the others at their standard values or 

adjusted values (Table 1). The sensitivity to a parameter was then assessed as the relative 

change in the cumulative value of the output variable for the whole simulated time period. 

The sensitivity criteria for those output variables under 50% change in a parameter were: 

none =0, negligible <1%, slight 1-10%, moderate 10-50%, and significant >50%; while for 

those with 20% change in a parameter the criteria were: none =0; negligible <1%; slight 1-

4%; moderate 4-20%; significant >20%.    

 

5. Model calibration, simulations and comparison with measurements 
The model setup and parameter calibration were carried out in two steps, with the aim to 

firstly get a good fit between simulated and measured drainage, and thereafter fit the 

measured P losses. The purpose was to determine appropriate values for decisive parameters 

and gain some information for future work. Since P leaching is mainly determined by water 

transport in the soil, the first priority was given to drainage. First of all, the values of the 

decisive parameters in relation to drainage were determined based on the principle that the 

simulated results had both good total and dynamic agreement with field measurements. The 

results were compared in terms of total amount and dynamics of water drainage and P 

leaching, respectively. At this step, standard parameter values (Table 1) related to P leaching 

were used. A balance analysis on simulated water and P was performed mainly based on the 

description of inputs and outputs in Section 3.1, with the exception that water percolation and 

thus P leaching partitioning between tile drains and bypass were included. The results were 

compared with measured data which had the same inputs of water and P as those in the model, 

but only total drainage and soluble and particulate P leaching available in the outputs. 

Attempts were then made to determine appropriate parameter values giving good agreement 

of P leaching between simulations and measurements.  

Attempts were also made to determine a good combination of K1 and K2 values to estimate 

the deep percolation at the plot and to get good agreement of total simulated drainage for the 

whole period with total drainage measured in the field. K3 and K4 were not changed owing 

to the relatively small proportion of macropore flow (<10%), assumed to have an 

insignificant effect on drainage partitioning. 

Although macropore flow accounts for less than 10% of total drainage in the simulations, its 

accounting in the model is very important for understanding drainage dynamics. Despite the 

soil at Mellby not having clear macropores as in e.g. clay soils, studies have shown that water 

percolating in this soil mainly follows preferential flow pathways such as root channels, 

hydrophilic zones, etc. (Larsson et al., 1999). It was therefore important to use parameters for 

macropore flow in order to simulate the measured drainage dynamics. Due to the 
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insignificant effect of fcfrac within its value range (0.99-0.999) on simulation results, the 

simulations mainly focused on tresh_watin and frac. 

In the P leaching part, the focus for calibration was on the parameters for P movement (base 

saturation, filter, replenishment, detachability, particle extraction depth) and the initial values 

for the PS and PA pools in soil (soil P class). 
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 Results and discussion 

1. Parameter sensitivity analysis  

Table 2 summarises the important model parameters with moderate or significant effects on 

output variables for water drainage (drainage through micropores/macropores, and total 

drainage) and P leaching (soluble/particle P leaching through micropores/macropores, and 

total P leaching). More information about the sensitivity analysis can be found in Appendix 

A1. 

Table 2. Important parameters (defined as those leading to moderate or significant 

sensitivity of output variables) for drainage and P leaching 

Output variables Significant Moderate 

Drainage through 

micropores 

--- CN2 (implement)*, sand content, 

field capacity 

Drainage through 

macropores 

CN2 (implement)*, tresh_watin, 

frac, fcfrac, w_tresh_mac, k4, field 

capacity, 

wilting point 

CN2 (action)**, clay, sand 

content, saturated conductivity, 

soil porosity 

Total drainage --- CN2 (implement)*, sand content, 

field capacity 

P leaching through 

micropores 

base saturation CN2 (implement)*, sand content, 

field capacity 

P leaching through 

macropores 

CN2 (implement)*, tresh_watin, 

frac, fcfrac, w_tresh_mac, k4, field 

capacity, wilting point, 

CN2 (action)**, soluble P 

extraction depth, sand content, 

saturated conductivity, base 

saturation 

Soluble P leaching base saturation CN2 (implement)*, sand content, 

field capacity 

Particulate P leaching CN2 (implement)*, tresh_watin, 

frac, fcfrac, w_tresh_mac, K4, clay 

content, 

field capacity 

detachability, particle extraction 

depth, sspg (soil specific density), 

sand content, saturated 

conductivity, , wilting point, PSO 

Total P leaching --- CN2 (implement)*, tresh_watin, 

fcfrac, sand content, field 

capacity, base saturation 

*CN2 in the ‘Implement’ table, implements such as plough, harrow and stubble cultivator for each crop. 

 **CN2 in the ‘Action’ table, practices such as planting, harvesting and straw removal for each crop. 

The important parameters of moderate or significant sensitivity in the Mellby field can be 

divided into five groups: management practices (CN2), soil physical properties (sspg, sand 

content, clay content, soil porosity, field capacity, wilting point and saturated conductivity), 

macropore flow (tresh_watin, frac, fcfrac, w_tresh_mac and K4), P pools and flows (PSO, 

soluble P extraction depth and base saturation), and particle extraction for macropore flow 
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(detachability and particle extraction depth). The sensitivity analysis showed that careful 

consideration should be given to selecting values for these parameters.  

CN2, especially in relation to the implements, had a great influence on total drainage and 

hence also on total P leaching, as well as leaching through micropores and macropores. This 

is because CN2 determines the runoff proportion of total water losses, and thus has an 

important effect directly on drainage and indirectly on P leaching. 

Soil physical properties played a very important role in drainage. Sspg is used to calculate 

soil bulk density, which is involved in calculating the fraction of labile P leaching in the form 

of particulate P. The relative amounts of sand and clay, and the silt content calculated as the 

difference between these two fractions, determine the soil textural classification and are 

sensitive in predicting water flow through the soil. Soil porosity, field capacity and wilting 

point greatly affect water runoff, evapotranspiration and percolation. The moderate 

importance of saturated conductivity on macropore flow might be because low conductivity 

results in water accumulation in the soil profile exceeding the threshold for initiating 

macropore flow. The significant effect of sand, clay, soil porosity, field capacity, wilting 

point and saturated conductivity on P leaching probably results mainly from their influence 

on water transport. Clay is also important for P solubility.  

All five parameters for macropore flow (tresh_watin, frac, fcfrac, w_tresh_mac and K4) were 

significantly sensitive for drainage and P losses through macropores. However, they 

generally had much less influence on total drainage and total P leaching due to the relatively 

small amount of drainage and P leaching through macropores compared with that through 

micropores.  

Base saturation was significantly sensitive for P leaching through micropores and soluble P 

leaching, and moderately sensitive for total P leaching, due to its decisive role in soluble P 

desorption from stable P pools. Soluble P extraction depth affected soluble P leaching 

through macropores. As one of the sources of particulate P, stable organic P (PSO) moderately 

contributed to particulate P leaching. Particle detachability and extraction depth also greatly 

influenced particulate P leaching, because these two parameters determine the production of 

soil particles and thus particulate P, which could potentially be leached through macropores.  

The sensitivity analysis used to test the effects of a single parameter on water or P outputs 

was relatively simple and easy to perform. However, the results obtained are not quite certain, 

because the ICECREAM model is not linear between most of the parameters and output 

variables, and model output is often not solely influenced by one single input parameter 

(Bärlund and Tattari, 2001). In the simulations using ICECREAM, the interaction of K1, with 

a standard value of 1, and K2, with a standard value of 0, was very obvious. In this case, a 

change in either K1 or K2 did not influence total drainage, because they are confined by each 

other. However, great changes in total drainage can occur with an even slight simultaneous 

change in K1 and K2. In addition, the interaction between K1 and K2 was influenced by a 

third parameter, W_tresh_mic, which is a threshold for the outflow from the invented 

groundwater pool in the micropore region.  
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Interactions were also found between tresh_watin, frac and fcfrac for water flow through 

macropores, and between drain depth and filter coefficient. Therefore, the combined effect of 

two or more parameters should be considered based on model analysis, experience or 

literature. Fortunately, various sensitivity models such as UNCSAM (Janssen et al., 1992) 

have been specifically designed and can be used for this purpose (Bärlund and Tattari, 2001).  

The parameter standard value used in simulations can also be decisive for the sensitivity of an 

output. For example, the filter coefficient with a standard value of 0.0001 was found to have 

no effect on any water or P output variable, but it did significantly influence particulate P 

leaching when its standard value became 1. Actually, the standard value of 0.0001 was too 

low to allow the filter coefficient to play any role in the particle filtration component. 

Consequently, it is very important to choose an appropriate standard value for an input 

parameter. However, it is not easy to determine this value due to the complexity of both the 

model and real field conditions. 

It should be noted that sensitivity analysis is always site-specific, due to specific climate, soil, 

water, vegetation and management practices (Knisel, 1980). Bärlund and Tattari (2001) also 

reported that sensitivity results vary in the same study when soil type or crop type is changed. 

Consequently, the parameters sensitive for the Mellby field are not necessarily of the same 

importance for other fields.  

 

2. Drainage parameterisation results 
The model simulations without water bypassing tile drains showed that the 15-year total 

drainage (1989-2003) was generally around 20% higher than that measured in the field. This 

confirms earlier findings from this field that only about 80% of percolating water in the soil 

ends up in the tile drains (Torstensson & Aronsson, 2000). In order to get a good match of 

simulated total drainage with measured, a number of simulations with different K1 and K2 

combinations were performed, but did not differ much in the cumulative drainage for each 

year (Fig. 2). The combination of K1 = 0.83 and K2 = 1 (Table 3) was selected for further 

simulations, on the assumptions that 83% of water went to tile drains and the rest bypassed 

the drainage system, and that the invented groundwater pool in the micropore region was 

emptied every day. 
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 Figure 2. Annual cumulative water drainage (mm) from 1989 to 2003, simulated using 

different combinations of K1 and K2 values: 1st: K1=0.83, K2=1; 2nd: K1=0.71, K2=0.5; 3rd: 

K1=0.55, K2=0.25; 4th: K1=0.79, K2=0.75. 

 

Table 3. Values of decisive parameters for drainage simulations 

 Total drainage Macropore flow 

 K1 (d
-1

) K2 (d
-1

) Tresh_watin 

(m) 

Frac (%) Fcfrac (%) 

Standard values 1 0 0.0188 0.2 0.999 

Selected values 0.83 1 0.0094 0.5 0.999 

 

In general, macropore flow in a sandy loam soil such as the Mellby field is not expected to 

occur to any large extent, but the drainage dynamics at Mellby indicate that water can move 

very rapidly through the soil. The inclusion of gravel backfill when installing a drainage 

system in the soil is very likely to create a system of ‘artificial’ macropores, which may be 

one reason for this. Another reason could be that water moves through preferential flow 

pathways induced by water repellency in the topsoil (Larsson et al., 1999). The macropore 

parameters were quantified through calibration and based on the degree of dynamic 

agreement between simulations and field measurements. The parameter values that generated 

the best results for the Mellby soil were tresh_watin=0.0094, frac=0.5 and fcfrac=0.999 

(Table 3). These values are close to those normally used for a loam soil (SNV, 2008b). 
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3. Water balance and drainage dynamics 
 

3.1 Water balance 

 

Figure 3. Simulated water balance (mm, %) for the whole period (1989-2003). 

The water simulations from 1989 to 2003 had a very good balance between inflow and 

outflow, with a completely negligible change (7 mm) in soil water storage (Fig. 3). More than 

half of the precipitation (57%) was lost through soil and plant evapotranspiration. Because 

the studied field is quite flat, water runoff accounted for only 1% of the total water outflow. 

Around 42% of the precipitation percolated through the soil profile, of which 35% was lost 

through tile drains while 7% bypassed the drains. The simulated cumulative drainage of 4066 

mm corresponded very well with the amount measured in the field (4144 mm). Most of the 

simulated percolation water (32%) was lost through micropore flow and only 3% through 

macropore flow.   

3.2 Total drainage and drainage dynamics 

As mentioned in section 3.1, simulated cumulative total drainage for the whole 15-year 

period (1989-2003) agreed well with field measurements (1.9% lower than measured). There 

was generally satisfying dynamic agreement between simulations and measurements, with 

similar increasing or decreasing slope at the same time (Fig. 4).  

As is apparent in Figure 4, different patterns arose in the annual cumulative curve. 

Specifically, the model simulated total drainage and dynamics that were closely similar to the 

measured values for 1989, 1995, 1998, 2000, and 2001. For 1992, 1993 and 2003, the model 

simulated total drainage quite well, but with a sudden increase in April, April and July, 

respectively. This abrupt increase in simulated drainage coincided with single short 

precipitation events. Drainage was either overestimated by the model or was not collected by 

the drains in the field. In contrast, the simulated drainage became abruptly smaller than the 

measured in February 1990 and March 1994, contributing significantly to the lower total 

drainage during these years. This was because the model failed to simulate some significant 

drainage events. In 1991, the model simulated higher drainage before October, but it 
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simulated much less in the last three months of the year, which resulted in total drainage 

being about 80 mm lower than measured. The same pattern was found in 1997, with the 

turning point in February. In contrast, 2002 had the opposite pattern, simulating less drainage 

before August but more afterwards, leading to the simulated total drainage exceeding the 

measured by about 80 mm. The simulated drainage was generally higher than the amount 

measured over the year in 1996 and 1999.  

(A)

(B) 

Figure 4. (A) Total cumulative total drainage (mm) for the 15-year period and (B) annual 

cumulative total drainage (mm) for each year from 1989 to 2003 for the Mellby sandy loam 

soil. 

The exact reasons for the difference between simulations and measurements can only be 

determined based on analysis of dynamic patterns, model input, model working mechanisms, 

and real field conditions. In particular, single intensive flow events are difficult to predict 

with the model, due to lack of exact coherence between model and reality.  
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 Figure 5. Daily drainage (mm) dynamics of the Mellby sandy loam soil from 1989 to 1993: 

1989-1993 in the top graph, 1994-1998 in the middle and 1999-2003 below. 

The model was generally able to simulate the daily dynamics of drainage from the Mellby 

field successfully for the whole period (Fig. 5). Although the simulated drain peaks were 

often lower than measured, the model managed to simulate most of them at the right time, for 

instance, in January and October 1990, from September 1991 to April 1992, from November 

1992 to January 1994, from October 1994 to August 1995, from July 1998 to March 1999, 

from October 1999 to March 2002, and in October and November in 2002. This indicates 

reasonable parameterisation of the model, especially of the fast water movements in the soil 

represented by the macropore flow.   

The reasons for the failure of the model to simulate some events could be uncertainty of input 

data, overestimation or underestimation of some processes such as snowmelt and 

evapotranspiration, or some field conditions or processes being excluded from the model.  
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Notably, some drainage events were simulated by the model where no water was captured by 

drains in the field, e.g. the drainage peaks on 19 July 1989, 16 September 1992, 29 

September 1995, 18 June 1998 and 17 August 1999. A high total amount of precipitation of 

several tens of millimetres in a few days before the occurrence of drainage peaks was found 

to have been input for the model in all of these events, indicating that the model simulations 

were very reasonable and that the overestimation of the events was due to either incorrect 

input precipitation data or errors in the measurements.  

The model also failed to simulate some major drainage events such as the field drainage 

peaks in May 1991, March 1994, February 1997, April 1999 and April 2003, for different 

reasons. For example, the failure of simulation in May 1991 was because the model most 

likely overestimated soil evaporation and thus underestimated water percolation through the 

soil profile and drainage losses, whereas the failure in March 1994 was most likely due to 

incorrect precipitation input in the model. The measured drain peak (32 mm) for this event 

was higher than the total precipitation for the previous 30 days (30 mm).  

It was more common for the model to simulate lower or higher drainage peaks compared 

with field measurements. For instance, the underprediction by the model in February 1990 

that made the simulated annual cumulative amount of drainage suddenly become smaller than 

the measured amount might be due to insufficient accounting in the model for accumulated 

snow that melted and became drainage. The overpredicted drainage in June and July 2002 

might be because part of the precipitation running off the field moved along channels formed 

on the soil surface by the ridges in a potato crop, which was not accounted for in the model.  

3.3 The influence of saturated conductivity 

In accordance with earlier model applications (SNV, 2008b), the parameterisation of 

saturated conductivity was set low to only represent the micropore region. It was found that 

the values were too low for coarse soils such as this sandy loam and should have been 

approximately 10-fold higher. To check the influence of this mis-parameterisation, a higher 

saturated conductivity was used in a re-simulation.  

The higher saturated conductivity and simulated macropore flow played the same role in 

simulating drainage peaks (Fig. 6). Compared with the former simulation with low macropore 

flow (Fig. 5), the simulation using higher saturated conductivity generally only simulated 10 

mm higher drainage over the 15-year period, but generated more frequent peaks that were 

even higher than those measured. Through comparing both simulations with measurements, it 

was concluded that the simulation with the calibrated macropore flow fitted field 

measurements better.  
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(A)

(B) 

Figure 6. Comparisons between (A) low and higher saturated conductivity from 1989 to 

2003, and (B) higher saturated conductivity and measurements, illustrating its influence on 

drainage. In the simulation of higher saturated conductivity, the standard parameter values 

in relation to macropore flow were used: tresh_watin=0.0188, frac=0.2; while the 

simulation of higher saturated conductivity was the same as that in the former parts using 

tresh_watin=0.0094, frac=0.5.  
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4. P balance and P leaching dynamics 

4.1 P balance 

 

Figure 7. Simulated P (kg ha-1, %) balance for the whole period (1989-2003). 

Phosphorus was applied to the plot at a level of 865 kg per hectare and year from 1989 to 

2003. The majority (820 kg ha
-1

 yr
-1

) was applied as pig slurry, and the remainder as mineral 

fertiliser. Of the total P applied, about 25% was removed from the soil with the harvested 

crop and, according to simulations, 3% was lost through drainage and runoff while 71% was 

retained in the soil (Fig. 7). Although P losses accounted for only 3% of the P applied in 

fertiliser, this is enough to result in eutrophication and threaten the ambient water 

environment. According to the model, leaching of soluble P through the drainage system was 

the most important route of P losses at Mellby, followed in decreasing order by runoff, 

leaching of particle P and P bypassing drains.  

The retention and accumulation of P in the soil is likely to act as a potential source of P 

leaching in the future. However, the model was not sensitive enough to determine this 

fraction. When a simulation test was made with no P fertiliser applied, there was only a 2% 

change in total P leaching. Possible reasons were that most of the P input was added as 

manure, which has a lower transformation rate to labile P in the model compared with 

mineral fertiliser, and that when fertiliser was applied to the soil, P was greatly adsorbed in 

the topsoil, resulting in a low concentration in the subsoil and low leaching. Another reason 

could be that the value (0.85 g kg
-1

) used in the model for the stable mineral P pool in layer 3 

and layer 4 was much too high, and this pool controlled the source of labile P and active P for 

leaching. By comparison, P available for leaching due to fertilisation in the simulation period 

seemed to be very small. However, the measurements did not show any increase in P 

leaching over the 15-year-period as could have been expected due to the large doses of P 

applied. In other plots, only mineral P or manure P was applied, in amounts corresponding to 

about 50% of those in plot 9, but there were no clear differences in measured P leaching. 

Overall, the measurements showed that P leaching was low. There is a high amount of red-
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coloured iron oxides in the subsoil and precipitation of iron oxides creates problems in tile 

drains. This most likely contributes to high P sorption capacity for this soil. 

The simulated 15-year cumulative P leaching was much higher than that measured in the field. 

The simulated total P leaching consisting of soluble and particulate P and that of drain bypass 

was as high as 1.48 kg ha
-1

 yr
-1

, which was 10-fold higher than that measured in the field 

(0.14 kg ha
-1

 yr
-1

). The value is also almost three times the average P leaching (0.5 kg ha
-1

 yr
-

1
) estimated by ICECREAM simulations for a sandy loam soil in Sweden (SNV, 2008a). The 

simulated leaching of soluble and particulate P was about 18-fold and 4-fold higher than that 

measured in the field, respectively.  

In the model simulations, 18% soluble P bypassed drains with drainage water, indicating that 

field measurements have probably underestimated soluble P leaching. Accounting for this 

eventual underestimation in measurements, the cumulative total P leaching for the 15 years 

would be around 2.3 kg ha
-1

, with an average of 0.16 kg per hectare per year.  

4.2 P losses and dynamics  

(A)

(B) 

Figure 8. Comparison of 15-year P leaching between model simulation and field 

measurements for monthly transport (kg ha-1) of (A) soluble P and (B) total P.  

As shown in the P balance part, the model using standard P parameters greatly overestimated 

the 15-year total amount of P leaching, since measured leaching was much lower than 

simulated. Overestimation of P leaching occurred every month (Fig. 8). This was probably 

because a large amount of P was adsorbed by iron or aluminium oxides in the subsoil in the 

field, a process not included in the model.  
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There were no major differences in transport dynamics between soluble P (PO4
3-

-P) and total 

P (Fig. 8). The simulated monthly transport of both PO4
3-

-P and total P in general had a good 

dynamic agreement with the measured values, showing many transport peaks at the right time. 

The transport dynamics for the years 1989-1993, 1996-1997 and 2002 were very well 

predicted. The agreement of P was mainly attributed to a good match of simulated drainage 

(Fig. 9), which is one of the most important factors influencing P leaching, especially in the 

model. Real field conditions are much more complicated than the model, with more factors 

affecting P leaching, such as P sorption and adsorption processes on the surface of iron and 

aluminium oxides, and also the influence due to the change in redox potential. 

However, for a similar drainage amount, the model simulated much higher total P transport 

than field measurements, which is most likely determined by the parameters related directly 

to P solubility and generation of soil particles. It also indicates the occurrence of P retention 

under field conditions. As some previous studies showed, the Mellby sandy soil has a high P 

sorption capacity but a relatively low degree of saturation, and therefore a considerable 

proportion of soluble P is probably retained due to iron and aluminium oxides in the subsoil. 

 

(A) 

  
(B) 

Figure 9. Correlation between drainage and total P leaching for (A) model simulations and (B) 

measurements. The y-axis on the left of each graph shows drainage (mm), while that on the 

right shows total P transport (kg ha-1).  
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(A)

(B) 

Figure 10. Comparison of 15-year P concentration in leachate between model simulation 

and field measurements for monthly mean concentration (mg l-1) of (A) soluble P and (B) 

total P. The y-axis on the left of each graph shows the simulation results, that on the right 

the actual measurements.  

Comparisons of measured and simulated monthly P concentrations did not show as good 

agreement as transport of P (Fig. 10). Measured concentration values were lower and had a 

different dynamic pattern than simulated values. Due to the high overestimation of P 

transport, the simulated P concentrations were also much overestimated.  

4.3 Additional simulations 

Considering the different extent of overprediction of soluble P (18-fold) and particulate P (4-

fold) and the different mechanisms for their occurrence in the soil profile, the two categories 

of P leaching were simulated with the focus on different influential parameters. Based 

primarily on the results of the sensitivity analysis, attempts were made to determine 

appropriate values for base saturation affecting soluble P leaching in the sorption-desorption 

process and for parameters (replenishment, detachability, particle extraction depth, filter) 

related to macropore flow and particle detachment controlling particulate P leaching. Further 

simulations were performed on different soil P classes to test the effects on P leaching.  
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4.3.1 Soluble P leaching 

Different values of base saturation were tested in order to simulate good agreement in soluble 

P leaching, and the best value was found to be 3. However, this is an unrealistically low value 

and is hence an indication that the model needs to be improved concerning P sorption-

desorption. An improvement could be to include the chemistry component with iron and 

aluminium oxides illustrating P retention in the subsoil. 

4.3.2 Particulate P leaching  

 

Figure 11. Monthly particulate P transport (kg ha-1) in the field measurements and in the 

simulations using different parameter values: a filter coefficient of 0.0001 (standard) and 1.6 

and 25% particle, respectively. ‘25% particle’ means that compared with the standard values, 

the three particle-related parameters (replenishment, detachability and particle extraction 

depth) were reduced by 75% to 0.05, 0.06875 and 0.25, respectively. 

A filter coefficient of 1.6 or a 75% decrease in the parameter values related to particle 

generation capacity gave almost the same 15-year cumulative and monthly dynamics of 

particle P transport as in the measurements (Fig. 11). The simulated and standard values both 

successfully simulated lower monthly transport of particle P with the same occurrence of 

transport peaks in time. They also gave good agreement with field measurements, in terms of 

cumulative particle P transport of approximately 1 kg per hectare over the 15 years. In 

addition, they accurately simulated monthly transport dynamics for the period 1989-1990, as 

well as some periods in other years. The dynamics of particle P leaching in the model were 

determined by the preferential flow at the Mellby field.  

4.3.3 Importance of soil P classes  

Total P of the soil is a very important input for simulating P leaching, since it determines the 

initial states of the PS and PA pools. Different values (Table 4) were used in the simulations to 

examine the effect of soil P class on P leaching.  
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Table 4. 15-year total soluble P (kg ha-1), particulate P (kg ha-1) and total P (kg ha-1) leaching 

simulated using different P classes. 

Soil P class (PS) 0.68, 0.68, 0.85, 

0.85
#*

 

0.87, 0.87, 0.048, 

0.048
##*

 

1.05, 1.05, 0.22, 

0.50
###*

 

Soluble P 14.77 1.86 9.45 

Particulate P 4.19 4.80 5.40 

Total P 18.96 6.66 14.85 

*The four values are for soil layers 1, 2, 3 and 4, respectively.  

#
Values used in this work for simulations in sensitivity analysis and comparison of drainage and P leaching. 

##
Values from simulations of some other Swedish fields. 

###
Values calculated from measured P content (HCl extraction method) by multiplying by a coefficient of 1.44 

(SNV, 2008b). 

Soil P class had a dramatic influence on soluble P leaching and thus total P leaching (Table 4). 

When soil classes used for earlier work and classes calculated from measured P-HCl were 

simulated, the soluble P was reduced significantly from 14.77 kg ha
-1

 to 1.86 and 9.45 kg ha
-1

, 

respectively. By comparison, particulate P increased moderately to 4.80 and 5.40 kg ha
-1

, 

respectively. The decrease in soluble P might be due to the lower P values used for layer 4, 

which mainly determined the drainage through micropore and soluble P leaching; while the 

increase in particulate P may mainly result from the increase in P values in layer 1, where soil 

particles are initiated and which is an important source of particulate P.  
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Conclusions 
 

The ICECREAM model was able to simulate drainage during 15 years of a sandy loam soil at 

the Mellby site quite well. In general, good agreement was obtained with measured total 

drainage and daily drainage dynamics. The success was largely due to calibration of the 

parameters (K1 and K2) determining drainage water partitioning between tile drains and deep 

percolation and those (tresh_watin and frac) for simulating macropore flow. It was estimated 

that 17% of simulated drainage bypassed the drainage system, indicating that the field drains 

failed to collect all the drainage water. The simulations showed the importance of including 

macropore flow in the model and indicated that preferential flow is important for rapid water 

movements in the Mellby soil.  

The model accurately simulated PO4
3-

-P and total P transport dynamics, because these were 

mainly determined by water movement in the soil profile. However, the simulated monthly 

amounts of transported P were much higher than the measured values and the model also 

failed to simulate the P concentration in leachate. One reason for the overprediction by the 

model was probably that soluble P was adsorbed to iron and aluminium oxides, which are 

visible in the Mellby subsoil. This sorption process was not included in the model and one of 

the main conclusions from this work was that this process must be included in order for the 

model to simulate P leaching from a soil of this type. Other possible reasons for the poor 

agreement are overestimation of particle generation capacity or underestimation of particle 

retention ability of the soil, or both. This resulted in overestimation of particle-bound P in 

drainage water. It was concluded that it is important to consider these parameters.  

In the simulations, crop cover, tillage method and field management strategies had moderate 

to significant effects on drainage and P leaching through the determination of the CN2 

parameter, and hence CN2 had an effect on partitioning of precipitation between surface 

runoff and percolation through the profile. This indicates a possibility to mitigate P leaching 

by improving cropping systems and soil management. 

The soil P pools determined P leaching in this work, and in comparison to their large size, the 

amount of P added through fertilisation was small and made a very small contribution to 

overall P leaching.   
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Appendix 
A1: Sensitivity of water (mm) and P (kg ha-1) output variables to related parameters (Explanations of 

abbreviations were given below the table.). 

Parameters R Dmic Dmac D RD ET RP SeP RSP Pmic Pmac PL PPL TPL SP PP TP 

CN2&Mn table 

CN2 M Ne Ne,M* Ne No No Sl,M Sl,M Sl,M Ne Sl,M Ne Ne,Sl Ne Ne Sl Ne 

Mn No No No No No No No Ne Ne No No No No Ne No Ne Ne 

CN2&Mn implement table 

CN2 Si Sl,M M,Si Sl,M Ne Ne Si Si Si Sl,M M,Si Sl,M Si Sl,M Ne,Sl Si M,Si 

Mn No No No No No No Ne Si,M Si,M No Ne No Ne Ne No Si,M M,Si 

Crop 

Residues:yield Ne Ne No Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne,Sl Ne Ne Ne,Sl Ne 

Canopy cover 
constant 

No No No No No No No Sl,Ne Sl,Ne No No No No Ne No Sl,Ne Ne 

Max LAI Ne Sl,Ne Ne Sl,Ne Sl Ne Ne Ne Ne Sl,Ne Ne Sl,Ne Ne Sl,Ne Sl,Ne Ne Ne 

Root:shoot 
ratio 

No Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne 

C:N yield No No No No No No Sl Sl Sl Ne Sl Ne Sl,Ne Ne Ne Sl Ne 

N:P yield No No No No No No No No No No No No No No No No No 

C:N Above 
ground 
biomass 

No No No No No No Ne Ne Ne No Ne No Ne Ne No Ne Ne 

N:P Above 
ground 
biomass 

No No No No No No Ne Ne Ne No Ne No Ne Ne No Ne Ne 

C:N Below 
ground 
biomass 

No No No No No No Ne Ne Ne No Ne No Ne Ne Ne Ne Ne 

N:P below 
ground 
biomass 

No No No No No No Ne Ne Ne No Ne No Ne Ne Ne Ne Ne 

MacroP 

Tresh_watin Ne Sl,Ne Si Ne Ne Ne Ne Sl,Ne Ne Sl,Ne Si Ne Si M,Sl Ne Si,M M,Sl 

Frac Ne Ne Si Ne Ne No Ne Ne Ne Ne Si Ne Si,M Sl Ne M,Sl Sl 

Fcfrac Ne Ne Si,M Ne Ne No Ne Ne Ne Ne Si,M Ne Si M,Sl Ne Si,M M,Sl 

Filter No No No No No No No No No No No No No Ne No No No 

W_tresh_mac No No Si Ne Ne No No No No No Si Ne Si Sl Ne M Sl 

K1 No Ne No Ne Ne No No No No Ne No Ne No Ne Ne No No 

K2 No No No No No No No No No No No No No No No No No 

K3 No No No No No No No No No No No No No Ne No No No 

K4 No No Si Ne Ne No No No No No Si Ne Si Sl Ne M Sl 

Ini_mic_P No No No No No No No No No No No No No No No No No 

Ini_mac_P No No No No No No No No No No Sl Ne No Ne Ne No Ne 

Replenishment No No No No No No No No No No No No Sl Ne No Sl Ne 

Detachability No No No No No No Ne Ne Ne No No No M Sl No Sl Ne 

Particle 
extraction 
depth 

No No No No No No Ne Ne Ne No Ne No M Sl No M,Sl Sl 

Soluble P 
extraction 
depth 

No No No No No No No No No No M,Sl Ne No Ne Ne No Ne 

Root depth 

Maximum root 
depth 

No No No No No No Sl Sl Sl Ne Sl Ne Sl Ne Ne Sl Ne 

Soil 

Ksoil No No No No No No Sl M M No Ne No Ne Ne No M Sl 

Max water 
input 

Ne Ne No Ne No No Sl Ne Ne Ne No Ne No Ne No Ne No 

Soil loss 
calibration 
parameter1 

No No No No No No Sl M M No No No Ne Ne No M Sl 

Soil loss 
calibration 
parameter2 

No No No No No No No No No No No No No No No No No 

Soil loss No No No No No No Ne M,Si M,Si No No No No Ne No No Sl 
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calibration 
parameter3 

Soil loss 
calibration 
parameter4 

No No No No No No No No No No No No No No No No No 

Soil loss 
calibration 
parameter5 

No No No No No No No No No No No No No No No No No 

Soil_layer 

Sspg Sl Ne No Ne No No M M M Ne Sl Ne M Sl Ne Ne Ne 

Clay Ne Ne Ne,M Ne Ne Ne Sl Sl Sl Ne Sl Ne Si Sl Ne Ne Sl 

Sand Sl Sl,M Ne,M Sl,M Sl,M Sl,M Sl M,Si M,Sl Sl,M Ne,M Sl,M Ne,M Sl,M Sl,M Sl,M Sl,M 

Organic 
matter 

No No No No No No Ne Sl,Ne Sl,Ne No Ne No No Ne No No Ne 

Saturated 
conductivity 

M Sl,Ne Sl,M Sl Ne Ne M,Sl M M Sl,Ne Sl,M Sl,Ne Sl,M Sl,Ne Sl,Ne Sl,Ne Sl 

Filed capacity Si M Si M M Sl M,Si M,Si M,Si M Si M Si M M M M,Sl 

Soil porosity M Ne M Ne Ne Ne M M M Ne Sl Ne Sl Ne Ne Ne Sl 

Wilting point M Sl Si,Sl Sl Sl Sl M M M Sl Si,Sl Sl M,Sl Sl Sl Sl Sl 

pH No No No No No No Sl Ne Ne Sl Sl Sl Ne Sl Sl Sl Sl 

CaCO3 No No No No No No No No No No No No No No No No No 

Base 
saturation 

No No No No No No Si Sl Sl Si M Si Sl M Si Si M 

FOP No No No No No No Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne 

Plab No No No No No No Sl Sl Sl Ne Sl Ne Sl Ne Ne Ne Ne 

SorgP No No No No No No Sl M M Ne Sl Ne M Sl Ne Ne Sl 

 

Abbreviations: 

Output variables of water and P: 

R: daily surface runoff 

Dmic: water drainage through micropores 

Dmac: water drainage through macropores 

D: total drainage, the sum of water drainage through micropores and macropores  

RD: the sum of daily runoff and drainage 

ET: evapotranspiration 

RP: soluble P in runoff 

SeP: sediment P, particulate P in runoff caused by erosion and sedimentation process 

RSP: the sum of soluble and particulate P in runoff 

Pmic: P leaching through micropores including only soluble P 

Pmac: P leaching through macropores including both soluble and particulate P 

PL: soluble P of leaching 

PPL: particular P of leaching 

TPL: total P by leaching, the sum of PL and PPL 

SP: total soluble P losses, including by both runoff and leaching 
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PP: total particulate P losses, including by both runoff and leaching 

TP: total P losses, the sum of SP and PP 

Sensitivity criteria: 

No: none 

Ne: negligible 

Sl: slight 

M: moderate 

Si: significant 

*Ne,M: negligible sensitivity when the value of the parameter decreases and moderate sensitivity when it 

increases. The other combinations of No, Ne, Sl, M and Si are similar.  
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