Effekten av en aktivitetsboll på krubbitning hos häst

The effect of a foraging device on crib-biting in horses

Sara Asteborg

Swedish University of Agricultural Sciences
Department of Animal Environment and Health
Section of ethology

Skara 2006
Student report 91

ISSN 1652-280X
Effekten av en aktivitetsboll på krubbitning hos häst

The effect of a foraging device on crib-biting in horses

Sara Asteborg

Examensarbete 20p, biologi med inriktning etologi

Handledare:

Maria Andersson, PhD
Swedish University of Agricultural Sciences
Department of Animal Environment and Health
Section of Ethology
Box 234 S-532 23 Skara

Anna Lundberg, PhD
Swedish University of Agricultural Sciences
Department of Animal Environment and Health
Section of Animal Welfare
Box 234 SE-532 23 Skara
SAMMANFATTNING

Ett alternativt sätt att försöka minska krubbitning kan vara att introducera en berikning i form av en aktivitetsboll. En aktivitetsboll är en boll som fylls med någon form av foder och hästen manövrerar den för att få tillgång till innehållet som trillar ut genom ett hål i bollen. Syftet med den här studien var att undersöka om en aktivitetsboll hade någon effekt på krubbitningsfrekvensen hos krubbitande hästar. Hypotesen var att födosöksbeteendet skulle öka samtidigt som krubbitningen skulle minska då hästarna fick tillgång till en Snak-a-Ball som var fylld med finkrackade morötter.

Det var åtta krubbitande hästar som medverkade i studien och de genomgick individuellt tre olika behandlingar; Kontroll, Berikning och Morötter. Varje behandling pågick under två dagar i följd och hästarnas beteende observerades under två timmar, en timme före och en timme efter utfodring båda testdagarna. Kontroll innebar ordinarie förhållanden, Berikning innebar att hästen fick tillgång till en aktivitetsboll fylld med 1 kg morötter och Morötter innebar att hästen fick 1 kg morötter direkt i krubban under observationen startade.

Studien visade att hästarna vilade signifikant mindre (p<0,05) då de hade tillgång till en Snak-a-Ball jämfört med de två andra behandlingarna. Hästarna hade en signifikant högre (p<0,05) krubbitningsfrekvensen under behandling Morötter jämfört med de två andra behandlingarna. Aktivitetsbollen hade ingen signifikant effekt på hästarnas krubbitning vilket skulle kunna bero på att bollen var fylld med morötter vilka medförde en ökad krubbitningsfrekvens när de gavs direkt i krubban. Det var heller ingen signifikant skillnad i födosök mellan de olika behandlingarna.

En slutsats av den här studien är att krubbitande hästar vilar signifikant mindre då de har tillgång till en aktivitetsboll. Hypotesen att födosöksbeteendet skulle öka samtidigt som krubbitningen skulle minska då hästarna får tillgång till en Snak-a-Ball fylld med finkrackade morötter kunde inte styrkas.
1 INLEDNING

1.1 Bakgrund

1.2 Riskfaktorer

1.3 Magfunktion

1.4 Stressfunktion

Om krubbitning fyller en stressfunktion så finns det ett antagande som säger att krubbitande hästar borde ha lägre stressnivåer jämfört med hästar som inte krubbiter i samma miljö (Nicol, 2000). En svårighet med detta kan vara att hästar som krubbiter kan ha varit mer stresskänsliga än andra hästar innan de utvecklade sitt stereotypa beteende och att de kanske bara kan reducera sin stressnivå till en ”normal” nivå (Nicol, 2000). Bachmann et al. (2003b) föreslår att krubbitande hästar är mer stresskänsliga jämfört med icke krubbitande hästar (kontrollhästar). Resultatet i deras studie visade att det vid vila var en signifikant skillnad i hjärtfrekvensvariabilitet mellan krubbitande hästar och kontrollhästar. Det innebar att krubbitande hästar hade både en signifikant högre sympatisk och en signifikant lägre parasympatisk aktivitet jämfört med kontrollerna. Mag- och tarmaktivitet styrs av det parasympatiska systemet och kan därmed vara reducerad hos krubbitande hästar på grund av den lägre basala parasympatiska aktiviteten (Bachmann et al., 2003b).

1.5 Minska krubbitning

Figur 1. En häst som krubbiter trots att den har en krubbitarrem på sig.
Både krubbitande och icke krubbitande hästar som bar en krubbitarrem hade signifikant högre plasmakortisolnivåer jämfört med då de inte hade någon rem på sig, vilket indikerar att hästen blir stressad av att ha en sådan på sig (McBride & Cuddeford, 2001). Det kan vara mycket svårt att få hästar som har etablerat ett stereotypt beteende att upphöra med det, t ex så slutar inte äldre hästar att krubbita trots att de befinner sig i en ur ett välfärdsperspektiv optimal miljö (Nicol, 2000).

1.6 Berikning

1.7 Syfte och hypotes

Syftet med denna studie var att undersöka om en aktivitetsboll hade någon effekt på krubbitningsfrekvensen hos krubbitannde hästar. Då Equiball™ inte fanns kommersiellt tillgänglig (personlig kommunikation Natalie Waran, 060119) användes istället en Snak-a-Ball vilken bygger på samma princip. Hypotesen var att födosöksbeteendet skulle öka samtidigt som krubbitningen skulle minska då hästarna fick tillgång till en Snak-a-Ball som var fyllt med fihackade morötter.
2 MATERIAL OCH METOD

2.1 Försökshästarna
Det var åtta krubbitande hästar som medverkade i studien (tabell 1). Hästarna valdes ut efter besök till olika stall och utifrån inskickade intresseanmälningar för att medverka i ett hästforskningsprojekt kring hästens beteende vid Institutionen för husdjurens miljö och hälsa, SLU. Alla hästarna stod i box och hade krubbitit i minst ett år. Tre av hästarna bar krubbitarrem men krubbet trots det. Eftersom hästarnas ordinarie rutiner inte ändrades fick de fortsätta att ha krubbitarremmen på sig. En av hästarna hade tidigare erfarenhet av en aktivitetsboll. Samtliga hästar hade visuell kontakt med andra hästar och vistades dagligen i hage.

Tabell 1. Hästarna som var med i försöket.

<table>
<thead>
<tr>
<th>Häst nr</th>
<th>Ålder (år)</th>
<th>Kön</th>
<th>Ras</th>
<th>Strömaterial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>Valack</td>
<td>Halvblod</td>
<td>Torv</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>Hingst</td>
<td>Fullblod</td>
<td>Spån</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>Valack</td>
<td>Halvblod</td>
<td>Spån</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>Sto</td>
<td>Fullblod</td>
<td>Halm</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>Valack</td>
<td>Fullblod</td>
<td>Spån</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>Valack</td>
<td>Korsning</td>
<td>Spån</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Valack</td>
<td>Halvblod</td>
<td>Torv</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>Valack</td>
<td>Fullblod</td>
<td>Spån</td>
</tr>
</tbody>
</table>

2.2 Snak-a-Ball
En Snak-a-Ball är en rund boll som har en diameter på 24,5 cm och som väger 1,31 kg. Den har ett hål som stängs till med ett lock (ø 6,5 cm) som används vid påfyllnad och ett hål (ø 3 cm) som innehållet kan ramla ut genom då bollen rullas fram och tillbaka. Inuti bollen finns en fastsittande plastskiva med två stycken hål (ø 1 cm) på sidorna (figur 2).

Figur 2. Snak-a-Ball. 1-Hål med lock, 2-Hål i plastskiva, 3-Hål som innehållet kan komma ut genom.

2.3 Morötter
Tillverkaren av Snak-a-Ball rekommenderar att bollen fylls med någon form av pellets. I detta försök fylldes bollen istället med finhackade morötter då det har visat sig att spannmål kan öka krubbitningen hos krubbitande hästar (Gillham et al., 1994) och stora mängder kraftfoder har visat sig öka frekvensen onormala orala beteenden (Johnson et al., 1998).
Morötter innehåller mycket vatten och har en torrsubstans på endast 12 % (Planck & Rundgren, 2005), vilket innebär att 1 kg morötter inte har en så stor påverkan på hästens foderstat. Dessutom anses morötter vara smakliga för hästar (Planck & Rundgren, 2005). Morötterna hackades för hand i kvadratiska bitar på 0,5 x 0,5 cm. Morötters näringsinnehåll redovisas nedan (tabell 3).

Tabell 3. Morötters näringsinnehåll i gram per 100 g. (Livsmedelsverket 2002)

<table>
<thead>
<tr>
<th>Protein</th>
<th>Fett</th>
<th>Kollyhydrater</th>
<th>Mättade fettssyror</th>
<th>Fleromättade fettssyror</th>
<th>Mono- sackerider</th>
<th>Disackerider</th>
<th>Sarkaros</th>
<th>Fibrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,6</td>
<td>0,24</td>
<td>8,69</td>
<td>0,05</td>
<td>0,14</td>
<td>3,95</td>
<td>3,8</td>
<td>3,8</td>
<td>2,4</td>
</tr>
</tbody>
</table>

2.4 **Behandlingar**

Försöket bestod av tre olika behandlingar; Kontroll (K), Berikning (B) och Morötter (M). Alla hästar utsattes för alla tre behandlingar och blev på så sätt sin egen kontroll. Varje behandling pågick under två dagar i följd.

Kontroll. Hästen observerades under ordinarie förhållanden. Om nästföljande behandling var B så lämnades en Snak-a-Ball fyld med 1 kg finhackade morötter hos hästen efter avslutad observation dag två. En handfull morötter visades för hästen och placerades under bollen för att uppmuntra hästen att putta på bollen för att få en belöning. Detta pågick tills hästen självständigt manövrerade bollen och fick ut morötter, eller under en tidsperiod av maximalt 30 minuter.

Morötter. Hästen fick 1 kg finhackade morötter i krubban när observationen startade. Om nästföljande behandling var B så lämnades en Snak-a-Ball fyld med 1 kg finhackade morötter hos hästen efter avslutad observation dag två. Träningen skedde som beskrivet ovan.

2.5 **Beteendeobservationer**

Eftersom hästarna krubbitning ofta sker i samband med utfodring (McGreevy, 2004) observerades hästarnas beteende (tabell 2) under två timmar, en timme före och en timme efter utfodring i sex dagar. Tre av hästarna observerades vid lunchfodringen och resterande fem vid kvällsfodringen. Det var inte möjligt att observera hästarna på morgonen eftersom de släpptes ut i hage efter morgonutfodringen.
Hästarnas beteenden registrerades varje minut om de förekom eller ej med 0-1 registrering. Krubbitningsfrekvensen mättes kontinuerligt varje minut under de två timmarna som betendeobservationerna pågick. En krubbitning definierades som att hästen tog stöd mot eller bet tag i ett fast föremål med tänderna, drog bakåt och spände nackmuskulerna. Försöket har godkänts av en försöksdjursetisk nämnd och pågick mellan 20060130-20060330.

2.6 Statistisk analys

Krubbitningen mättes på två olika sätt dels för att få ett medelvärde per minut för hela observationsperioden (krubbitning per minut) och dels för att få ett medelvärde för varje minut som beteendet förekom (krubbitning per krubbitningsminut).

Ett tidsintervall på 20 min togs ut både efter observationsstart och efter utfodring eftersom det var då hästarna åt och krubbitning ofta ses i samband med utfodring (McGreevy, 2004). Dessutom varierade observationsperioden före utfodring mellan de olika observationstillfällena vilket berodde på att tiden för utfodring varierade från dag till dag.

Tabell 2. Etogram över registrerade beteenden.

<table>
<thead>
<tr>
<th>Beteendekategori</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Födosök grovfoder</td>
<td>Åter, rotar runt eller letar efter grovfoder, har kontakt mellan mulen och grovfodret och/eller strömmaterialet.</td>
</tr>
<tr>
<td>Födosök kraftfoder</td>
<td>Åter, rotar runt eller letar efter kraftfoder, har kontakt mellan mulen och kraftfodret och/eller krubban.</td>
</tr>
<tr>
<td>Krubbitning</td>
<td>Tar stöd mot eller biter tag i ett fast föremål med tänderna, drar bakåt och spänner nackmuskulerna, vanligtvis utstöts ett karaktäristiskt grymtande ljud.</td>
</tr>
<tr>
<td>Rörelse</td>
<td>1= Tar ett till två steg. 2= Tar fler än två steg men går inte mer än ett varv i boxen. 3= Går ett eller flera varv i boxen.</td>
</tr>
<tr>
<td>Står still</td>
<td>Står still i mer än 5 sekunder, är uppmärksam på omgivningen genom att lyssna och/eller titta.</td>
</tr>
<tr>
<td>Vila</td>
<td>Står (eventuellt med viken på ett av bakbenen) eller ligger ned med sänkt huvud och halvslutna ögon.</td>
</tr>
<tr>
<td>Snak-a-Ball</td>
<td>Puttar på bollen med nos eller ben medan stående eller i rörelse, åter morotsbitar från bollen eller letar efter sådana inom 0,5 meters radie från bollen.</td>
</tr>
<tr>
<td>Morötter</td>
<td>Åter finhackade morötter ur krubban.</td>
</tr>
<tr>
<td>Dricker</td>
<td>Dricker vatten från hink eller vattenkopp.</td>
</tr>
<tr>
<td>Putsning</td>
<td>Biter i pälsen eller använder något fast föremål att klia sig mot.</td>
</tr>
<tr>
<td>Tuggar</td>
<td>Står still och tuggar utan tillgång till foder, mulen är inte i kontakt med något substrat.</td>
</tr>
<tr>
<td>Urinerar/gödslar</td>
<td>Urinerar/gödslar.</td>
</tr>
<tr>
<td>Övrigt</td>
<td>Övriga beteendestörningar såsom nickning, huvudskakningar och vävning.</td>
</tr>
</tbody>
</table>
3 RESULTAT

3.1 Beteendekategorier
Det fanns signifikanta skillnader i beteendekategorierna vila, krubbitning, födosök, rörelse och Snak-a-Ball vilka redovisas nedan. Kategorin födosök var en sammanslagning av födosök grovfoder, födosök kraftfoder, Snak-a-Ball och morötter. Det fanns inga signifikanta skillnader i de övriga beteendekategorierna. Det var ingen signifikant skillnad mellan de olika behandlingarna (K, B och M) i någon av beteendekategorierna efter utfodring vilket kan förklaras av att hästarna då ägnade i genomsnitt 85,8 % ± 6,9 % av tiden åt födosök.

3.2 Vila
Det var en signifikant skillnad i vila mellan de olika behandlingarna samt före och efter utfodring (figur 3). Post-hoc testet visade att skillnaden låg i att hästarna vilade mindre under behandling B före utfodring jämfört med de andra behandlingarna före utfodring (p<0,05). Dessutom visade post-hoc testet en skillnad i vila före och efter utfodring under behandling K, hästarna vilade signifikant mer före utfodringen (p<0,05).

![Vila diagram](image)

Figur 3. Medelvärdet för andelen av observationerna av vila (+S.E.) (n=8) under olika behandlingar före respektive efter utfodring. * p <0,05. a/b p <0,05.

3.3 Krubbitning per minut
Vid en jämförelse av krubbitningsfrekvensen per minut mellan de olika behandlingarna före och efter utfodring fanns det inga signifikanta skillnader i krubbitningsfrekvensen mellan behandling Kontroll och Berikning. Det fanns däremot en signifikant interaktion mellan de två variablerna behandling och tidpunkt (p=0,004) (figur 4). Post-hoc testet visade att skillnaden låg i att krubbitningsfrekvensen var högre före utfodring under behandling M jämfört med behandling B (p <0,05).
Vid en jämförelse av krubbitningsfrekvensen per minut mellan de olika behandlingarna 20 min efter observationsstart och 20 min efter utfodring (figur 5 och 6) var det en signifikant interaktion mellan behandling och tidpunkt (p = 0,002). Post-hoc-testet visade att skillnaden låg i att krubbitningsfrekvensen var högre 20 min efter start under behandling M jämfört med de två andra behandlingarna, K och B (p<0,05). Dessutom visade post-hoc-testet att krubbitningsfrekvensen under behandling M var högre efter start än efter utfodring (p<0,05).

Figur 4. Medelvärdet av krubbitningsfrekvensen per minut (+S.E.) (n=8) under olika behandlingar före respektive efter utfodring. * p <0,05.

Figur 5. Medelvärdet av krubbitningsfrekvensen per minut (+S.E.) (n=8) under olika behandlingar 20 min efter start och 20 min efter utfodring. * p <0,05. a/b p <0,05.
3.4 Krubbitning per krubbitningsminut

Vid en jämförelse av krubbitning per krubbitningsminut mellan de olika behandlingarna före och efter utfodring fanns det en tendens till en interaktion mellan de två variablerna behandling och tidpunkt (p = 0,097). Då krubbitningsfrekvensen per krubbitningsminut för de olika behandlingarna jämfördes 20 min efter start och 20 min efter utfodring (figur 7) var det en signifikant interaktion mellan tidpunkt och behandling (p=0,024). Post-hoc testet visade att skillnaderna låg i att krubbitningsfrekvensen 20 min efter start i behandling M var högre jämfört med frekvensen för de två andra behandlingarna (p<0,05). Dessutom visade post-hoc testet att krubbitningsfrekvensen under behandling M var högre efter start än efter utfodring (p<0,05).
3.5 Födosök

Beteendekategorin födosök var en sammanslagning av födosök grovfoder, födosök kraftfoder, Snak-a-Ball och morötter. Det fanns en signifikant skillnad i födosök då beteendet jämfördes före och efter utfodring (figur 8). Hästarna födosökte mer efter utfodring jämfört med före (p<0,05). Ingen signifikant skillnad i totalt födosök kunde påvisas mellan de olika behandlingarna.

![Figur 8. Medelvärdet för andelen av observationerna av födosök (+S.E.) (n=8) under olika behandlingar före respektive efter utfodring. Före/efter p <0,05.](image)

3.6 Rörelse

Det var en signifikant skillnad i rörelse då beteendet jämfördes före och efter utfodring (figur 9), hästarna rörde sig mer före utfodring jämfört med efter (p<0,05). Det var ingen signifikant skillnad mellan de olika behandlingarna.

![Figur 9. Medelvärdet för andelen av observationerna av rörelse (+S.E.) (n=8) under olika behandlingar före respektive efter utfodring. Före/efter p <0,05.](image)
3.7 Användning av Snak-a-Ball

Det var en signifikant skillnad i Snak-a-ball användandet före och efter utfodring, hästarna använde bollen mer före utfodring jämfört med efter utfodring (p=0,008) (figur 10). Det var en stor individuell variation i hästarnas Snak-a-Ball användning och mängden uttagna morötter. Den häst (nr 3) som använde bollen mest hade tidigare erfarenhet av en aktivitetsboll (tabell 4). Hästarna använde bollen i genomsnitt 12,9 % ± 5,0 % av tiden och tog ut 137,2 g ± 95,7 g morötter.

![Diagram](image)

Figur 10. Medelvärdet för andelen av observationerna av Snak-a-ball användning (+S.E.) (n=8) före respektive efter utfodring. Före/efter p <0,05.

<table>
<thead>
<tr>
<th>Häst</th>
<th>Snak-a-Ball (andel av tiden)</th>
<th>Uttagna morötter (gram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,108 ± 0,042</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>0,092 ± 0,033</td>
<td>65 ± 5</td>
</tr>
<tr>
<td>3</td>
<td>0,362 ± 0,005</td>
<td>700 ± 30</td>
</tr>
<tr>
<td>4</td>
<td>0,071 ± 0,013</td>
<td>35 ± 15</td>
</tr>
<tr>
<td>5</td>
<td>0,027 ± 0,002</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0,017 ± 0,008</td>
<td>15 ± 15</td>
</tr>
<tr>
<td>7</td>
<td>0,338 ± 0,146</td>
<td>145 ± 115</td>
</tr>
<tr>
<td>8</td>
<td>0,013 ± 0,004</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabell 4. Medelvärdet (±S.E.) (n=2) för hästarnas individuella Snak-a-Ball användning och mängden uttagna morötter i gram. Data för häst 1 uttagna morötter saknas.
4 DISKUSSION

Den här studien kunde inte visa att en aktivitetsboll hade någon signifikant effekt på hästars krubbitning. Detta skulle kunna bero på att bollen i den här studien var fylld med morötter, när de gavs direkt i krubban, medförde en ökad krubbitningsfrekvens hos hästarna. Det är möjligt att själva aktivitetsbollen minskade krubbitningen men att denna effekt uteblev då bollen var fylld med morötter som ökade krubbitningen. En tidigare studie har visat att spannmål ökar krubbitningen vilket förattarna menar bero på att spannmål ger en ökad utsöndring av beta-endorfiner, som i sin tur aktiverar dopaminvägar som sätter igång krubbitningen (Gillham et al., 1994). Det är möjligt att morötter har en liknande påverkan som spannmål på krubbitningen då morötter innehåller mycket socker (tabl 3) vilket kan medföra en ökad utsöndring av beta-endorfiner.

Det skulle vara relevant att prova flera olika fodersorter för att se vilket foder som bäst lämpar sig att fylla bollen med. Kraftfoder (Johnson et al., 1998), spannmål (Gillham et al., 1994) och foder som innehåller mycket socker (Mills, 2005) är mindre lämpliga då en foderstat som innehåller dessa kan öka krubbitningen. Foder som skulle kunna vara aktuellt att prova är ett mer naturligt foder för hästen som grönpellets (lucernpellets) eller hackat grovfoder (personlig kommunikation Margareta Rundgren, 051122).

Det är tänkbart att bollen skulle kunna ha en effekt på den totala krubbitningen över hela dygnet. Den här studien kunde dock inte säga något om det då hästarna endast observerades under två timmar i taget. Henderson et al. (2001) observerade hästar under hela dygnet och en av de krubbitande hästarna hade då en ökad krubbitningsfrekvens under kvällen då bollen fylldes på, men en minskning under dagen vilket gav en total minskning över dygnet. Trots att krubbitningsfrekvensen hos hästarna ökade signifikant då de fick morötter i krubban så ökade krubbitningsfrequensen inte signifikant under berikningen med bollen. Detta skulle dels kunna bero på att det är en stor skillnad på att åta 1 kg morötter direkt ur krubban och att åta små portioner morötter under en längre tid. Under berikningen var det dessutom ingen av hästarna som tog ut 1 kg morötter från bollen utan i genomsnitt endast 0,14 kg.

Det var en stor variation i hur mycket hästarna använde sig av bollen, vilket skulle kunna härledas till att det fanns en individuell variation i hur motiverade de var att jobba för att få morötter. Två av hästarna var galloppörer som fick stora mängder kraftfoder vilket skulle kunna vara en orsak till att de inte var motiverade att använda bollen. Både vilket foder som bollen fylls med och hur hungrig hästen är påverkar motivationen. Hästen är dock anpassad till att äta större delen av dygnet (Davidson & Harris, 2002) och det skulle därmed vara olämpligt ur både hälsos- och djurskyddsspektet att öka hästens motivation att använda bollen genom att höja hungrinivån hos hästen. Det är även möjligt att hästarna be- höver träna en längre tid på att använda bollen. Den häst som hade tidigare erfarenhet av en aktivitetsboll var den som använde bollen mest och som fick ut störst mängd morötter.

När det gäller stress råder det delade meningar om krubbitning fyller en funktion eller inte hos hästen (Nicol, 2000). Utfordring är ofta ett stressmoment för hästar (Bachmann et al., 2003b) och det är tänkbara att hästar som har tillgång till en aktivitetsboll innan utfordring skulle bli mindre stressade då de redan skulle ha tillgång till foder i bollen. Den här studien har dock inte mätt några fysiologiska stressparametrar och kan inte säga något om det.

Det har visat sig att förekomsten av stereotypa beteenden kan associeras med begränsad tillgång på grovfoder (McGreevy et al., 1995a) och stora mängder kraftfoder (Johnson et al., 1998). I första hand bör krubbitande hästar därför få fri tillgång på grovfoder (Davidson & Harris, 2002) och så lite kraftfoder som möjligt (Bachmann et al., 2003a). Då det av någon anledning inte är möjligt att ge hästen fri tillgång på grovfoder föreslår Henderson et al., (2001) att en aktivitetsboll tillsammans med andra åtgärder som t ex ökad social kontakt skulle kunna vara en potentiell del i en behandling av stereotypa beteenden. Trots att den här studien inte visade att hästar födosöker mer med en boll så är det troligt att det kan vara så om hästen är motiverad att använda bollen, t ex om en del av kraftfoder- givna skulle ges i bollen istället för direkt i krubban.
Det är viktigt att ifrågasätta vad syftet med en berikning i form av en aktivitetsboll är. Många av de hästägare som köper en boll till sin häst har kanske inte ens övervägt möjligheten att ge hästen fri tillgång på grovfoder, öka utevistelsen och kontakten med andra hästar. Det kanske ur hästägarens perspektiv är lättare att köpa en boll till hästen än att ändra på hästhållningen.

En av studiens begränsningar var att det var en stor variation i hästmaterialet. Dessutom var det några av hästarna som hade krubbitarrem på sig vilket troligtvis innebar att de krubbet mindre överlag än vad de skulle ha gjort utan rem. Det går inte att utesluta att en aktivitetsboll skulle kunna minska hästens krubbitning trots att den här studien inte visade det. Det är möjligt att en mer omfattande studie med ett större hästmaterialet, fler observationstimmar och/eller ett annat foder än morötter skulle kunna ge ett annat resultat. Det skulle även vara intressant att göra en längre studie för att studera eventuella långtidseffekter.

4.1 Slutsatser

Hästarna i den här studien vilade signifikant mindre då de hade tillgång till en aktivitetsboll. Hypotesen att födosöksbeteendet skulle öka samtidigt som krubbitningen skulle minska då hästar får tillgång till en Snak-a-Ball fylld med finhackade morötter kunde inte styrkas. Studien visade att morötter troligtvis inte är ett bra alternativ att fylla bollen med då det visade sig att morötter, när de gavs direkt i krubban, medförde en ökad krubbitningsfrekvens hos hästarna. Det är möjligt att en aktivitetsboll skulle kunna vara en del i en behandling av krubbitning då det av någon anledning inte går att ge hästen fri tillgång på grovfoder. Det krävs dock vidare studier för att klarlägga detta och det är då av stor vikt att det foder som bollen fylls med inte medför en ökad krubbitningsfrekvens hos hästen.
SUMMARY

Crib-biting in horses is an oral based stereotypy and is defined as when a horse seizes a fixed object with its incisor teeth and pulls back as it draws air into the oesophagus while emitting a characteristic grunt. Many horse owners attempt to prevent crib-biting by using a crib-collar. On the other hand crib-biting might fulfill a specific function and a crib-collar could affect the welfare of the horse.

An alternative method to prevent crib-biting could be to enrich the horse’s environment by introducing a foraging device. In this study a foraging device known as an activity ball (Snak-a-Ball) was used. An activity ball is a ball filled with forage and when the horse manoeuvres it some forage falls out through a hole in the ball. This study investigated if the activity ball had any effect on the frequency of crib-biting in crib-biting horses. The hypothesis was that the foraging behaviour would increase and the crib-biting would decrease when horses had access to a Snak-a-Ball filled with small pieces of carrots.

Eight crib-biting horses participated in the study and they were individually exposed to three different treatments; Baseline, Enrichment and Carrots. Each treatment lasted for two consecutive days and the behaviour of each horse was observed during two hours, one hour before feeding time and one hour after feeding time each day. During Baseline normal management practices were followed and during Enrichment the horse had access to a Snak-a-Ball filled with 1 kg of chopped carrots. During the Carrot treatment the horse received 1 kg of carrots put directly into the crib when the observation started.

The behaviour of the horses was registered every minute during the observations using a periodic occurrence measurement. During observation the frequency of crib-biting was registered using a continuous recording. Data were analysed using a Two Way Repeated Measures ANOVA and when there was a significant difference in the material a post-hoc test was used (Holm-Sidak method). A Wilcoxon Signed Rank Test was used to compare the Snak-a-Ball use.

During Enrichment the horses rested significantly less (p<0,05) compared to Baseline and Carrot treatments. When the horses were given carrots directly into the crib the frequency of crib-biting was significantly higher (p<0,05) compared with the two other treatments. The activity ball did not have any significant decreasing effect on crib-biting in horses. An explanation could be that the ball was filled with carrots which increased the crib-biting. There was not a significant difference in foraging time between the different treatments.

It is generally accepted that the most successful means of reducing the frequency of crib-biting is to give the horse more time in paddocks with free access to forage and to satisfy their need of social contact with other horses. It is however still possible that an activity ball could be a part of a crib-biting treatment program when it is not possible to give the horse free access to high fiber forage. It will take further studies to investigate this and then it will be important that the ball is filled with forage that does not increase crib-biting.

In conclusion this study showed that crib-biting horses rested significantly less when they had access to an activity ball. This study did not show any support to the hypothesis that foraging behaviour would increase and the crib-biting would decrease when horses had access to a Snak-a-Ball filled with small pieces of carrots.
TACK

Jag vill börja med att tacka de hästägare som har låtit sina hästar medverka i studien. Det har varit mycket värdefullt och utan er hade jag inte kunnat genomföra studien.

Ett stort tack till mina handledare Anna Lundberg och Maria Andersson som har visat ett stort engagemang och gett bra handledning.

Jag vill även tacka Anna för all den tid som du la ned varje gång jag kom till Skara och för all hjälp på vägen.

Slutligen vill jag tacka min examinator Lena Lidfors för bra synpunkter och kommentarer.
REFERENSER

Personlig kommunikation: Margareta Rundgren, Universitetslektor, Institutionen för husdjurens utfodring och vård, SLU. 20051122.

Personlig kommunikation: Natalie Waran, Professor of Animal Welfare, School of Natural Sciences, Unitec New Zealand. 20060119.