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Cultivated drained peat soils have a complex relationship towards CO2 emissions and 

the contribution to global warming. Many people are unaware that the CO2 emissions 

from peat soils, also known as organic soils, vary a lot within, and between, the fields. 

Permanent grassland may not always be the best mitigating action for lowering CO2 

emissions. 

My research was done to provide a wider view on cultivated peat soils and the 

effects of long-term mitigating treatment towards slowing down the rate of peat de-

composition and thus lowering CO2 emissions. The decisions regarding future use of 

cultivated peat soils should not be limited by incorrect information on the impact on 

climate change. The study was done by reviewing the literature together with lab-

experiments that measured the CO2 emissions from samples that had different treat-

ments. The samples’ physical and chemical properties were examined as well. 

CO2 emissions were measured from undisturbed soil cores representing different 

treatments. The soil cores were collected in big lysimeters and small steel cylinders. 

The variables were differences in water content (lysimeter experiment) and altering 

water retentions (steel cylinders).  

I had too few samples and data for any statistically significant findings. But I ob-

served differences between the samples and the treatments. The observations were 

brought to discussion and compared with findings in the literature to provide possible 

explanations as to how the CO2 emission could be affected. 

The water content is one of the main driving factors regulating the peat decompo-

sition. Water content has a complex relationship to the physical and chemical prop-

erties of the peat soils and the effect on CO2 emissions. It affects temperature re-

sponse towards microbial degradation as well as structure and abundance of micro-

bial communities that are responsible for the degradation (CO2 emissions) of peat 

soil. This creates varying rates of peat decomposition and differences in CO2 emis-

sions. 

I hope that this research provides more general information and wider views on the 

rate of peat decomposition and CO2 emissions from cultivated peat soils. 

 

Keywords: Peat soil, organic soil, decomposition, CO2 emission, water retention  

Abstract 



 
 

Odlade dränerade torvjordar har ett komplext förhållande till koldioxidutsläpp dess 

bidrag till den globala uppvärmningen. Många människor är inte medvetna om att 

koldioxidutsläppen från torvjordar, även kallade organogena jordar, varierar mycket 

inom och mellan fälten. Permanent betesmark behöver inte alltid vara den bästa stra-

tegin för att sänka koldioxidutsläppen. 

Min forskning gjordes för att ge en bredare bild av odlade torvjordar och effekterna 

av behandlingar för att långsiktigt minska nedbrytningen av torv och därmed minska 

koldioxidutsläppen. Beslut om framtida användning av odlade torvjordar bör inte be-

gränsas av felaktig information om klimatpåverkan. Studien gjordes som en kombi-

nerad litteraturstudie och laboratoriestudie där mätningar av koldioxidutsläpp gjordes 

från prover som hade olika behandlingar. Provernas fysikaliska och kemiska egen-

skaper undersöktes också. 

Koldioxid mättes från ostörda jordprov som representerar olika behandlingar. 

Jordproven togs ut i lysimetrar och i stålcylindrar. Variablerna var skillnader i vat-

tenhalt (lysimetrarna) och förändring av vattenavförande tryck (stålcylindrarna). 

Jag hade för få upprepningar för att erhålla statistiskt signifikanta resultat. Men jag 

kunde skönja vissa tendenser mellan prover och behandlingar. Observationerna dis-

kuterades i relation till litteraturens resultat för att ge möjliga förklaringar om hur 

koldioxidemissionerna skulle kunna påverkas. 

Vattenhalten är en av de viktigaste parametrarna som styr nedbrytningen av torv, 

och har ett komplicerat förhållande till torvjordens fysikaliska och kemiska egen-

skaper och effekterna på koldioxidemissioner. Vattenhalten påverkar med andra ord 

temperatur och respons för mikrobernas nedbrytningar och struktur samt de mikro-

biella samhällen som är ansvariga för nedbrytningen från torvjord. Detta skapar va-

rierande hastigheter för nedbrytning av torv och skillnader i koldioxidemissioner. 

Min förhoppning är att denna forskning ger ökad information och bredare syn på 

koldioxidemissionerna från odlade torvjordar. 

 

Keywords: Torv, organogen jord, nedbrytning, CO2 avgång, vattenretention 

  

Sammanfattning 



Populärvetenskaplig sammanfattning 

Lantbrukare har sedan länge nyttjat dränerade torvmarker för odling. Det sen-

aste decenniet har forskare och media diskuterat ingående de klimatförändra-

ringarna som den mänskliga påverkan har på det globala klimatet och den 

rollen som dessa uppodlade torvmarker har i sammanhanget. 

Torvjordar täcker 400 miljoner hektar av jordens yta (varav ca 270 000 

ha utgörs av odlade torvjordar i Sverige) och innehåller väldiga mängder 

lagrat organiskt material. Ungefär 80 % av jordens torvmarker hittar man 

på det norra halvklotet. Detta organiska material har under tusentals år fått 

byggas upp ostört under syrefria miljöer med väldigt liten nedbrytning, 

och detta material är växternas in-bundna koldioxid. Med hjälp av denna 

anaeroba process har torvmarker ka-tegoriserats som kolsänkor i och med 

att de lagrar in mer kol än vad de avger. På det norra halvklotets torvmarker 

ligger det lagrat en tredjedel av markens kolinlagringar och i och med den 

ökade temperaturen och ett vidare utnyttjande och uppodlande av 

torvmarkerna så börjar dessa torvmarker att ses som en kolkälla som istället 

avger mer kol än vad den binder in. 

Under våren 2017 gjordes mätningar av koldioxidemissioner ifrån 

prover som hade under 70-talet genomgått olika behandlingar så som; 

djupplöjning, omgrävning av jordprofilen samt kalkning. Inga signifikanta 

resultat kunde erhållas ifrån experimentet men tendenser kunde skönjas att 

kalkning kombi-nerat med total omgrävning av jordprofilen kunde 

långsiktigt minska koldioxidemissionerna från den uppodlade torvjorden.  

Denna rapport gjordes för att ge en bredare bild av odlade torvjordar och for 

att ta reda på om olika behandlingar kunde göras för att långsiktigt 

minska nedbrytningen av torv och därmed minska koldioxidutsläppen. Det 

finns ett behov för att komma fram till gemensams hanteringsvägar för att 

minska koldioxidavgången för att på ett enkelt sätt kunna applicera 

minskande åtgärder över större områden. Detta är problematiskt dock då 

torvens organiska sam-mansättning och egenskaper kan variera stort inom 

fältet. 
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Worldwide, peatlands cover over 400 million hectares which is about 3% of the 

earth land area (Limpens et al. 2008). Peatlands consist of thousands of years of 

deposited organic material and are defined as having at least a 30 cm thick organic 

layer. Peatlands are big carbon storages and if left undisturbed they act as huge car-

bon sinks (Turunen 2002). 80% of the world’s peatlands are located in the northern 

hemisphere (Limpens et al. 2008) and roughly one-third of the total pool of soil 

carbon is stored there (Turunen 2002). With the climate change and the change in 

temperature, the utilization of peatlands is viewed as a source of CO2 (Charman et 

al. 2013) and research on long-term effects to stabilize carbon flux and reduce CO2 

emissions is valuable. 

In Sweden the use of peatlands has a long history. Before the 18th-century they 

were considered undesirable and no good for using as either fuel resources or crop-

/graze- land which historically have been the main use in Sweden (Runefelt 20081). 

Educated people at the time knew that the peatlands could be perfectly fine to grow 

crops on when properly drained and maintained. In the 19th-century Sweden’s econ-

omy and population started to grow rapidly and the need for agricultural land got 

bigger. Subsidies were given for extensive drainage projects and claiming of new 

agricultural land and the sight was set on the vast peatlands covering a large part of 

Sweden (Runefelt 20081).  

In 1886 the Swedish Peat Society (Svenska Mosskulturföreningen) was founded 

that performed and constructed trials, advisory services, research and instructing on 

how to best transform Sweden’s peatlands into rich agricultural land. The use of 

peatlands for agricultural purposes was at its maximum areal amount in the 1940’s 

when around 700 000 hectares had been drained and put to use. After that it has 

been constantly decreasing since no new drainage projects have been undertaken on 

most of the land (Runefelt 20082). 

The total area of peatlands in Sweden today is around 6.3 million hectares and 

roughly 2.1 million hectares is used for agricultural purposes, forestry or peat cut-

ting (Runefelt 20083). Peat belongs to the organic soil type which includes the gyttja 

1 Introduction 
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soil (partially decayed peat), and marl. The cultivated organic soils make up roughly 

270 000 hectares. Common uses of the organic soils today are mainly managed grass 

land, pastures and forestry, but some of the soils are well suitable for crop growth 

such as oats, barley, rye, potatoes or carrots (Berglund 2008). 

Modern views on nutrient leeching and carbon fluxes put the peatlands in a ques-

tionable situation whether to be a long-term renewable resource that is worth main-

taining in modern times. New legislations with purpose to restore and protect peat-

lands/wetlands as wild life natural environment make it almost impossible to update 

or renew the drainage systems on these soils. Unfortunately the use of the ever de-

creasing agricultural purposes suffers. All effort and research data that can contrib-

ute to knowledge about peatlands and its varying properties is valuable when it 

comes to decide the future uses of this natural resource. 
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2.1 The formation of peat 

The formation of peat in the landscape is ongoing and has been a century or millen-

nia long process. Peat normally forms from overgrown waters and followed by par-

tial or low degradation of organic material through anaerobic conditions. The anaer-

obic conditions are usually due to waterlogging. Low temperatures can also be a 

cause of partial or low degradation. Gyttja is an organic material that has partially 

been decayed by water living organisms through anaerobic conditions and has 

formed as sediment in cold temperature lakes (Berglund 2008). The alternating and 

varying original organic material has contributed to the vast dynamics that the peat 

soil inherited. The original material can either consist of nutrient rich fen peat or 

nutrient poor bog (Berglund 2008). 

2.2 Water content in peat soil 

The peat soil and its characteristics are categorized based on the originating material 

and can have great physical and chemical variations, but all peat soils often share 

characteristics of high porosity and low dry bulk density. The high porosity gives 

high water holding capacity in the soil profile, but the topsoil of the peat soils usually 

have problems of low permeability. The low permeability expresses itself during 

conditions of low water content, typically within the range of 20-30% (Berglund G. 

1982). Low water content can occur numerous times during the growing season in 

the topsoil, especially during the first part. Cultivated peat soils can get a special 

structure that is characterized by hydrophobicity from years of intensive cultivation. 

This typical structure in combination with drought has a significantly negative effect 

to the permeability (Berglund G. 1982). 

2 Background & literature review 
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The peat soils are relative young soils with high organic content and they all 

share common problems: subsidence and loss of carbon through CO2 emissions. 

These two problems are the basis of the greenhouse gas emissions that the drained 

cultivated peat soils bring with them. Four factors are major in lowering the soil 

level (subsidence) after draining the soil; initial setting of soil, consolidation, shrink-

ing and carbon efflux (Berglund 2008). 

The initial setting above the groundwater table is caused by collapsing of the 

larger pores when the mechanical support of the water disappears. Consolidation of 

the soil below the groundwater table occurs when the hydrostatic pressure drops but 

the weight of the soil, with still some water left in the pores, is almost the same. 

Shrinking affect the soil above the groundwater table in the long-term and is caused 

by drought (Berglund 2008). 

Carbon efflux (loss of carbon through CO2 emissions) is the degradation and 

oxidation of peat through respiration by the microbial communities that make up the 

degraders in the soil. Loss of carbon occurs when the groundwater table drops and 

the soil gets aerated (Berglund 1989). This allows for increase in gaseous exchange 

in the soil and an increase in oxygen level. There is a high demand for oxygen by 

heterotrophic decomposing microorganisms. When they come in contact with the 

oxygen in the soil their activity increase and decomposing processes like minerali-

zation and oxidation of Soil Organic Matter (SOM) increase. Carbon is emitted as 

CO2 from respiration by the heterotrophic microorganism. Figure 1 displays an il-

lustrated timeline of the creation and shrinkage of drained peatland. Degradation 

processes are often significant in the relative young organic soils because of the high 

SOM availability for the microbial communities (Berglund 1996). 

There is a minimal and maximum level of water content availability for optimum 

decomposition and oxidization of the SOM in peat. This is varying greatly from 

different peat soils due to their complexity of content from different originating ma-

terial and alternating soil profiles in the landscape. Too much water results in oxy-

gen becoming a limiting factor for soil organisms. Too little water and the result is 

that mobility of enzymes and substrates becomes limited and never reach soil or-

ganisms (German & Allison 2015; Norberg et al. 2016).  

In a wider perspective an altering water level cause greater aeration in the soil 

profile and stimulates denitrification bacteria. This raises N2O emissions to the at-

mosphere. N2O is a more effective greenhouse gas than CO2 (Jordan 2016). 
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2.3 CO2 flux 

With increased microbial degradation and respiration, oxidation turns the peat soil 

from net accumulation of carbon to respiration and increased emissions of CO2. The 

soil goes from acting as a carbon sink, to acting as a carbon source. This makes the 

peat soils contribute to the greenhouse effect. The amount of carbon stored in north-

ern boreal and subarctic peatlands is 220-460 x1015 g carbon (Turunen 2002). 

Cultivated peatlands dominate the CO2 emissions from agricultural land in Swe-

den and they can subside 2-20 mm per year due to oxidization and respiration caused 

by microbial degraders (Berglund 2011). Measured CO2 emissions from drained 

cultivated peat soils have different origin. It can be SOM-derived CO2 or CO2 from 

Figure 1. “Schematic illustration of progressive subsidence of the peat surface in drained peatland, 

due to peat decomposition resulting in CO2 emission as well as compaction.” From: Hooijer et al. 

2010. 
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plant and root respiration. There is a need to distinguish between these two on cul-

tivated peat soils in order to grasp the problem of (carbon) CO2 emissions that con-

tribute to the greenhouse effect. Growing vegetation contributes to short-term car-

bon efflux by root and rhizomicrobial respiration. Short-term carbon is stored by 

plants in the beginning of the growing season and has a high turnover rate (Figure 

2) while possible plant debris and organic matter that are later left in the soil have a 

high residence time and add to the long-term storage of SOM (Kuzyakov 2006). 

This short-term storage compared to long-term storage of carbon is what distin-

guishes the two sources and their future role in the ecosystem as either a source or 

a sink (Kuzyakov 2006; Berglund et al. 2011). CO2 emissions is commonly meas-

ured as the total of the two general sources which are plant-derived CO2 and SOM-

derived CO2 (Figure 2). Excluded in Figure 2 is the abiotic derived CO2 flux from 

liming of acidic peat soils (Biasi et al. 2008). 

2.4 Liming & tillage 

Liming is a collective term that consists of spreading usually one of four different 

calcium (Ca) chemical compositions: CaO, Ca(OH)2, CaCO3, CaMg(CO3)2. Liming 

has a positive soil structural effect on clay soils and neutralizing effect on soil acid-

ity, raising the pH towards an optimum for plant growth (Berglund K. 2015). One 

product which historically was used on peatsoils was tetracalcium phosphate 

(CaO)4P2O5), commonly called Thomas-phosphate or Thomas slag. It had the pri-

mary purpose of fertilization (phosphorous) but also had liming effects (pH regulat-

ing and structural), although not enough to cover the need in most soils. It has long 

Figure 2. Illustrated in the figure is the sources of CO2 emission that can be distinguished from the 

total soil respiration. Turnover rates and mean residence time of carbon in soil is put in perspective 

at the bottom. Highlighted in red are the two general CO2 sources. Modified and taken from: Figure 

1 in Kuzyakov (2006). 
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been known that liming is necessary on peatsoils due to its acidic character (Persson 

2008). 

There are abiotic aspects contributing to increased CO2 emissions from liming 

acidic soils. The first is dissolving carbonates (CaCO3) and gaseous emissions from 

adding the liming material itself (Biasi et al. 2008). The second is the increase in 

microbial activity and degradation due to raised pH, neutralizing acidity in soil, and 

improving soil environment (Fuentes et al. 2006; Kemmit et al. 2006). In addition, 

there is dissolvable carbonates that are already present in the soil (soils derived from 

limestone) and its carbon pool (Kuzyakov 2006). There is a risk to overestimate 

heterotrophic microbial activity in limed soils when not separating abiotic and biotic 

CO2 release (Biasi et al. 2008). 

 

Deep cultivation in combination with liming can improve the peat soil stratigraphy 

and also improve the plants root zone (Berglund 1996). Peat soils that are charac-

terized with a shallow cultivated peat layer as topsoil, usually have an acidic gyttja 

soil as subsoil. A pH-value below 5.0 has a negative effect and pH below 4.0 is a 

definitive restriction of root growth. Cultivating and liming to increase pH towards 

5.5 throughout the soils stratigraphy provides a better optimum for plant growth on 

peat soils (Berglund 1996). Cultivating deeper than the upper peat layer consisting 

of typically 30 cm can also improve the physical aspects of the topsoil from a plant 

point of view. These improvements could be a more even distribution of pores in 

the soil and an improved hydraulic conductivity (Berglund 1996; Walczak et al. 

2002; Elder et al. 20082). 

Deep cultivation and mixing the soils stratigraphy can have an effect on conserv-

ing the peat layer by placing it lower down where biological activity and decompo-

sition processes are less (Richardson et al. 1991). In the long-term it can mean that 

CO2 emission from SOM is reduced. 
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2.5 The effect of temperature on Rate of Peat 

Decomposition 

Temperature is one of the major environmental factors that influences the Rate of 

Peat Decomposition (RPD) and thereby the rate of CO2 emissions. Mäkiranta et al. 

(2009), Kluge et al. (2008) and Lefleur et al. (2005) have found a strong correlation 

between temperature, decomposition rate and CO2 emissions in their studies. This 

is in accordance to other studies that have promoted temperature as a main driving 

factor for RPD (Jordan 2016; Nieveen 2005; Wessolek et al. 2002). In a study made 

by Kluge et al. (2008) they have results showing CO2 emissions at increased water 

retentions (pF-value) and at fixed temperatures ranging from 5-25°C. They found 

that there is a temperature threshold of >+10°C that significantly increase CO2 emis-

sions for both top- and subsoil at all water retentions. This provides evidence indi-

cating that temperature is a dominating environmental factor in these soil horizons 

(Figure 3). Wessolek et al. (2002) also found a threshold at low temperature (+5°C) 

showing similar results as Kluge et al. (2008) (Figure 4). 

 

 

Figure 3. CO2 emissions as a function of different water retentions and at different temperatures for 

the top soil and the subsoil. The series representing temperatures >+10°C show a great increase in 

CO2 emissions at all water retentions. From: Kluge et al. (2008). 
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Figure 4. CO2 emissions as a function of different water retentions and at different temperatures 

“Results are shown for two peat substrates with low (left side) and strong degradation (right side)”. 

The series representing temperatures >+5°C show an increase in CO2 emissions at water retentions 

>pF 1. From: Wessolek et al. (2002). 

2.6 The effects of water content and drainage depth on RPD 

Soil moisture content is another major environmental factor to influence the RPD and 

thereby the rate of CO2 emissions. Several authors agree on that the varying physical 

properties of the peat soils result in a complex correlation of decomposition rate and 

soil moisture content in the profile (Berglund et al. 2011; Mäkiranta et al. 2009; 

Nieveen 2005; Lefleur et al. 2005; Wessolek et al. 2002). Drainage depth and water 

table level along with the peat soils physical properties determine properties such as 

the water retention (pF curve, pF= The common (base 10) logarithm of the head (in 

centimetres of water) required to produce a suction equal to the capillary potential) 

and aeration in the peat soil profile (Witkowska-Walczak et al. 2002). Lowering the 

water table will lower the amount of water filled pores and increase aeration. Ber-

glund et al. (2011) reported a sufficient aerated porosity of 1-8% to achieve high 

RPD for microbial communities. Mäkiranta et al. (2009) found a Gaussian relation-

ship between CO2 emissions and water retention with a peak in emissions at around 

pF 1.8 or 63 cm water column. Other studies confirm this peak in emissions with 

different pF values (Table 1). 
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Table 1. Author(s) and their calculated/presented result of optimal water potentials for RPD. 

Author(s): Peak of RPD at pF 

cm water 

column 

      

Berglund et al. (2011) 1.6 40 

Mäkiranta et al. (2009) 1.79 61 

Witkowska-Walczak et al. (2002) 1.81 65 

Wessolek et al. (2002) 1.8 63 

Mundel (1976) 2 110 

    

Average 1.8 63 

 

Release functions of CO2 emission of peat topsoils substrates in various climates 

and environmental conditions were presented by Wessolek et al. (2002) and Kluge 

et al. (2008), both including the important variables of soil temperature and soil 

water pressure head (pF value). 

 
1CO2= 2.243 + 0.648x - 0.241y - 0.52x2 - 0.088xy + 0.011y2, (r2=0.87)  

(Wessolek et al. 2002) 

 
2CO2= 1.314 + 0.853x - 0.273y - 0.451x2 + 0.132xy + 0.011y2, (r2=0.96)  

(Kluge et al. 2008) 
 

1CO2 [mg d-1 100-1 m-3]. x = pF. y = temp. [°C]. 

2CO2 [g d-1 m-2]. x = pF. y = temp. [°C]. 

 

The water retention also influences the top soil water content and is important for 

the thermal conductivity which connects the two most influent factors of RPD: tem-

perature and water. So with an increase in water in the soil profile the thermal con-

ductivity increases and RPD response on shifting temperature goes up (Mäkiranta et 

al. 2009; Kluge et al. 2008). 
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2.7 The effect of organic material quality and 

microbial communities on RPD and CO2 

emissions 

Temperature and water content are dominating environmental factors since they af-

fect microbial communities and enzymes in the soil (Donovan et al. 2015; Mäkiranta 

et al. 2009; Kluge et al. 2008). Microbial communities are important and responsible 

for degradation and mineralization of SOM and emissions of CO2. Mäkiranta et al. 

(2009) highlight and define at least two factors that affect RPD: the first being the 

amount and quality of soil organic matter substrate available for the microbial com-

munities (degraders), and second is the microbial community structure and number 

of decomposers present in the soil and in contact with the substrate. Wessolek et al. 

(2002) found higher emissions of CO2 in peat undergoing stronger degradation and 

mineralization (Figure 4). The more rapid degradation of SOM, the more it indicated 

that established and efficient microbial communities were present, and that favour-

able environmental conditions have a great effect on RPD. 

Kluge et al. (2008) linked their findings of varying CO2 emissions with temper-

ature and soil water content to material quality and unfavourable life conditions. 

The SOM in the topsoil had a greater amount of easily available organic carbon to 

the microbial degraders that gave an increase in mineralization and RPD. The subsoil 

had the occurrence of muddy horizons with lower substrate quality and unfavoura-

ble life conditions for degraders. This caused RPD and mineralization to decrease. 

Mäkiranta et al. (2009) found that long-term average water levels had a bigger 

effect on RPD than instantaneous changes of water levels. This corresponds to 

Mäkirantas 2nd defining factor mentioned above, that long-term average water levels 

affect the structure and presence of microbial communities and different decompos-

ers. Direct water fluctuations do have an effect on microbial communities, although 

of smaller significance than long-term. Direct water fluctuations can transport bac-

teria or other more mobile decomposers away from substrate or vice versa. Water 

fluctuations can also have an effect on temperature and other environmental factors 

such as C/N-ratios. This can lead to inhibiting decomposers and slowing down RPD, 

causing changes in the microbial communities (Mäkiranta et al. 2009; Kluge et al. 

2008; Bishal et al. 1995) 

A study made by Donovan et al. (2015) researched what effect the interaction 

between reduction in soil water content and different substrate concentrations had 

on decomposition of carbon substrates and the release of CO2 emissions. They tested 

two hypotheses: (1) “Rates of decomposition decline at lower substrate concentra-

tions”, and (2) “reductions in soil moisture disproportionately constrain the degra-

dation of low-concentration substrates”. They found that the rate of decomposition 
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did not decrease with declining substrate concentration, and discarded their first hy-

pothesis. For their second hypothesis, the results supported that reducing soil water 

content led to lower decomposition rates for low substrate concentration and that 

the physical protection and specific soil microenvironment gave the SOM more sta-

bility than chemical recalcitrance of SOM (Donovan et al. 2015). 

In the same study, they discussed that low to moderate substrate concentrations 

increased microbial biomass and the expression of certain enzymes for easily avail-

able organic carbon. Their findings indicated that microbial communities handle 

less diffusive conditions by compensating with an increased enzyme activity and 

expansion of mass. However this only happened during favourable temperature con-

ditions of >+5-10°C. They conclude that decomposition rate is more dependent on 

substrate concentration during dry conditions and that somewhat less favourable 

conditions can lead to an increased enzyme pool and more efficient microbial com-

munities. 

2.8 The effects of soil pH and N-fertilization on RPD 

In an experiment carried out in the south of Sweden the correlation between differ-

ent cropping systems and CO2 emissions from peat soils and peaty marl soils was 

tested (Norberg et al. 2016). It was an attempt to establish recommendations on mit-

igating emissions. The authors found a slightly negative correlation between pH and 

emissions of CO2 for peaty marl soils. This indicates that higher pH values would 

lower CO2 emissions in cases where the topsoil is high in organic material originat-

ing from peat, and the rest of the profile is marl (carbon-rich, silty clay similar to 

gyttja, from precipitation of calcite in swamps or lakes). To put it in a wider green-

house gas perspective a higher pH can decrease N2O emission as well (Van den 

Heuvel 2011). 

 Additionally, another study made by Murayama and Bakar (1996) where they 

measured CO2 emissions on cultivated peatlands in Malaysia, they found a positive 

correlation between pH and CO2 emissions. This indicates that the higher the pH 

values the more CO2 emissions. The peat soil with higher pH also contained higher 

percentage of ash and less organic substrate (Murayama & Bakar 1996). 
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In a Norwegian study about the acidification + N-fertilization effect on decom-

position rate in Norwegian pine forest soil (typical Udorthent soil). They found a 

significant lower decomposition rate and release of CO2 emissions in acidic soil (pH 

close to 3.0) (Bishal et al. 1995). A comparison between pH 4.0 and 5.5 gave no 

significant difference, but both of them gave increased release of CO2 and increased 

decomposition rates in relation to pH 3.0. At pH 3.0 neither high (90 kg N ha-1) nor 

low (0 kg N ha-1) addition of N-fertilizer gave an increase in decomposition and 

release of CO2. An explanation why this low pH reduced emissions was provided 

with the help of their observation results. In the acidified plots there were much 

smaller communities of bacteria and fungi decomposers. This was because the lower 

pH gave an increased solubility and release of potentially toxic cations such as Al- 

and Mn-ions. This created an unfavourable life environment for the degraders and 

reduced CO2 emissions (Bishal et al. 1995). 

The highest decomposition rate was found for the medium N-fertilization treat-

ment (30kg N ha-1) in soil with a pH-value of 4.0 and they observed reduced CO2 

concentration in soil with the highest N-treatments (90kg N ha-1). It is speculated 

that the cause is a reduction and inhibition of microbial communities’ respiration, 

possibly due to high C/N-ratios (Bishal et al. 1995). 

2.9 The effects of different crop growth on RPD 

Long-term effect of grassland management on peat soil conservation and subsidence 

was examined by Kluge et al. (2008). Their results indicated that extensive grass-

land was less intense on RPD and thereby showed less CO2 emissions compared to 

intense agricultural use. However this does not mean that CO2 emissions is generally 

lower from extensive grassland management since it is, according to Kluge et al. 

(2008), determined by the water table depth, surface aeration and temperature on 

each individual site. In a study by Norberg et al. (2016) they measured and compared 

CO2 emissions from different cropping systems on peat soils from both the same 

sites and different sites. Managed grassland displayed higher emissions than cereals 

and row crops. The authors emphasise the complexity of comparing possible miti-

gating actions on peaty soils that do not share the exact location or physical proper-

ties (Norberg et al. 2016). With grassland management follows increased root res-

piration and increased plant-derived CO2 emissions that need to be taken into ac-

count. In their study the plant-derived CO2 was estimated to 27% of the total average 

compared to bare soil and they reported a possible range of up to 63% plant-derived 

CO2 (Norberg et al. 2016). 
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2.10 The effects of tillage, soil physical properties and sand 

mixtures on RPD 

Elder et al. 20082 did studies on short-term impact of conversion from intensively 

tilled organic soil to no-till management. The physical properties of the peat soils 

were compared and the CO2 emissions (RPD) were evaluated. No-till cultivation and 

leaving the soil bare, increased bulk density and decreased total porosity. Bulk den-

sity when ploughed remained unchanged, but the ratio between air-filled porosity 

and total porosity in the topsoil increased. The soil water content also increased. 

This means that more air and water became present in the topsoil and that the pore 

size distribution evened out (Elder et al. 20081). The annual mean temperatures were 

significantly higher at 5 cm depth for bare soil compared to ploughed and no-till. 

None of the treatments showed difference in RPD and CO2 emissions (Elder et al. 

20081). 

Peat soil with a higher SOM has a lower hydraulic conductivity than gyttja soils 

and mineral soils (Berglund K. 1982). Ploughing deeper than the upper peat layer 

and mixing possible gyttja soil or other mineral containing soil material from un-

derneath improves the physical properties for growth as well as improves the envi-

ronment for decomposing microorganisms (Walczak et al. 2002; Elder et al. 

20081,2). 

As seen in Figure 5 a typical example of the hydraulic conductivity of a peatsoil 

is very low at certain water contents (Berglund G. 1982). This is due to the distribu-

tion of macro-, meso- and micropores in organic soils. The lack of mesopores as an 

intermediate carrier of the water between micro- and macropores, creates a phenom-

enon of low water mobility (Walczak et al. 2002). The micropores strong capillary 

force and the macropores weak capillary force do not allow the water to be trans-

ported through the profile in any axis except through larger cracks and bigger pores 

(Berglund K. 1982). 

Richardson et al. (1991) performed experiments that involved mixing the peat 

soil profile and distributing the higher SOM and the mineral material throughout the 

whole profile. The long-term result of this was a conservative effect and lowering 

RPD by moving the organic matter in the profile to a less environmentally favourable 

place for microbial communities and heterotrophic degraders. 
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Results and conclusions found in a study by Walczak et al. (2002) show that the 

physical properties of the peat soils (Table 2) are very much dependent on their 

relation between organic and mineral parts. In terms of increasing total porosity and 

lowering dry bulk density, a significant change occurs when peat and mineral ma-

terial is mixed up to a relation consisting of 23% peat (Walczak et al. 2002).  

In a later study by Witkowska-Walczak et al. (2002) concerning water-air prop-

erties of peat and sand mixtures a significant reduction in water retention capacity 

at all pF values occurred when >60% sand was mixed in. Mixtures of peat and min-

eral material at these high ratios significantly increased aeration throughout the 

whole profile and exposed organic material to heterotrophic microbial degraders 

(Witkowska-Walczak et al. 2002). 

 
Table 2. Physical properties of peat, sand and their mixtures. With good examples of the pore size 

distribution in varying peat and mineral (sand) mixtures. From: Walczak et al. 2002. 

 

Figure 5. Hydraulic conductivity of a eutrophic fen peat soil in Sweden. The diagram shows the time 

it takes for the soil to absorb 1 cm3 of water at different water contents. Note that the low hydraulic 

conductivity starts off when the soil has dried to a water content of about 30% of total volume. 

From:  (Berglund G. 1982). 
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3.1 Field site and trial design 

The soil samples were retrieved from a field near Knutby-Ösby, Sweden, (lat 

59.91°, long 18.24°) on the 28th of October 2016. The site was an old trial estab-

lished in 1975 intended for testing structural improvements and irrigation and their 

effects on crop yield (Berglund et al. 1978). The site was located and marked out on 

site using GPS and georeferenced old trial maps on historical orthophotos. The peat 

layer had a complex structure and high SOM with 20-30 cm of fen peat on top, 

followed by gyttja soil and gyttja clay with low pH. At a depth, varying across the 

field, of about 20-35 cm there was a layer of paper gyttja impenetrable to water and 

root growth. At 75 cm there was a thin layer of sand before an unknown bulky layer 

dominated by soap clay and this layer was unaffected by cultivation and plant 

growth (Berglund et al. 1978). 

  

3 Materials and methods 
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The loss on ignition in percent of total dry weight ranged nonlinear from 3-88% 

throughout the profile (Table 3) on Ösby trial site at the time of the trial start. At 

depth of 20-30 cm the layer of paper gyttja appears as a peak in SOM. 

 

 

 

 

 

 

 

 

 

 

 

The pH value in the soil profile on the trial site in 1975 ranged from 3.5 in the gyttja 

layer to 6.5 in the topsoils and in at 1 m (Table 4. (Berglund et al. 1978)). The 

measurements was taken before the plot treatments. Below 30-40 cm in the profile 

there is a layer of acidic gyttja soil. At 70-80 cm there is a thin layer of sand and at 

80 cm and further downward you find the soap-clay that is unaffected by cultivation. 

The relative high pH in the topsoil (between 0-20 cm) seen in Table 4 could be 

explained by the liming effect that the Thomas-phosphate had (as explained in the 

background section 2.4) on the cultivated soil and previous crop growth on the site 

(Berglund 1978). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Depth (cm) Loss on ignition (weight %) 

  

0-10 72.1 

10-20 70.9 

20-30 88.1 

30-40 30.0 

40-50 38.2 

50-60 15.1 

60-70 14.1 

70-80 3.1 

80-90 3.8 

90-100 4.1 

Depth (cm) pH 

  

  0-10 6.4 

10-20 6.2 

20-30 5.8 

30-40 4.2 

40-50 3.5 

50-60 3.5 

60-70 3.9 

70-80 4.5 

80-90 6.1 

90-100 6.5 

Table 3. Depth in cm and loss on ignition (% of total dry weight) throughout the soil profile on the 

Ösby trial site at the start of the trial in the 70’s. From: Berglund et al. 1978. 

Table 4. Depth and pH in untreated soil profile on trial site at Ösby at the time of trial start. From: 

Berglund et al. 1978. 
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A systemic, non-randomized experimental design was used in this trial (Figure 6), 

in which five main treatments and their combinations could be tested. The treat-

ments for the trial plots were; 

 

A. Liming. Lime was first of all added to the surface at a rate of 20 ton 

unslaked lime (CaO) per hectare. 

 

B. Deep-cultivation with an excavator. Deep-cultivation took place by ex-

cavating with a digger to 100 cm and thoroughly mixing up the topsoil 

with the subsoil that is characterized by low pH. By using an excavator 

a more intense mixing are accomplished and the results appears quicker. 

The prospect of deep-cultivation is to improve the rooting depth, neu-

tralize acid subsoil and improving ground soil proneness to frost (Ber-

glund et al. 1978). 

 

C. P-fertilizing. Fertilizing was done by adding Thomas-phosphate at a rate 

of 1 ton per hectare. This was done in order to see what effect a basic 

fertilization of phosphorus had in combination with the other imple-

ments. 

 

D. Irrigation. Irrigation is not taken consideration in this study but was done 

once in late June 1976. After that there was sufficient rainfall so no fur-

ther irrigation was needed (Berglund et al. 1978). 

 

E. Deep-ploughing. Deep- ploughing was done to the whole field in the 

autumn of 1975 and not part of the original trial but represented in this 

study as treatment (E) (Figure 6). The deep-ploughing was to a depth of 

50-60 cm. 

 

O. No treatment. 
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3.2 Experimental setup 

The experiments were based on separate sets of undisturbed soil cores collected 

from a depth of 10 cm, and loose soil collected in plastic bags. The soil was sampled 

just below the grass cover (roughly 10 cm) excluding the majority of fine roots and 

soil held on by friction of the fine roots. There were 15 plots and five different treat-

ments represented by three repetitions (n=3) for each treatment. 

One lysimeter (20 cm height, ⌀19 cm) with undisturbed soil core was sampled 

from each plot and brought into the lab to test CO2 emissions with varying water 

content. Water was constantly added from beneath until a few days prior to each 

measurement allowing the water level to stabilize in the sample. The soil core in the 

lysimeters was scaled to be the size of the cylinders but with a top soil core edge 15 

mm below the cylinders edge to make room for added water pooling on top. This 

was also to allow the soil core to expand when water was added. Once a week the 

lysimeters were measured for weight, CO2 emission and water content. 

 

Figure 6. The systemic, non-randomized experimental design of the trial put out in 1975. The red 

dots indicate the plots were samples was collected for the experiment in this paper. 
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Total of three small steel cylinders (10 cm height, ⌀7.2 cm) with undisturbed soil 

cores were sampled from each plot. The soil cores were placed in plastic crates and 

saturated to 100% water content using water that was boiled and cooled to room 

temperature. 

The lysimeters were kept in storage with low temperatures ranging from -5°C to 

+10°C during approximately three months. The steel cylinders and loose soil sam-

ples were kept refrigerated in 8°C for the same time period as the lysimeters. The 

climate in lab was constant 20°C and the samples were measures shortly (few days) 

after they had been brought out from storage. 

  

Figure 7. A lysimeter being sampled at the Ösby trial site. The metal hood 

was used together with a sledge to press the lysimeter down and collect an un-

disturbed soil core sample. (Photo: Hermansson 2017) 
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3.3 Water content, water retention and physical and 

chemical properties 

Water content in the lysimeters was measured with a SM300 moisture sensor (Delta-

T Devices Ltd., Cambridge, UK) that puts out a reading in millivolt that can be 

converted to water content in volumetric percent. Water content was also deter-

mined by weighing the samples at each measuring occasion and then finally drying 

the soil in 105°C for three days to get the dry weight of the soil in each sample. The 

exact volume of the lysimeters and steel cylinders and the dry weight of the soil was 

then used for calculating the volumetric water content for each measuring occasion. 

After measuring emissions at saturated conditions the steel cylinder with its soil 

core was placed on a sand bed and water was drained to simulate different drainage 

levels and water retentions, effectively creating different moisture levels in the soil 

core sample. The whole process of CO2 emissions measuring and weighing was 

repeated with the water retentions (pF); 1.4, 1.7, 1.9 and 2.0 representing drainage 

levels of 0 cm, 25 cm, 50 cm, 75 cm and 100 cm respectively. The pF value repre-

sents log (−ψ) where −ψ is the water pressure potential in cm water or hPa (where 

1 cm water = 1hPa) (Berglund et al. 2011). At the end, the drained samples were air 

dried in room temperature (constant 20°C) for two weeks and measured for CO2 

emission. 

3.4 Measuring CO2 emissions 

The CO2 emissions from the soil in the lysimeters were measured in a closed cham-

ber (Figure 8) that was place on top of the lysimeter a few seconds before the start 

of the measurement. The chamber had the same dimensions as the lysimeter itself. 

Air was circulated through the sensor and chamber during 5 minutes and CO2 con-

centration was logged every 5 seconds. CO2 emissions were measured with a Vaisala 

GMP 323 CO2-meter. All data measured before 30 seconds was discarded to allow 

the atmosphere in the closed hood to stabilize. 
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One small steel cylinder from each plot was selected and weighed after being 

fully saturated from below with de-oxygenized water. The cylinder with its soil core 

was then put into an air-tight PVC-container a few seconds before the start of the 

measurement. The sample was measured for 15 minutes and data collected every 15 

seconds. All data measured before 90 seconds was discarded to allow the atmos-

phere to stabilize in the closed PVC-container. 

  

Figure 8. CO2 emissions being measured in a closed hood on top of the lysimeters. The instrument is 

a Vaisala GMP 323 CO2 meter. (Photo: Hermansson 2017) 
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3.5 Statistics  

A linear regression line was added to the accumulated dataset and slope, intersect 

and R2-value was calculated. 

The measurements for the lysimeters were used when the dataset gave an R2 

above 0.9. The measurements for the steel cylinders were used when the dataset 

gave an R2 above 0.8. Soil CO2 emissions were calculated from the linear increase 

of CO2 concentration over time. The formula used for calculating CO2 emission for 

the lysimeters and soil cores in the steel cylinders is presented below: 

 

𝐹 = (
𝑝𝑝𝑚𝐶𝑂2

ℎ
) ×  𝜌 × 𝑛𝐶𝑂2

÷ 𝑅 ÷ 𝑇 × 𝑉 × 0,001 

 

𝐹 is efflux of CO2 in milligram per m2 per hour. (
𝑝𝑝𝑚𝐶𝑂2

ℎ
) is the result from the 

linear regression from emissions measurements in increasing rate of ppmCO2 h-1. 𝜌 

is the atmospheric pressure at sea level (101325 N/m2). 𝑛𝐶𝑂2
 is the molecular weight 

of CO2. 𝑅 is the gaseous constant (8.3145 J/mol·K). 𝑇 is temperature in Kelvin. 𝑉 

is the volume of the soil core and 0,001 is to present the expression in milligrams 

CO2. 

 

Outliers include; the whole O-B series in the lysimeter experiment and one data 

point from the steel cylinder experiment. There were water leakage problems with 

the O-B lysimeter cylinder from an early start, which resulted in unpredictable re-

sults and it differentiated greatly from the other ‘no-treatments’-samples. There was 

a mistreatment in the steel cylinder experiment when one sample was placed inside 

the airtight PVC-container. The sample was placed inside the container too early 

before the measurement began, raising the initial CO2 level inside and thereby re-

ducing the calculated slope and giving misleading results. 

Both of the CO2 measurement methods (lysimeters and steel cylinders) showed 

large variation at the first occasion (31-jan) when they were brought into the lab. 

They had been kept in cold storage with varying temperatures between -5°C to 

+10°C for approximately three months. These initial measurements were removed 

as outliers. The solution in the future could be to reset the samples in lab conditions 

for two to three weeks before conducting the initial measurement. This way the 

samples get a chance to acclimatise to a raised, stable temperature. 
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Dry bulk density, loss on ignition, electrical conductivity, soil pH, hydraulic con-

ductivity, and compact density were measured and details of the methods used are 

presented in Table 5. 

 

 
 

Table 5. Laboratory methods of the soil physical and chemical properties. 

Properties Method 

Loss on ignition, /kg-1 24h drying at 105°C and then 24h 

incineration at 550°C before 

weighing. 

Soil pH pH electrode. 1:5 soil to deionized 

water ratio. Shaken for 30 

minutes. Measured after 2h and 

then after 24h 

Electrical conductivity, / mS/m Measured with EC-meter after 

pH was measured (24h). 1:5 

soil to deionized water ratio. 

Hydraulic conductivity The constant-head method was 

used to measure the saturated hy-

draulic conductivity of the soil 

cores. 
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4.1 Physical and chemical properties 

In Table 6 the results of the average pH-measurement, electric conductivity, loss on 

ignition, compact density, dry bulk density and hydraulic conductivity from the 

treatments are presented. None of the properties for each treatment are different 

from on another according to the box plot analyses (Figure 19-24). The hydraulic 

conductivity for treatments AB and O have a high average value due to few repeti-

tions and a wide variation. 

 
Table 6. Soil test results that include: pH, electric conductivity, loss on ignition, compact density, dry 

bulk density and hydraulic conductivity. The results are averages from the different treatments repre-

sented in the trial. 

Treatment 

pH 

Electric 

conductivity 

(μS/cm) 

Loss on 

ignition 

(%) 

Compact 

density 

(g/cm3) 

Dry bulk 

density 

(g/cm3) 

Hydraulic 

conductivity 

(m/day) 

              

AB 5.4 116 43.2 2.00 0.52 7.09 

AE 5.6 96 48.5 1.93 0.49 0.49 

B 5.2 115 43.3 2.00 0.53 0.84 

E 5.4 89 47.0 1.96 0.50 0.63 

O 5.6 89 49.6 1.94 0.52 5.79 

(Subsoil) 5.2 93 20.1 2.30 - - 

 

4 Results 
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4.2 Water retention 

Figure 9 shows the volumetric water content in percent at increasing water reten-

tions 0 cm (saturated), 25 cm, 50 cm, 75 cm, 100 cm (pF 0, 1.4, 1.7, 1.9 and 2.0 

respectively) and drying at 20°C and 105°C. The curves are following the same 

paths since none of the soil properties (Table 6) for each treatment are different from 

each other according to the box plot analyses (Figure 19-24). 
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Figure 9. The average volumetric water contents in percent at increasing water retentions 0 cm (sat-

urated), 25 cm, 50 cm, 75 cm, 100 cm (pF 1.4, 1.7, 1.9 and 2.0 respectively) and drying at 20°C and 

105°C. The series represent the four different treatments in the trial (Berglund et al. 1978) and a 

‘no-treatment’. 
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Figure 10 has the same information as Figure 9 except the axels have interchanged. 

The x–axis now displays the volumetric water content in percent. The y-axis dis-

plays the increasing water retentions pF 1.4, 1.7, 1.9 and 2.0 respectively and drying 

at 20°C and 105°C. A water content of 60% represents a pF-value of around 1.8. 

  

Figure 10. The average volumetric water contents in percent at increasing water retentions pF 1.4, 

1.7, 1.9 and 2.0 respectively and drying at 20°C and 105°C. The series represent the four different 

treatments in the trial (Berglund et al. 1978) and a ‘no-treatment’. 
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4.3 CO2 emissions from lysimeters 

In Figure 11 the CO2 emissions were plotted for each week representing a different, 

and increased, water content (Figure 12). All treatments except E (deep ploughing) 

display a peak (CO2-emissions) in the beginning (14th-feb) where the water contents 

are in the range 40-45% (Figure 12). After the 27th of February there is a greater 

variation. The water content were for the CO2 measurements after the 27th of Feb-

ruary >60% (Figure 14). There was no difference between each treatment when 

looking at the box plot analysis and taken consideration that the repetitions were so 

few (Figure 17). 
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Figure 11. CO2 emissions from lysimeters with increased water content. The series represent four 

different averages of treatments in the trial (Berglund et al. 1978) and a ‘no-treatment’. The meas-

urements were taken every week with a Vaisala GMP 323 CO2 meter. 
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The results of the average volumetric water content of the lysimeters for each week 

and treatment had a steady incline until the 27th of February where more water was 

added and the water content raised up over 60% (Figure 12). There were small to 

no differences observed in the average wetness of the treatment during the period 

(Figure 12). 

 

The average water content of the lysimeters for each treatment was also measured 

with the sensor “SM300 moisture sensor”. The output results are displayed in mil-

livolt (Figure 13) and does not show the same steady incline as Figure 12. 
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Figure 12. Water content in percent of total volume of the lysimeters determined by weight. The se-

ries represent four averages of different treatments in the trial (Berglund et al. 1978) and a ‘no-

treatment’. 

Figure 13. Water content of the lysimeters in millivolt measured with a sensor (SM300 moisture sen-

sor). The series represent four averages of different treatments in the trial (Berglund et al. 1978) and 

a ‘no-treatment’. 
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The CO2 emissions from the lysimeters were plotted against the volumetric water 

content (Figure 14). There is a peak in all curves except E (deep ploughing) when 

the water content is between 40-45%. At measurements with water content above 

60% there is a greater variation in CO2 emissions. 

When the results of the water content in the lysimeters (Figure 12) were plotted 

against the millivolt value measured by the “SM300 moisture sensor” (Figure 13) 

it resulted in a scatter plot where a curve (polyline) and equation were generated 

(Figure 15). This equation represents a calibration curve that could be used on this 

type of peat soil to improve the accuracy of the sensor reading. 

 
 
Figure 15. Water content of the lysimeters in millivolt and plotted against the water content meas-

ured by weight and displayed by percent of volume. Millivolt is measured with a sensor (SM300 

moisture sensor). The function of the polyline curve works as a calibration function for this peat soil. 
*All treatments that include deep cultivation was removed since the mineral material effects the measurements. 

y = -2E-07x2 + 0.0006x + 0.3098
R² = 0.7326
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Figure 14. CO2 emissions from the lysimeters plotted against the volumetric water content measured 

at the time. 
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4.4 CO2 emissions from the soil cores in the steel cylinders 

at different water retention (water- table/level depth) 

Figure 16 shows the results of the average CO2 emissions at increasing water reten-

tions 25 cm, 50 cm, 75 cm, 100 cm (pF 1.4, 1.7, 1.9 and 2.0 respectively) in the steel 

cylinders for the different treatments. AE, O and AB have a peak in emissions at 50 

cm and B has a peak at 75 cm. It is the water retention at 50 cm that has the greatest 

variation in emission. After the samples had been dried for 2 week at 20°C the emis-

sions dropped significantly. There was no difference between the averages for each 

treatment when analysing the box plot (Figure 18). 
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Figure 16. CO2 emissions from the steel cylinders at increasing water retentions 25, 50, 75, 100 cm 

(pF 1.4, 1.7, 1.9 and 2.0 respectively) and representing the averages of the four different treatments 

in the trial (Berglund et al. 1978) and a ‘no-treatment’. The measurements were taken every week 

with a Vaisala GMP 323 CO2 meter. Lastly CO2 emissions measured after the samples had been air-

dried at 20°C for 2 weeks. 
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4.5 Box plot analyses 

Box plot analysis for CO2 emissions, physical and chemical properties are presented 

in Figure 17-24. None of the treatments differs significantly from the ‘no-treatment’ 

in any of the analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Box plot analysis of the area under 

the emission curve (lysimeters) for the different 

treatments. 

Figure 18. Box plot analysis of the area under 

the emission curve (steel cylinders) for the dif-

ferent treatments. 

Figure 19. Box plot analysis of the compact 

density for the different treatments. 
Figure 20. Box plot analysis of the dry bulk 

density for the different treatments. 



39 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Box plot analysis of the electric con-

ductivity for the different treatments. 
Figure 22. Box plot analysis of the hydraulic 

conductivity for the different treatments. 

Figure 23. Box plot analysis of the loss on igni-

tion for the different treatments. 

Figure 24. Box plot analysis of the pH for the 

different treatments. 
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4.6 Visual observations 

Visual observations were made from the soils physical properties represented by the 

treatments as well a single sample from the subsoil (Figure 25; a-f). The observa-

tions were from the collected loose soil samples. Mineral material could be observed 

in treatments AB, B, E which all represent some degree of mixing the soil profile. 

 

 

 a. Treatment AB 

Black colour with roots and aggregate/gran-
ular structure that has low solidity. A low 
clay content with bits of paper gyttja and 
minerals/sand present. 

b. Treatment AE 

Black colour with roots and aggregate/gran-
ular structure that has low solidity with bits 
of paper gyttja present. 
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Figure 25. Pictures and visual observations (a-f) of the soils physical properties represented by the 

treatments (AB, AE, B, E, O, S (subsoil)). (Photos: Hermansson 2017) 

c. Treatment B 

Brown colour with roots and aggre-
gate/granular structure that has low solidity. 
Bits of paper gyttja and minerals/sand pre-
sent. 

d. Treatment E 

Brown colour with roots and aggre-
gate/granular structure that has medium so-
lidity. Clay content clearly present and also 
minerals/sand. 

e. Treatment O 

Dark brown colour with roots and woody 
bits. Aggregate/granular structure that has 
low solidity and bits of paper gyttja present. 

f. Subsoil 

Woody bits and paper gyttja clearly present 
with very high solidity. 
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5.1 CO2 emissions results and soil properties  

The results from the lysimeters’ CO2 emissions and from the steel cylinders’ CO2 

emissions show that there were no significant differences between treatments in the 

experiment. However there is an indication that the lysimeters with liming combined 

with deep-cultivation (mixing of the entire soil profile) gives a higher level of CO2 

emissions (Figure 17). This was not confirmed in the experiment with the steel cyl-

inders (Figure 18). The result of the box plot analysis created over the soils proper-

ties (pH, EC, dry bulk density etc., Figure 19-24) also gave mixed results and no 

certain conclusion or connection can be made. These results confirm the variation 

that is characteristic to peat soils (Berglund G. 1982; Berglund 2008). This means 

that results could have been different if they were sampled somewhere else in the 

field, or from a slightly different profile depth. The in-field variation of CO2 emis-

sion and soil properties is difficult to highlight without numerous samples, repeti-

tions and tests. This however quickly puts restraints on budget and space. One can 

easily understand this variation when looking back historically on how the peat soil 

was created and see that local landscape characteristics, such as simply a nearby 

tree-line inflicting wind, could alter the thickness and composition of the organic 

layers formed by deposits. In order to make up for these variations in the field and 

get more accurate results the number of samples and repetitions need to be higher 

in order to make a statistically significant conclusion. The layout and design for this 

type of trial presented in this report (Figure 6) is outdated with today’s standards 

(demand for statistically proven data). 

5 Discussion 
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5.2 CO2 emissions and RPD in response to water content 

Average water content for the different treatments in the lysimeters has a slow but 

steady incline each week up until the 6th of March where the added water was in-

creased in volume and the water content rapidly increased (Figure 12). The treat-

ments’ response to increased water content was different and showed varying results 

regarding the CO2 emissions (peat decomposition) when the water content was 

around 60%. The reason could be that the water added to the lysimeters collected 

differently in the soil core, due to difference in pore space and pore-distribution. 

This could make the whole soil core wetter in some parts of the sample. The overall 

cause could be due to individual treatment, coincidence or previous handling of the 

samples. With a wetted soil the sensitivity to temperature response is increased as 

well as the efficiency to distribute nutrients and minerals (Donovan et al. 2015; 

Mäkiranta et al. 2009; Kluge et al. 2008). This stimulates microbial activity and 

increase RPD and CO2 emissions (Mäkiranta et al. 2009). 

5.3 CO2 emissions in response to water retentions 

The water retention curves for the different treatments show no significant differ-

ence. There is a tendency that the average of the treatment with liming combined 

with deep ploughing (AE) is a bit wetter as well as being the treatment that measured 

the highest average CO2 emission. Although with not enough data for a statistical 

conclusion, it can only be speculated that the structural effects and pore-distributions 

combined with a high organic content in the topsoil for AE (Figure 23) provide 

better circumstances for microbial communities and increased rates of RPD and CO2 

emission. 

The curves in Figure 16 have a tendency to follow the predicted results of a peak 

in emissions around 50-75 cm water column (pF 1.8). It is displayed in Figure 16 as 

a slight peak at 50 cm water column in three out of five average treatments. How-

ever, instead of the majority of the average measurements showing a consistency in 

higher emissions, even for 75 cm water column, they dropped in emission. More 

data is required in this experiment to draw additional conclusions to this hypothesis 

that a peak-emission occurs at this specific water retention span (water content). It 

provides information that once again peat soils does not follow a strict linear corre-

lation between water content and CO2 emissions. Therefore great in-field variation 

is to be expected. 



44 
 

5.4 Sensors and models in comparison to traditional 

methods 

Budget and space can put restraints on the scale of experiments. Sensors and models 

are becoming more common as the basis for data collection especially when collect-

ing data from bigger regions or several fields. When it comes to peat soil and RPD, 

models are struggling to implement the variation of properties and to find significant 

correlation between results of calculated data and CO2 emission. A sensor require 

careful and thorough calibration based on a lot of data and tests. This thorough cal-

ibration takes time and resources, but if it is done correctly, it can save just that. 

This experiment used a SM300 moisture sensor to measure the water content paral-

lel to weighing the lysimeters before each measurement. The SM300 moisture sen-

sor is calibrated for either a high organic soil or a mineral soil. The results from both 

types of measurements were used to generate a calibration curve and a function for 

this type of soil (Figure 15). The purpose of the calibration curve was to show the 

risk of relying directly on this kind of sensor. 

 

y = -2E-07x2 + 0.0006x + 0.3098 (R² = 0.73) 

(y = water content [%], x = conductance in soil [millivolt]), *Deep cultivation samples removed 

 

The function does not include plots where deep cultivation was involved since this 

higher amount of mineral content and mixing of the whole profile is not representa-

tive of the other treatments, when measuring water content in the rest of the field. 

Release-functions of CO2 from peat topsoil are sometimes used as models for 

whole regions. When comparing a calculated result of the CO2 emission using the 

following function provided by Kluge et al. (2008): 

 

CO2= 1.314 + 0.853x - 0.273y - 0.451x2 + 0.132xy + 0.011y2, (R2=0.96)  

(Kluge et al. 2008) 

(CO2 = [g C m-2 d-1]. x = pF. y = temp. [°C]) 

 

The result was value for CO2 emissions at: 226.5 mg CO2/m2/h @pF 2.0 (100 cm 

water column). Comparing this to the average value of the ‘no-treatment’ based on 

the fact that it is sharing similar soil properties and that it has a high correlation 

coefficient (R2=0.96), it was calculated to: 176 mg CO2/m2/h. It shows that models 

can be valuable in making predictions but one should be careful when using func-

tions as exact models for specific regions outside the study. 
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5.5 Microbial communities and their activity related to 

temperature and moisture 

Microbial communities in the soil perform the degrading processes of peat and this 

is generating emissions of CO2. It is showed that the physical and chemical proper-

ties in peat soil could correlate to CO2 emissions and that this vary within and be-

tween fields.  

It is reasonable to conclude that whatever affects the microbial structure and ac-

tivity also has an effect on RPD and CO2 emissions. Moisture is highlighted in this 

study as one of the most influential environmental factors affecting the RPD and CO2 

emission. The literature emphasise that temperature also has a big influence and 

direct effect on RPD, as well enzyme efficiency. Both long- and short-term water 

tables and soil water content inflicts greatly on the structure and composition of the 

microbial communities present as well as the microbial communities’ easy access 

to nutrients and carbon. 

To draw any significant conclusions on the effect of microbial communities in 

the different treatments of the experiment more samples and repetitions are required 

along with further research on what type of microbes that are present and their level 

of activity on the specific substrates. It is non-negligible, judging from the visual 

analysis and the feel of the loose soil samples, that there is a difference between the 

soils properties and that this affect the microbial communities’ structure and thereby 

RPD and CO2 emissions. A solution for reducing the RPD and CO2 emissions requires 

means on how to negatively inflict on microbial activity and structure by inhibiting 

the microbes and enzymes. 

Since temperature is a main factor (Kluge et al. 2008) and difficult to control, 

one has to focus on ways to reduce the thermal conductivity and the microbes’ re-

sponse to temperature. Several ways to do this is about means that reduce the chance 

for microbial communities to build up over time. Unfortunately what might be the 

least optimum for microbes and RPD might also be the least optimum for plat growth. 

As a stable water table and long-term water levels inflict greatly on structure and 

abundance of microbes (Mäkiranta et al. 2009), an altering water table would inflict 

negatively on RPD and CO2 emissions. However, an altering water level would in-

crease aeration in the profile and at the same time create periods of waterlogging. In 

a wider perspective this stimulates denitrification bacteria and raises N2O emissions 

which could have equal or worse consequences from a greenhouse gas perspective 

(Jordan 2016). 

The water tables’ effect on the soil water content can also affect the thermal 

conductivity. By raising the water table in times of low temperature (autumn-winter-

early spring) and keeping it low during periods of high temperatures (late spring-

summer), the microbial community and activity could possibly be kept on a constant 
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low. A practical problem with raising the water table level at times of low tempera-

ture would be the availability for the farmers to decide when to cultivate the soil. 

The ground should not be too soft for the heavy machinery that is used in every day 

agriculture. 

Raising the water table, and other protective implications, is not possible to do 

with undisturbed permanent grassland. Along with undisturbed permanent grassland 

follows a higher water table, higher thermal conductivity and higher hydraulic con-

ductivity. A future warmer climate makes the situation worse as water demand and 

flow from deeper horizons increase with higher evapotranspiration, the process al-

together fuels decomposition and CO2 emission. More extreme weather would prob-

ably also mean that precipitation and local climate would correlate more to the soil 

water table and CO2 emission. It is possible that it also results in great differences 

but lack any statistical correlation. 

5.6 Practical recommendations 

It is difficult to provide recommendations that would be applicable for all farmers. 

To implement subsidies for long-term mitigating actions would not be easy due to 

the great variation in- and between fields. It is not possible today, within economic 

reason, to get the type of data that can adjust the level of implications with the level 

of emission and it is not safe to say: drain all soils, or cover all soils with water. 
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No significant conclusions can be made from the results of the experiments on long-

term mitigating treatments. But observations and literature findings conclude this: 

1. The rate of peat decomposition (RPD) and CO2 emissions is influenced by 

the soils’ water content and water retention. 

2. The water content in the soil regulates the structure and abundance of mi-

crobial communities present. 

3. In-field variation of the soils’ physical and chemical properties affects the 

CO2 emissions. 

6 Conclusions 
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