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Abstract/ Summary 
 

The purpose of this study is finding better understanding of the process of knowledge growth, 

and how technological knowledge builds on existing knowledge.  

 

To be able to empirically examine the subject we performed a case study of the photovoltaic 

(PV) energy sector. The theoretical framework used is Hart’s (2016) model of knowledge 

production, which takes into account flows of knowledge between sectors. The model is 

tested through OLS- and logistic regression, using European patent data for time time period 

1977-2009. 

 

We find that spillovers have had a significant impact on the knowledge growth of the PV 

sector, and that the most important contributions have come from closely related technology 

fields. We also find that geographical origin is an important parameter for determining 

spillover patterns. 
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1 Introduction 
Peak oil and acknowledgement of the threat of global warming manifests the need for radical 

shifts on either the demand side, or the supply side for energy. In the public debate focus has 

foremost been set on the supply side – finding alternative energy sources that can cope with 

the growing demand. Solar energy is one of those alternatives – it has low environmental 

impact, and the supply of radiation from the sun is constant. However, today renewable 

energy only responds to five percent of the total global energy production, and in order to be 

able to in the long run replace fossil fuels as the dominating energy source, vast technological 

development in the field is necessary. Technical development is however by definition 

uncertain, as is the political will to achieve it.  

Arthur (2007) argues that a difficulty all theories of innovation face is that modern research 

show that the process of invention varies significantly from historical case to historical case, 

thus it is questionable whether universalities actually exists. Although, he continues, the 

incentives driving invention are less of a mystery: social needs, economic opportunities, 

perceived risk, factor price changes are some of the suggested explanatory variables behind 

technological change. Clarke et al. (2008) claim that R&D, learning-by-doing and spillovers 

as the three main sources of technological change.  In this thesis we will focus on the last of 

those three sources.   

In economic theory of innovation spillovers have often been overlooked.  Acemoglu’s (2002, 

2009) influential model of directed technological change is based on the assumption that 

technological knowledge in different sectors grows separately, and that there are no 

knowledge spillover between the sectors. This assumption is unintuitive and needs to be both 

theoretically and empirically examined.  

The aim of this study is finding better understanding of the process of knowledge growth. To 

be able to empirically examine the subject we have chosen to perform a case study of the 

photovoltaic (PV) energy sector. The theoretical framework of the study is Hart’s (2016) 

model of knowledge production, which takes into account flows of knowledge between 

sectors. We hope to find some of the determinants of knowledge growth and in particular how 

new technological knowledge builds on existing knowledge.  

The reason for choosing the PV sector is that it is a relatively young, and fast growing, 

knowledge field that only existed since late 1950’s and found market adaptations in the 

1970’s. Thus it will be possible to map the technology’s evolution from its beginning until 

present date. Our interest is to see how the knowledge stock of PV is linked to the broader 
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concept of “general knowledge”. We further want to see whether these linkages changes over 

time, or if they are constant. 

Hart’s (2016) model of knowledge production will be tested empirically using European 

patent citation data for the period 1978-2012. The results indicate that we have inter-industry 

knowledge spillovers, and that they have had a significant impact on the knowledge 

production in the PV sector. Further, we find that the marginal productivity of within sector 

knowledge is decreasing.  

This thesis will solely focus on the knowledge production of photovoltaic energy, and 

particularly on the role of spillovers for the technological field. Thus demand mechanisms and 

growth paths will not be discussed more that briefly, even though spillovers are highly 

relevant for understanding those processes. The results of this thesis are based on the 

particular case of PV-energy. To gain greater understanding of the knowledge production 

process in a broader set of industries and knowledge fields, further research on the subject is 

needed, including other technology fields. For a brief review of the technological 

development of PV-energy, see appendix A.  

The disposition is as follows:  in section 2 we review the existing literature in the field of 

directed technological change and spillovers, in section 3 we present the theoretical 

framework, in section 4 we present the method and data, in section 5 we perform the model 

estimations, in section 6 we discuss the results and in section 7 we present our conclusions.  
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2 Literature review  
2.1 Spillovers 

Clarke et al. (2008, p. 413)  defines spillovers as:  ”technological change in one firm, 

industry, country or domain of technology that arises from innovative activities in another 

firm, industry, country or domain of technology”. 

Spillovers can be either “direct” or “indirect”. Direct spillovers alter technology with no 

required effort on the part of the receiving industry. Indirect spillovers creates a “pool of 

opportunities” that can be exploited by receiving industries, but which will have no impact 

unless these opportunities are taken.  

It is also possible to distinguish between “rent spillovers” and “knowledge spillovers”, where 

the first refers to the transfer of economic benefits, and the latter to the transfer of knowledge. 

Rent spillovers lower the cost or the quality of inputs in receiving industries, and thus 

improve their profitability. Knowledge spillovers can either be direct or indirect, depending 

on how much effort receiver must put in to use the knowledge spillover (Clarke  et al. 2008). 

Direct knowledge spillovers have no influence on own-industry activities. They can simply be 

added to the knowledge production already carried out by the actors in the industry. In 

contrast, indirect knowledge spillovers have a more complementary relationship with own-

industry activities. Spillovers cannot be utilized without own-industry effort, and furthermore, 

the technological opportunities created by the spillovers are necessary for the ongoing 

knowledge production of the industry (Clarke  et al. 2008). 

The pool of technological opportunities that is created by indirect knowledge spillovers grows 

when it is not exploited, and creates a room for rapid boost for the own-industry knowledge 

growth once it is utilized. The knowledge growth rate will decline over time as the pool is 

being exhausted. That implies that if the rate of exploitation of indirect spillovers is high 

relative to their creation, the growth rate of spillovers may be defining for the rate of the 

technological change in that industry (Clarke  et al. 2008). 

It is important to note the distinction between spillovers and own-industry activities is a 

matter of level of aggregation chosen for the particular study (Clarke  et al. 2008). A more 

narrowly defined industry implies a higher degree of spillovers, simply by the fact that fewer 

activities are considered as own-industry efforts. Therefore it is meaningless to compare 

spillover rates between different industries, not taking this into account. What can be more 
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interesting is comparing spillover rates within the same industry at different points in time and 

between countries.  

2.2 Economic Theory of Technological Change 

The process of technological change has long been discussed and modeled by economists. In 

early models of economic growth (see e.g. Solow, 1956) technological development is the 

driving force behind economic growth, but its mechanism is left unexplained and the 

phenomenon is viewed as something exogenously given. Later theorists have tried to explain 

this force as a result of investment in research, performed by profit maximizing firms as a 

method for reducing production costs (Aghion & Howitt 2008, pp 12-14). However, not only 

the acknowledgement of an active process of knowledge production is enough to explain the 

differences in growth between different sectors in the economy. Some sectors experience a 

rapid technological development, while others hardy develop at all. Already in the 1930’s 

John R. Hicks introduced the hypothesis of induced bias in innovation, as an attempt to 

explain the direction of technological change. According to the hypothesis, a rise in the price 

of labor relative to capital will induce labor-saving innovations (Hicks, 1932). The idea 

behind the hypothesis is that R&D is a profit maximizing investment activity, and that 

innovation in a certain field is responding positively to increases in relative prices (Popp et 

al., 2009). In the 1960’s this hypothesis was served new attention when it became subject of a 

lively debate. 

The debate was centered on two alternative models – a growth-theoretic approach and a 

microeconomic version. The most formally developed model was the growth theoretic 

approach introduced by Kennedy (1964, 1966 and 1967) and Samuelson (1965 and 1966) 

(Ruttan, 2001).  Kennedy (1964) presents the Innovation Possibilities Frontier (IPF), which 

shows that there is a trade-off frontier between capital- and labor augmenting rates. Unlike 

Hicks, Kennedy claims that relative factor prices are not essential for the theory.  Instead he 

suggests that the entrepreneur will search for improvements that reduce the total unit cost in 

greatest proportion. Thus if labor-costs are higher than capital-costs, investments in labor-

saving innovations are encouraged. The model can be seen as an attempt to explain the 

empirical phenomenon of constant factor shares. The reason technical development has been 

labor-saving is that the labor force is more or less fixed, while the capital stock is possible to 

increase through investments. That means that in order to increase the efficient number of 

worked hours you need to increase labor productivity. Since there is a trade-off between the 
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capital- and labor augmenting rates the increasing labor costs will induce labor saving 

innovations.  

Nordhaus (1973) criticizes the theory of induced innovation for building upon unrealistic, and 

unmentioned, assumptions. His critique especially concerns the assumption that the shape of 

the IPF is independent of the levels of factor augmenting knowledge  - that is that previous 

investments in labor- or capital-saving innovations will not affect future possibilities for 

technological improvements. Binswanger (1974) gives a microeconomic approach to induced 

innovation that offers support to Nordhaus’s critique. Going through the implicit assumptions 

of Kennedy’s IPC, he claims it only to be a disguised example of exogenous technical change. 

Instead he argues that the variables that determine induced bias in innovation are the relative 

productivity and price of alternative research lines, the scale of output and changes in present 

value of factor costs, since these changes the optimal research mix.   

The microeconomic approach was developed by Ahmad, (1966) and build directly on Hicks 

induced bias hypothesis. They use the concept of the historic innovation possibility curve 

(IPC), according to which it at each point in time it exists a set of potential production 

processes available to be developed. Which these processes are will be determined by the 

basic state of knowledge at the given time. Each process in the set can be characterized by an 

isoquant, and the IPC is the envelope of all unit isoquants at a given time (see also Ruttan, 

2001). 

More recent work in the field of directed technological change (DTC) is done by Acemoglu, 

(1998, 2002); and Acemoglu et al., (2009), whose framework has been widely used in 

subsequent work in the field. Acemoglu (2002) presents a model for knowledge-based R&D, 

which allows for “state dependence”. State dependence means that current investments in 

R&D in a particular sector enhance the productivity of future knowledge production of that 

sector. That has the direct consequence that lagging sectors will have trouble catching up 

since the leading sectors are much more productive.  

From this set-up, Acemoglu (2002) presents two major results. The first is the “weak induced-

bias hypothesis”, which states that as long as the elasticity substitution between factors is not 

equal to 1, an increase in the relative abundance of a factor will always create some amount of 

technical change directed towards it. The second result is the “strong induces-bias hypothesis, 

which says that given that the elasticity of substitution is sufficiently large (between 1 and 2), 

directed technological change towards the more abundant factor can result in an upwards 

sloping long-run relative demand curve for that factor.  
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Acemoglu et al. (2010) further develops the framework and applies it to an economy with 

environmental constraint, producing one final good using either a clean- or a dirty input, or a 

combination of the two. The dirty good will produce environmentally damaging externalities, 

and exhaust the stock of environmental capacity. When the stock is fully exhausted we have 

an environmental disaster. An intermediate goods sector of monopolistically completive 

research firms choses in each period individually to direct the firm’s research to either the 

dirty or the clean sector. The research activity enhances the productivity of the chosen sector. 

Without policy intervention, directed at distorting the historically given advantage of the dirty 

sector, the economy will reach a socially suboptimal equilibrium. However, given that the 

inputs are strong substitutes, only a temporary intervention is necessary in order to tilt the 

balance and start a positive feedback loop that will offset the previous advantage of the dirty 

sector.  This scenario is based on the implicit assumption of extreme path dependence, i.e. 

that the knowledge stocks of the two sectors evolve separately.  

Hart (2016) suggests in a working paper an alternative model of directed technological 

change. In the model, which will be referred to as knowledge spillovers, the knowledge stocks 

of different sectors are linked together, so that the knowledge production in one sector can 

feed of the existing knowledge in other sectors. These knowledge spillovers countervail 

imbalances between knowledge stocks, as knowledge spillovers from the leading sector to the 

lagging sector enhance the relative growth of the latter.  As the lagging sector catches up, it 

can make less and less use of the knowledge spillovers from the leading sector, and becomes 

more and more dependent on within sector knowledge.  

2.3 Emperical research of spillovers  

Geographical and technological proximity is often seen as the main factors fostering 

innovation. Geographical clusters of firms leads to knowledge spillovers that they all can 

benifit from in terms of innovative capabilites, but it also comes with the risk of spreading 

key knowledge to competitors which could be harmful for the business (Wersching, 2005, p. 

2).  

The amount of knowledge spillover a firm is able to make use of is called the absorptive 

capacity. It sets a lower and upper limit for the heterogeneity of the knowledge a firm is able 

so absorb (Cohen and Levinthal, 1989, 1990).  A knowledge inflow that is too far from the 

firms’ knowledge base is too difficult for the firm to incorporate in its own business. 

Similarly, knowledge that is too close the firm’s knowledge base becomes trivial and will not 
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boost the innovative capacity of the firm. The relationship is by Werchish (2005) described as 

an inverse U-shape, depending on technological distance. 

Orlando (2002) showed that the largest R&D spillovers flow between firms in the same 

industry. Although location can play a part, they found the geographical distance to between 

narrowly defined technology groups doesn’t impact on the spillovers. However, for spillovers 

from firms outside the industry, geographical distance is an important factor.  Jaffe  (1986, p. 

2) similarly argued that firms with higher R&D investments than the average of the industry 

benefits from R&D spillovers from “neighbouring firms in technological space”, while the 

opposite is true for firms with lower than average R&D spending.  Griliches (1992) gives 

examples of a large number of studies showing that R&D spillovers contributes significantly 

to the productivity increases of both the agriculture and the industry. 

Nemet, (2012a) examined the impact of inter-industry knowledge flows on the inventions’ 

value. They presented the cumulative synthesis hypothesis, according to which new inventions 

arise from new combinations of current knowledge. Using United States patent data for the 

time period 1976-2006, where backwards citations were used as a proxy for knowledge flows, 

and forward citations were used as a proxy of the value of the invention, they found that 

citations from external technological fields were less positively – or even negatively – 

correlated to the patents value. Nemet discussed several reasons for this result to appear. One 

possible explanation was that knowledge flows from external technological fields are 

associated with higher risk. Even if the invention resulting from inter-industry knowledge 

flows is commercially successful itself, it might be difficult to assimilate the knowledge into 

new inventions. Other explanations presented evolved around measurement errors.  

In a similar study Nemet (2012b) used a slightly different approach by only looking at 

knowledge spillovers in energy technologies. Here, in contrast, inter-technology knowledge 

spillovers played an important role in the evolution of the technologies. Important energy 

patents have drawn heavily from external knowledge, especially in the fields of chemical, 

electronics and electrical technologies.  

Jaffe et al. (2000) surveyed both cited and citing inventors around specific innovations, and 

found that patent citations did represent knowledge flows, but with a substantial amount of 

noise. Jaffe (International Knowledge Flows: Evidence from Patent Citation 1999) showed 

that patents are 100 times more likely to cite a patent with the same patent class, than patents 
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from other classes. Further they showed that patents from inventors that resided in the same 

country were 30-80 percent more likely to cite each other than inventors from other countries.  

Liu et al., (2011) analyzed the photovoltaic energy growth trajectory, by examining US  

patents for the time period 1974-2007. They found that the technology growth was highly 

correlated with the crude oil price, by a time lag of about one year. Furthermore, they found 

that the time gap between technology growth and market growth is ten years, meaning that it 

took about ten years from the time a new technology is developed, to the time it reached the 

market. In their analysis they separated PV energy into five categories: the Emerging PV, 

CdTe, CIS/CIGS, Group III-V, and Silicon and argued that all of the five categories showed a 

S-shaped growth trajectory, with two distinct phases of technological growth. The first phase 

generally halts around 1985-1990, coinciding with the fall of the crude oil prices. It is also 

shown that two of the technology groups, CdTe an CIS/CIGS have reached the mature phase 

of their life-cycle, while the other technologies has yet to reach that point. They are expected 

to reach that point between 2014-2018. 
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3 Theoretical framework 
In this section we will present Hart’s (2016) model for knowledge production and knowledge 

flows. According to the model, knowledge production is a function of the number of existing 

patents in the different sectors of the economy. Knowledge flows are represented by patent 

citations, through which knowledge embodied in patents spawns new innovations (and thus 

new patents).  

The model is based on four concepts; knowledge stocks, patent stocks, patent flow and 

knowledge flow. The patent stocks are the existing number of usable patents in each sector i, 

and time period t. Usable is referring to the fact that the information contained in patents can 

only be used if it is available to inventors, and that the information is not outdated.  

The second important concept is knowledge stocks, which are built up by patent stocks. Since 

the model allows for spillovers between the sectors, the patent stock of one sector can affect 

the size of the knowledge stocks in other sectors. The knowledge stocks can be described as 

the collected amount of existing knowledge that can be used to produce new patents in each 

sector.  

The third concept - the flow of new patents - is an increasing function of the patent stocks and 

investment. Finally, knowledge flows from old patents to new through patent citations. The 

number of patent citations is in proportion to the value of the patent stocks.  

3.1 Knowledge production 

We assume two technology sectors – PV, which we denote as p, and non-PV, which we 

denote as n. The productivity growth of each sector depends on new innovations that are 

obtained as a result of investments in research, R.  

We further assume that there exists two types of patents, PV-patents,  𝑥𝑝,𝑡, and non PV-

patents,  𝑥𝑛,𝑡, and that all knowledge is embodied in these.  

All new knowledge builds upon previous findings, so that the stock of knowledge increases 

step by step. Each innovation is represented by a patent, which once it is made public 

contributes to the existing knowledge stock of that sector. We have 

𝒙𝒑,𝒕 = 𝑲𝒑𝒕
𝜳 𝑹𝒑𝒕

∅ ,     

      (1) 

where 𝑥𝑝,𝑡 is the number of new  PV patents produced in period t, i.e. the PV patent flow. The 

flow is an increasing function of the PV knowledge stock 𝐾𝑝,𝑡 and sector specific investments 
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𝑅𝑝,𝑡. Time is discrete and Ψ and ∅ are positive parameters.  Correspondingly, for the non-PV 

sector we have   

𝑥𝑛,𝑡 = 𝐾𝑛𝑡
𝛹 𝑅𝑛𝑡

∅ .      

     (2) 

Thus new patents build upon the sector specific knowledge stock.  However, the PV 

knowledge stock is generally an increasing function of both the PV- and non-PV patent stock, 

since knowledge valuable for new PV inventions can exist in both sectors. The non-PV 

knowledge input in the PV production is what we call knowledge spillovers. The two 

knowledge stocks, 𝐾𝑝𝑡  and 𝐾𝑛𝑡 are modeled as two CES-functions, 

𝐾𝑝𝑡 = ((1 −
𝜎

2
) 𝑋𝑝𝑡

𝜀 +
𝜎

2
𝑥𝑛𝑡

𝜀 )

1

𝜀
    

    (3) 

and       

𝐾𝑛𝑡 = {(1 −
𝜎

2
) 𝑋𝑛𝑡

𝜀 +
𝜎

2
𝑥𝑝𝑡

𝜀 }

1

𝜀
𝑅𝑝𝑡

∅     

    (4) 

where 𝑋𝑖𝑡
𝜀  is the patent stock of sector i, and 𝜎 and 𝜀 are parameters between 0 and 1.  𝜎 is a 

scale parameter that determines the relative weight of PV knowledge compared to non-PV 

knowledge for making new PV innovations. If 𝜎 is smaller than 1, then PV knowledge is 

relatively more important for new PV innovations than non-PV knowledge, and vice versa. ε 

is the degree of substitutability between PV and non-PV knowledge.  It is these two 

parameters that together determine the size of the spillover between the two sectors. For 

instance, when 𝜎 is 0 we have no spillovers.  When 𝜎 is 1, the value of the knowledge is 

sector neutral, and citation rates will only depend on the relative size of the two sectors.  

By definition the information contained in patents are, once it is published, free and open for 

everyone to exploit. Hence the knowledge stocks 𝐾𝑖,𝑡 and patent stocks 𝑥𝑖,𝑡
𝜀  are public goods 

which cannot be traded, and have no market price. Nevertheless, for researchers, the 

knowledge is highly valuable, and therefore we can talk about shadow prices, i.e. the price the 

researcher would be willing to pay for the knowledge. The shadow prices will in this context 

be used to predict citation rates.  

Hart (2016) exemplifies this by considering a firm that wants to invest in research on PV 

technology. The research success is measured in the number of patents a given amount of 

research effort yields. The expected shadow value of one patent is denoted vt, and depends on 
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the how the knowledge embodied in the patent can be used. vt can be used to find expressions 

for the shadow prices of the knowledge stocks Kpt and Knt.  

We substitute the expression for the PV-knowledge stock into the patent production function 

(1) to obtain 

𝑥𝑝,𝑡 = {[(1 −
𝜎

2
) 𝑋𝑝,𝑡

𝜀 +
𝜎

2
𝑥𝑛,𝑡

𝜀 ]

1

𝜀
}

𝛹

𝑅𝑝,𝑡
∅     

   (5) 

The firm wants to maximize its shadow revenue minus costs: 

max  𝑣𝑡𝑥𝑝,𝑡 − 𝑤𝑟,𝑡𝑅𝑝,𝑡      

    (6) 

where 𝑤𝑟,𝑡 is the price of the research input. Given the maximization problem, the shadow 

prices of the patent stocks 𝑋𝑖𝑡
𝜀  must equal the marginal shadow revenues resulting from an 

increase in knowledge.  We denote the shadow prices of the knowledge stocks ξp and ξn 

respectively and get the following expressions: 

𝜉𝑝𝑡 = 𝑣𝑡
𝜕𝑥𝑝,𝑡

𝜕𝑋𝑝,𝑡
      

      (7) 

and 

𝜉𝑛𝑡 = 𝑣𝑡
𝜕𝑥𝑛𝑡

𝜕𝑋𝑛𝑡
.     

      (8) 

We solve these to yield: 

𝜉𝑝𝑡 = 𝑣𝑡𝛹
𝑥𝑝𝑡

𝐾𝑝𝑡
𝐾𝑝𝑡

1−𝜀 (1 −
𝜎

2
) 𝑋𝑝𝑡

𝜀 𝑋𝑝𝑡
−1,     

    (9) 

and 

𝜉𝑛𝑡 = 𝑣𝑡𝛹
𝑥𝑝𝑡

𝐾𝑝𝑡
𝐾𝑝𝑡

1−𝜀 (
𝜎

2
) 𝑋𝑛𝑡

𝜀 𝑋𝑛𝑡
−1.      

   (10) 

So the relative shadow values of the patent stocks 𝑋𝑝,𝑡
𝜀  and 𝑋𝑛,𝑡

𝜀   are: 

𝜉𝑝,𝑡𝑋𝑝,𝑡

𝜉𝑛,𝑡𝑋𝑛,𝑡
=  

2−𝜎

𝜎
(

𝑋𝑝,𝑡

𝑋𝑛,𝑡
)

𝜀

 .      

               (11) 

We will use these shadow values to find the citation rates. We define 𝑐𝑝𝑡 as the average 

number of citations to (old) PV patents per new PV patent, and 𝑐𝑛𝑡as the average number of 

citations to (old) non-PV patents per new PV patent. We assume that the probability of a 
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researcher citing a certain patent is proportional to the shadow value of that patent. Hence, the 

expected PV citation rate, 
𝑐𝑝𝑡

𝑐𝑛𝑡
  is proportional  to the shadow value of the PV patent stock: 

𝑬 [
𝑐𝑝𝑡

𝑐𝑛𝑡
] =

𝜉𝑝𝑡𝑋𝑝𝑡

𝜉𝑛𝑡𝑋𝑛𝑡
.      

               (12) 

Insert equation (4) in (5) to yield: 

𝑬 [
𝑐𝑝𝑡

𝑐𝑛𝑡
] =

2−𝜎

𝜎
(

𝑋𝑝𝑡

𝑋𝑛𝑡
)

𝜀

     

               (13) 

From (13) we see that the citation ratio depends on the relative size of the two patent stocks 

𝑋𝑝𝑡

𝑋𝑛𝑡
, the spillover effect, σ, and the degree of substitutability between PV and non-PV, ε.  The 

closer σ is to zero, the smaller is the spillover effect, and the more dependent is the PV 

knowledge production on within sector knowledge for making new advances. If σ is large, 

existing PV knowledge is less essential for the development of the sector, since it can make 

use of the vast pool of knowledge existing in the non-PV sector. Similarly, a high degree of 

substitutability dampens the negative effect of a small PV patent stock, since the citing ratio 

can be adjusted to the knowledge supply. If ε is smaller than 1, the marginal productivity of 

𝑋𝑝𝑡 is decreasing. The intuition behind that is that when the PV-patent stock is small, each 

patent is very valuable for spurring new innovations. While the patent stock is growing, each 

PV-patent becomes less essential for new related findings.  

Special case 1: σ=0 

When σ is zero, we have no knowledge spillovers. The PV knowledge sock is simply a 

function of the PV patent stock: 𝐾𝑝𝑡 = 𝑋𝑝𝑡. From that it follows that the degree of 

substitutability, ε, also must be zero since there is only one input. The citation ratio is 

therefore: 

𝐶𝑝,𝑡

𝐶𝑛,𝑡
= ∞.      

               (14) 

This is the special case that Acemoglu refers to as “extreme path dependence”, which implies 

that the historical advantage of dominating sectors offsets the opportunity for smaller sectors 

to grow and gain market shares (Acemoglu 2009).   

With values of σ close to zero it is very difficult, or even impossible, for new technologies and 

small sectors to evolve over time, as they are depending on the limited (or zero) existing 

knowledge within the sector.  
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Special case 2: 0>σ>1, ε=0 

When ε approaches zero equation (3) becomes a Cobb-Douglas function (cf. Acemoglu 2002, 

6201X): 

𝐾𝑝𝑡 = 𝑋𝑝𝑡

(1−
𝜎

2
)
𝑋𝑛𝑡

(
𝜎

2
)
 .     

               (15) 

When ε=0, the relative citation ratio is independent of the relative size of the patent stocks, 

and thus is constant over time (assuming σ is constant): 

𝐸 [
𝐶𝑝𝑡

𝐶𝑛𝑡
] = (

2

𝜎
− 1).     

                          (16) 

When the PV patent stock is small relative to the non-PV patent stock, each PV patent has a 

higher marginal product, so that the total value of the patent stock in terms of contribution to 

new knowledge production is constant.  

Special case 3: 0>σ>1, ε=1  

When 𝜀=1 we have a linear function, where the marginal product of the patent stocks is 

constant: 

𝐾𝑝𝑡 = (1 −
𝜎

2
) 𝑋𝑝𝑡 +

𝜎

2
𝑋𝑛𝑡.    

               (17) 

In this setting it translates to that the knowledge kept in a single patent has the same marginal 

value no matter the size of the patent stock.  Therefore, the relative number of PV-citations 

increases linearly with the relative size of the PV patent stock: 

𝐸 [
𝐶𝑝𝑡

𝐶𝑛𝑡
] = (

2

𝜎
− 1)

𝑋𝑃𝑡

𝑋𝑛𝑡
     

               (18) 
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4 Method and data 

4.1 Patent citation data 

A patent is a temporary monopoly awarded to inventors for the commercial use of a newly 

invented device. In exchange for the monopoly rights, the inventor is obliged to publicly 

disclose the technical solution of the invention.  In order for the patent to be issued, the 

invention must be considered non-trivial, and to have industrial application (PRV 2013).  

Innovations are functions of previous technological findings and scientific breakthroughs. In 

patents, the linkages between new and proceeding innovations are revealed in the patent 

citations. The patent applicant has legal duty to disclose any knowledge of the prior art, by 

referring to other patents and scientific articles. This serves an important legal function by 

delimiting the scope of the property rights of the patent holder (Trajtenberg et al., 1992, p. 7). 

Patent data have been vastly used in studies concerning technological development and is a 

good source of information for this purpose, since it includes detailed information about each 

invention’s contribution to the knowledge stock, and knowledge spillovers between 

technological groups, counties, companies etc.  

A patent document usually include information on: the name of the applicant, the name of the 

inventor, the application date (priority date), legal status, patent family
1
, citations and 

classifications according to the CPC-, USTPO, and/or the IPC-classification system.  The IPC 

is a hierarchical system, which uses language-independent symbols to classify patent 

documents
2
 according to the area of technology to which they relate, and is used by patent 

offices worldwide.
3
 The Cooperative Patent Classification (CPC) came into force in January 

2013, and is a bilateral system of patent classifications,  jointly developed by the European 

Patent Office (EPO) and the United States Patent and Trademark Office  (USPTO).  

Whether patent data is to consider representative for innovative activity have been questioned. 

Many studies have shown strong correlation between R&D inputs and patent counts and 

patent citations. Some researchers, however, question the strength of patent counts a proxy for 

innovations, since these may reflect two types of errors. First, many innovations never get 

patented. Instead, inventors use different measures, such as secrecy, to protect their 

                                                           
1
 The patent family is all the patents in different countries belonging to the same invention 

2
 Patent documents refers to: published patent applications, inventors’ certificates, utility models and utility 

certificates (International Patent Classification (Version 2012), “Guide”, available online: 

http://www.wipo.int/export/sites/www/classifications/ipc/en/guide/guide_ipc.pdf) 
3
 Espacenet (2013), “International Patent Classification (IPC) 

“http://ep.espacenet.com/help?locale=en_EP&method=handleHelpTopic&topic=ipc 
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innovations. Surveys of European firms show that these omissions can be very large, and vary 

significantly between different branches. The extents of these omissions are however 

unknown, since there exists no systematic data about unpatented innovations (For a review, 

see Nelson 2009). Second, patent data represents inventions, and not innovations. Nelson 

(2009) defines inventions as technological development, and innovations as those inventions 

that are useful and diffused. Moser (2004) showed that only 5-20 percent of all patents are 

economically useful innovations. Despite the shortcomings of the patent data, it is the best 

data available for understanding the process of technological knowledge production.  

4.2 Data collection  

All data used is in this study is downloaded from PATSTAT Online, which EPO’s worldwide 

statistical patent database. It contains bibliographic data on 90 million patents- and patents 

applications from around the world, including information about patent family, legal status, 

references to other types of technical literature and citations (EPO, 2013). The data is selected 

and sorted using SQL queries.  

EP-patents are patents that are published by the European Patent Office (EPO). That doesn´t 

mean that they were invented in Europe, or that this is where they were first published. A 

patent can (and often will) be granted by many different patent offices, in order to earn 

monopoly rights for a larger geographic area. It is therefore important not to confuse 

invention country and granting authority.  

4.3 Categorization procedure  

We assume that there exist three types of patents: photovoltaic (p), non-photovoltaic (n) and 

all else (a), and that these categories are mutually exclusive. All existing patents are defined 

as belonging to one and only one of these three categories. The exact definition of these 

categories will vary slightly between the different variables, which will be explained more 

closely in section 4.4. 

The technological categorization is based on the CPC-classification system. All patents are 

given one or more CPC-symbols by the patent office, unveiling the technological nature of 

the patent. We define the p patents as: patents that have received at least one CPC symbol 

that we categorize as p. The n patents are defined as patents that have received at least one 

CPC symbol defined as n, and no CPC symbols defined as p. The third type, a, are patents 

that haven’t received either any p or n CPC symbols (Table 1).  
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Table 1. Patent categories 

Category  Description Categorization rule 

p PV-patents Patents that have received at least one CPC symbol 

that we categorize as p. 

n Non-PV patents Patents that have received at least one CPC symbol 

defined as n, and no CPC symbols defined as p 

a All else Patents that haven’t received either any p or n CPC 

symbols. 

 

For p two definitions will be used. Definition 1 only includes patents given the CPC symbol 

Y02E10/50 (photovoltaic energy) or one of its subcategories. This definition is only used for 

the selection of the citing patents. The reason for using such conservative definition in this 

case is to simplify the search and also to guarantee that the citing patents which are the base 

of the analysis really are PV-patents. Theoretically all patents that are defined as PV should 

be given this category, but in reality some PV-patents are instead given other related CPC-

symbols. For this reason we are using the more generous definition 2 in all other cases of the 

categorization, for which the categorization scheme of Johnstone et al. (2009) will be use as 

far as possible. They use the IPC-scheme to categorize patents into different technology fields 

related to renewable energy. Most times the IPC symbol corresponds to an identical CPC-

symbol. However, the CPC-scheme is higher in detail than the IPC, and includes more than 

three times as many entries, which are mainly made up by subcategories to the existing IPC-

symbols. That implies that some classes related to PV energy has been added to the CPC-

scheme, and thus needs to be considered for our classification. To find these we have 

searched for keywords relating to PV energy, using the Espacenet
4
 classification search. First, 

the search was performed using the following keywords: “solar”, “PV”, “photovoltaic”, 

“photoelectric”, “solar energy”, and “solar cells”. After that we have manually gone through 

the definitions of the CPC-classes found and categorized them according to our schedule. 

Secondly we have looked at each section of the CPC scheme to see if some classification 

symbol is missing, but no additional CPC-symbols where found in this way.   

Moreover, some additional modifications to the Johnston et al (2009) scheme had to be done 

since they use the category “solar energy”, which includes both photovoltaics and other solar 

energy. Hence some of their categories have been excluded from our definition of PV. The 

                                                           
4
 Espacnet is an online patent database offered by the EPO  
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distinction is made based description of the categories - most times it is straightforward to see 

which of the two categories, PV (p) and non-PV (n), the IPC-class belongs to. The full 

categorization scheme is found in appendix B. 

Table 2. Category definitions 

 PV (p) NON-PV (n) 

Definition 1 CPC=Y02E10/5* CPC not in list 1 

Definition 2 List 1(appendix B) List 2 (appendix B)  

Note: *or any of its subcategories  

After we have found a scheme for categorizing p, we need to define n. Also for n two 

definitions will be used, one simple definition (def. 1) and one more refined version (def. 2). 

Definition 1 includes all patents that are not p, whereas definition 2 includes only CPC-

categories that (i) are not p, and (ii) have some probability to be cited by PV-patents (see table 

2). The reason for making this distinction is that only a small part of all patent categories is 

ever cited by PV-patents, and thereby contribute to the technological development of that 

industry.  The first definition is used for categorizing the citing patents, Ci,t. In this case it is 

more reasonable to include all CPC symbols that are not p in the definition of n, since we 

know that all of these patents (by definition) have had an impact on the PV knowledge 

production.  

The cited patents only represent a small fraction of all existing CPC symbols, which shows 

that the pool of usable knowledge for technological development of PV-energy is just a small 

fraction of all existing knowledge. Since the patent stocks, Pit, are to represent the existing 

“usable knowledge” for PV knowledge production, the technological nature of knowledge 

stocks should mirror the cited patents. Therefore, to identify the CPC symbols of interest we 

have gone through the dataset of cited patents to see which categories are actually cited. CPC 

sections symbols (the first letter of the CPC-symbol) that are cited by less than 5 percent of 

the patents are then excluded from the definition of n-patents. Using this rule, about one third 

of all published patents are considered to belong to the n-category (find the complete 

definition in appendix B). Letting all non- “p” patents be “n” would increase the data set with 

about 100 million observations, which would only add noise to the set. This is still a rather 

generous definition and in practice, the outcome from using this definition instead of 

including all existing patents, only have a marginal effect on the results.  
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The third category, a, is only necessary when we are using the refined definition of n. It is 

given to patents that are 1) not p,  and 2) not n.  These patents are not considered in the model 

and are assumed to have no value for the knowledge production of PV. 

4.4 Variables 
The data set includes four main variables; citing patents (Ppt), cited PV patents  (Cpt), cited 

non-PV patents (Cnt),  and all published PV and non-PV patents (Table 3).  

Table 3. Data description 

Variable Granted Priority year Categorizaton Autority 

Citing patens (𝐏) 8 842 1977-2009 PV (def. 1) EPO 

Cited PV patents (Cpt) 13 238 <2009 PV (def. 2) All 

Cited non-PV patents (Cnt) 8 716 <2009 Non-PV (def. 1) All 

All published PV patents  62 990 1900-2009 PV (def.2) All 

All published non-PV patents 16 790 277 1900-2009 Non-PV (def. 2) All 
 

Table 4 shows which type of information we have on each variable. For example, for P we 

have micro data on priority year, granting office, citations made and recieved and CPC-class. 

For the cited patents, Cpt and Cnt ,we have data on  publishing year, granting office and CPC-

class. For the variables all published  PV and non-PV patents we only have data on publishing 

year and CPC-class. 

Table 4. Data description 

 Citing 

patents (P) 

Cited PV 

patents (Cpt) 

Cited non-

PV 

patents 

(Cnt) 

All 

published 

PV patents 

All 

published 

non-PV 

patents 

Priority year X - - - - 

Publishing year - X X X X 

Granting office X X X - - 

Citations made X - - - - 

Citations 

recieved 

X - - - - 

CPC-class X X X X X 

 

Citing patents  

xpt is an integer variable [0,∞] that sums the number of granted PV patents in year t, using 

definition 1 (Table 2). The study includes all patents granted by the EPO between 1977 and 

2009, which responds to a number of 8 842 (Table 3). The time period chosen is based on data 

availability; there exists no EU-patent data before 1977 since the EPO was set up in that year. 

Excluding the patents that are not citing any patents we have 8 713 left. The data is ordered by 
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priority year, which is the year when the application first was sent in to the patent office. 

 

Figure 1. Citing and cited patents per year 1977-2009. Source: PATSTAT Online 

Figure 1 shows the flow of PV-patent grants from  the European Patent Office (EPO)  per 

year and the patents which are cited by these.  In 1977, the first year of measurement, only 15 

PV-patents were granted. Until the middle of the 1990’s less than 100 PV-patents were 

granted annually. The fastest growth of new PV-patents occurred after the 1990’s and until 

the end of the period.  

Cited patents  

cpt is an integer variable [0,∞] that sums the number of times in year t that PV patents have 

been cited by Ppt, using definition 2 (Table 2).  t refers to priority year of the citing patent, i.e. 

the year which they were cited, and responds to a number of 13 238 patents. The priority year 

of the cited patent can be any year prior to t, and is not considered in the study. Likewise the 

granting authority can be any patent office of the world.  

cnt is an integer variable [0,∞] that sums the number of times in year t that n-patents have been 

cited by Ppt, using definition 2 (Table 2).  t refers to priority year of the citing patent, i.e. the 

year which they were cited, and responds to a number of 8 700 patents. 
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Figure 2. Cited PV (p) and non-PV (n) 1977-2009 

 

Figure 2 show how often the two categories of patents, p and n, are cited by the European PV-

patents. As can be seen, PV patents are more often cited than non-PV patents, but the shares 

has been fairly constant over time, disregarding the very early years when the PV-share is 

lower (Figure 3).  

 

 

Figure 3. Share of PV-patents among cited 

 

All published patents and patent stocks 

We will use Jaffe and Caballero’s  (1993) popular diffusion-depreciation model, according to 

which the patents produced in each time period adds to the patent stock through two 

simultaneous exponential processes, one of obsolescence and one of diffusion (Jaffe and 

Caballero 1993): 
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𝑃𝑖,𝑡 = ∑ 𝑥𝑖 ,𝑡
𝑇
𝑡=0 𝑒−𝛽1(𝑇−𝑡)(1 − 𝑒−𝛽2(𝑇−𝑡))     

              (19) 

where 𝑥𝑖 ,𝑡is the count of the number of granted patents in category i in year t. Obsolescence is 

the process by which knowledge becomes ‘outdated’ and of no use for new innovation. 

Diffusion is the process by which new knowledge becomes available and useable to 

innovators. The magnitude of these effects are determined by the parameters 𝛽1 ≥ 0 and 

𝛽2 ≥ 0  , where a larger parameter value implies a faster obsolescence respectively diffusion 

rate.  Here 𝛽1 and 𝛽2 are given the values of 0.1 and 0.25 respectively, in accordance with 

Popp (2013) . With these values the patent reaches is maximum effect about four years after it 

was granted.   

T is the time when the patent 𝑥𝑖 ,𝑡 makes the citation, and t is the time at which the potentially 

cited patent was published. A potentially cited patent is a patent that is considered to have 

some probability of being cited by patent 𝑥𝑖 ,𝑡, i.e. patents that contain some knowledge that 

could be used for developing new innovations.  According to this definition of the knowledge 

stocks, the value of the patent, i.e. its potential to be cited, only depends on its categorization 

and publication year. 

To calculate the patent stocks we use patent data from PATSTAT Online. The set includes all 

p respective n patents, using definition 2 (Table 2), published in PATSTAT Online, which is 

the vast majority of all existing patents in those categories, for the time period 1904-2008. In 

total in counts to more than 62 000 p patents, and almost 17 million n patents (Table 3). The 

patent stock values are then calculated using the diffusion-depreciation.  

For the analysis we only need the patent stock values for the period 1977-2009, since the 

patent stocks shows the data available for the inventor at the time of the invention. Figure 5 

show the patent stock developments for the period 1977-2009 (see also table in appendix C). 
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(a) (b) 

  

 

Figure 4. Number of PV-patents (a) and non-PV patents (B) granted per year 1904-2009. 

(a) (b) 

  
 

Figure 5. Patent stock size för PV (a) and non-PV (b) 

 

4.4.1 Geographical Origin 
Figure 6 shows the origin of the cited patents by citing year, where origin refers to the first 

granting office (one patent may be granted by more than one office). US patents are the most 

cited at all points in time, with around 50 percent of the total.  EP and Japanese (JP) pantens 

follow a very similar trend for the whole time period, with a maximum in the early 90’s, 

while US patents shows a mirrored image of these.  
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Figure 6. Origin of cited patents by citing year 

 

Figure 7 shows the share of cited patents by origin, now separated for PV and non-PV patents. 

There is a clear trend that non-PV patents are cited at about the same rate as PV-patents of the 

same origin at all points in time. The only visible exception to this is for Japanese patents 

after 1990, where a substantially larger share of the cited patents were PV.  The difference we 

see here might be a result of what Orlando (2002) showed, that geographical distanse isn’t a 

factor for intraindustry spillovers, but it is important for interindustry spillovers. The 

conclusion we draw by looking at the figure is that  origin seems to be an important factor 

when it come to citations.  We know from previous research inventors are much more likely 

to cite patents from their own country than foreign patents (see e.g. Popp 2013), so the 

patterns we see might be due to origin of the citing patents. We don’t know the first granting 

office of the citing patents,  but it is likely that years that have a large share of US PV and 

non-PV patents among the cited, is a reflection of a large share of US patent among the citing 

the same year.  
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Figure 7. Origin of cited patents by citing year 

 

4.4.2 Technological Origin  

In this section we look at the most commonly cited CPC-symbols to find out from where the 

spillovers come, and how this has changed over time.  Figure 8 shows the percentage of the 

cited patents that are given a certain CPC-symbol (see appendix D for the complete data set). 

It is again important to note that one patent typically receives several CPC-symbols, so the 

percentage does not add up to 100. The most common technology groups to cite is, not 

surprisingly, PV technology and the closely related field of semiconductor devices.  More 

than half of the cited patents are given CPC-symbols related to these categories. The citing 

rates have only changed marginally over time, even though there have been some shifts 

within these groups.   

Solar thermal
5
 and solar heat collectors

6
 are two other categories of great influence, 

representing on average 11 percent. We can see large variations between single years, with 1 

percent at the lowest, and 20 percent as the biggest, but there is no clear trend over time. 

                                                           

5 Y02E 10/4: Solar thermal energy 

 

6 F24J 2: Use of solar heat, e.g. solar heat collector 
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a: Semiconductor devices (H01L 31) 

 

b: Processes or apparatus adapted for the 

manufacture or treatment of semiconductor or 

solid state devices or of parts thereof (H01L 21) 

 

c: Solid state devices using organic materials as 

the active part, or using a combination of organic 

materials with other materials as the active part; 

Processes or apparatus specially adapted for the 

manufacture or treatment of such devices, or of 

parts thereof (H01L 51) 

 

d: Capacitors (H01G) 

 

 

 

 

 

 

e: PV technology : (Y02E 10/5) 

 

f: PV technology related to buildings (Y02B 10/1) 

 

g: Solar thermal (Y02E 10/4) 

 

h: Solar thermal related to buildings  (Y02B 

10/2*) 

 

 

 

 

 

i: Dyes; paints; polishes; natural resins; 

adhesives; miscellaneous compositions; 

miscellaneous applications of materials (C09) 

  

j: Coating metallic material, etc. (C23) 

 

k: Glass; mineral or slag wool (C03)  

Figure 8. Cited categories over 1977-2009. 

  

There is an increase over time for citations of PV
7
 and solar thermal

8
 related to buildings. In 

late 1970’s and early 1980’s we have very few citations of patents from these categories, but 

from the mid 1990’s their share starts growing, and in the end of the period they make up 

about 10 percent of the citations. 

                                                           
7
 Y02B 10/1: Integration of renewable energy sources in buildings; Photovoltaic 

8
 Y02B 10/2: Integration of renewable energy sources in buildings; Solar thermal 



 

 

26 

Furthermore, citations relating to nanotechnology
9
 and layered products

10
 have been 

increasing over time. Electrography/magnetography
11

 receives a large share of the citations 

before 1990 (17 percent in 1977), but after 1990 the spillovers from this technology group is 

only marginal.  

In chemistry “dyes/paints/polishes etc”, “glass”, and “coating metallic material etc.” are the 

three most influential groups. The two first show no trend over time, but the latter, and most 

influential one, shows a clear trend of decreasing importance.  

To sum up, we see that the vast majority of the citations come from the solar energy 

technology (PV- and non-PV) and electricity. In the early development of PV, physics related 

to electrography was also important, but that influence diminished drastically over time. 

Chemistry, especially material science, has been important from the beginning up until today, 

although there are differences over time between subcategories within this group. 

  

                                                           

9 B82Y: Specific uses or applications of nano-structures; measurement or analysis of the nano-structures; 

manufacture of treatment of nano-structures 

10 B23B: Layered products, i.e. products built-up of strata of flat or non-flat, e.g. cellular or honeycomb, form  

11 G03G: Electrography; electrophotography; magnetography  
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5. Model estimations 
In this section we estimate two OLS models, with the purpose to test the theoretical model 

suggested in section 3. After that, we additionally estimate five logistic mixed effect models, 

to be able to make use of all the information from the disaggregated data, to see the effect of 

knowledge spillovers while controlling for patent origin.   

5.1 Models 

In this subsection we will perform OLS estimations of two simple empirical models, based on 

the theoretical model presented in section 3. The theoretical model (equation 18) is linearly 

transformed using logs:  

𝑙𝑛 (
𝑐𝑝𝑡

𝑐𝑛𝑡
) = α′=  +𝜀𝑙𝑛 (

𝑋𝑝𝑡

𝑋𝑛𝑡
) + 𝑒 ,    α′=  ln (

2

σ
− 1).   

             (20) 

The dependent variable, 
𝑐𝑝,𝑡

𝑐𝑛,𝑡
,  is the citing rate, and the independent variable, 

𝑋𝑝,𝑡

𝑋𝑛,𝑡
, is the 

relative patent stock size. σ  is the spillover coefficient and ε is the substitutability coefficient, 

which are expected to be ≥0 and ≤1 in order so fulfill the assumptions of the theoretical 

model. 𝑒 is the error term, which is assumed to be normally distributed. 

Additionally, we estimate another model, in which we introduce a time dummy, time,  which 

takes on the value 1 for all observations after 1999 and 0 for observations before that.  The 

dummy is motivated by the fact that we see big differences in the patent stock growth over 

time. After 1999 the growth rate takes off substatially, which means we have many more 

observations from this time in the disaggregated data set. The model is formulated as 

𝑙𝑛 (
𝑐𝑝𝑡

𝑐𝑛𝑡
) = 𝑎′ + 𝜀𝑙𝑛 (

𝑋𝑝𝑡

𝑋𝑛𝑡
) + 𝛽 ∗ 𝑡𝑖𝑚𝑒 +  𝑒 ,       α′=  ln (

2

σ
− 1).  

           (21) 

5.1.1 Results  

Before estimating the models, two outliers representing the years 1980 and 1982 were 

excluded from the data set. The estimates for the full data set, including these observations 

can be found in appendix E. They were excluded since they had Cooks D-values that were 

higher than 4/n, which is a commonly used rule to identify outliers (Jacoby, 2005). The 

exclusion only changes the estimates marginally.  

Table 5 shows the regression outputs from the estimate of the two models. For both models, ε 

and σ are significant at the 1% level and have predicted values that are within the given  
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Table 5. Model estimates 

Parameter Basic model Time dummy model 

Y 𝑙𝑛 (
𝑐𝑝𝑡

𝑐𝑛𝑡
) 𝑙𝑛 (

𝑐𝑝𝑡

𝑐𝑛𝑡
) 

ε 0.282*** 

(0.0717) 

.397*** 

(.0734) 

a’ 1.988*** 

(0.4184) 

2.742*** 

(.4424) 

σ 0.241*** 0.121*** 

Time  -.269*** 

(.0874) 

Observations 31 31 

R-squared 0.348 0.512 

Note: Standard errors in parentheses . *** p<0.01, ** p<0.05, * p<0.10 

 

bounds >0, <1. The results confirm the hypotheses that there exists a spillover effect 

(sigma>0) and that there marginal effect of the relative patent stock size is diminishing 

(epsilon<1).  The R
2
 values are high for both models, 0.35 for the basic model and 0.51 for 

the time dummy model, which indicates a good model fit.  

Figure 9 shows the relation between relative patent stock size (PP/PN) and citation ratio 

(CP/CN) in logarithmic scale, where the red line is the fitted values of the basic model.  

 

Figure 9. Fitted values for the basic model 

 

We get the value of sigma by solving the  eqation 𝑙𝑛 (
2

σ
− 1) = α′. This gives a σ of 0.24 for 

the basic model and 0.12 for the time dummy-model. The value of ε is 0.28 for the basic 
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model and 0.40 for the time-dummy model. The time dummy coefficient is calulated by  exp(-

0.27)=0.76.  

The predictions of the two models given these estimates are illustraded in Figure 10.  

 

Figure 10. Model predictions. (Note: time=1) 

5.1.2 Diagnostics 
 

The assumptions of OLS are: 

1. The dependent variable is a linear function of the independent variables and the error 

term 

2. The expected value of the error term is zero 

3. The residuals are uncorrelated 

4. The residuals have constant variance 

5. The independent variables and uncorrelated with the error term 

If the assumptions are violated, it is not possible to draw inferences from the estimates, and 

we cannot generalize the results. The results are however valid within the sample. For the 

hypothesis tests to be valid we also need the residuals to be normally distributed.  

Furthermore, OLS is sensitive to outliers and multicollinearity (Stata Web Books, ch. 2). In 

addition to the OLS assumptions we will also look at leverage.  

Figure 11 shows the residuals of the two estimations. For a linear model the residuals should 

be randomly distributed around its zero mean. The plot suggests a slight inverted U-shape 

relation between the residauls and the fitted values for the basic model.  If this is the case, the 

assumption of a linear relationship between the variables is violated, and another model 

specification would be a better fit. This could possibly be solved by transforming the 
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variables, or by including other (omitted) variables. The u-shape could also be caused by 

autocorrelation. There are no clear signs of heteroscedasticity.  

(a) (b) 

  

Figure 11. Residual plots for the basic model (a) and time dummy model (b). 

 

For the time dummy model, the inverted u-shape is less visible than in the basic model, and 

the residuals seem to be more randomly distributed around zero.  There are no clear signs of 

heteroscedasticity or autocorrelation by judgeing from the plot, although it is difficult to tell 

since there are so few observations on the left side of diagram compared to the right side.  

Since it is difficult to tell from the plots if we have autocorrelation or heteroscedasticity 

among the residuals, we additionally perform two tests, the Whites’s test for homoskedasticity 

and the Breausch-Godfrey test of autocorrelation. In both tests we want to accept the null of 

zero heteroskedasticity, respectively autocorrelation.  The results of the tests are shown in 

Table 6.  

Table 6. Tests for heteroskedasticity and autocorrelation 

Test White’s 

H0: Homoskedasticity 

Breusch-Godfrey 

H0: No autocorrelation 

Model Basic Time Dummy Basic Time Dummy 

Chi. square 0.96 2.19 2.817 0.759 

P-value 0.6731 0.7007 0.0933* 0.3837 

For both models the null of homoscedasticity are accepted at the chosen significance level, so 

we conclude that there are no signs of heteroskedasticity among the residuals for any of the 

two models. Neither for the autocorrelation test, can any of the nulls be rejected at 5% 

significance level for either model. The p-value for the basic model is 0.09, which means that 

although the null can’t be rejected at the 5%-level, it would have been rejected at the 10 % 
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level, suggesting there might still be some problems caused by autocorrelation.  Further, we 

can see that the p-values of both tests are markedly higher for the time dummy model, 

suggesting that the model better fits the data with regards to these aspects, than the basic 

model.  

 

 

(a) 

 

 

 

(b) 

 

Figure 12. AFC for basic model (a) and time dummy model (b) 

 

Figure 12 shows the autocorrelation functions (ACF) for both models. On the vertical axis the 

autocorrelation is shown and on the horizontal axis we have the lags. The blue line represents 

the rejection rule, meaning that if any of the lags are larger than the given threshold value, the 

null of zero autocorrelation is rejected at 5 % significance level. Here we see that there is no 

significant autocorrelation among the residuals. Further, we again see that the autocorrelations 

are smaller for the time dummy model than for the basic model. Given these results we 

conclude that none of the models suffer from autocorrelation.   

Leverage is a measure of an observations influence on the estimate. A leverage point, hi, is 

considered high if ℎ𝑖 > 2 × 𝑚𝑒𝑎𝑛(ℎ). The first row of Figure 14 show the leverage of 

each observation by year. There is a clear pattern for both models that the early 

observations have much higher levarage than the later. For the basic model, three 

observations are considered to have high leverage, whereas for the time dummy-model 

there are two such observations. 

(a) (b) 
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Mean leverage: h=0.065 Mean leverage: h:0.097 

 

Figure 13. Leverage for basic model (a) and time dummy model (b). 

 

As we could see in the earlier plots most of the variation in the data set are concentrated 

to these early years. The second row of Figure 13 shows the squared normalized residuals 

on the horizontal axis and the leverage on the vertical. Observations that are outside the 

two red lines have a combination of high leverage and big residual, which means that 

they are very influential. We see that for the basic model, the year 1980 and 1982 are 

among the observations with highest influence. The time dummy only have one 

observation outside the lines (with exception for a few very close to both borders), and 

that is for the year 1980. However,  when we exclude these two observations we don’t 

find any substatial changes to the results. All coefficiants are still significant and roughly 

of the same magnitude as when the high-influence observations are included (see 

Appendix E).  

Lastly we look at the normality of the residuals (Figure 14). We can see that the residuals 

are spread along the diagonal line, indicating an approximately normal distribution. 

There are some signs of non-normality for the basic model, but the deviations are small.   

(a) (b) 
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Figure 14.  Q-Q plots of the residuals of the basic model (a) and time dummy model (b)  

5.1.3 Conclusions 

The estimates are significant and give parameter estimates that are within the given bounds of 

the theoretical model. The R
2
 are large for both models, meaning that the independent 

variables are able to explain a big part of the variation in the dependent variable, which is 

somewhat surprising given the simplicity of the models.  

The basic model gives us the parameter estimates: sigma=0.2, epsilon=0.3. If we insert these 

values to equation 13 we get: 

[
𝑐𝑝𝑡

𝑐𝑛𝑡
] =

2−0.2

0.2
(

𝑋𝑝𝑡

𝑋𝑛𝑡
)

0.3

 .    

    (22) 

That means that if the non-PV patent stock is 100 times the size of the PV patent stock, the 

probability of citing a PV-patent is twice as big as the probability of citing a non-PV patent.  

The residual plot for the basic model shows signs of an non-linear relationship between the 

variables,  which means that the first assumption of OLS is violated. Overall we cannot 

conclude that the assumptions are fulfilled for the basic model, meaning that we are not able 

to generalize the results.   

For the time dummy model we don’t find any obvious violations of the OLS assumptions, and 

the model shows a in general better fit than the basic model. The time-dummy can’t be 

interpreted within the theoretical framework. Time itself should not be an explanatory factor 

for the citation rate, but probably covaries with some other factors that isn’t accounted for in 

the models. 
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A possible problem for both models is that the early observations have much higher influence 

than the late ones. This is due to the fact that the relationship between the independent and the 

dependent  variable is much stronger and more visible for the early observations, whereas the 

curve flattens out in the late years. This suggests that a linear model might be the wrong fit for 

this data set, and that other models should be tested. The residual diagnostics and the scatter 

plots of the basic model show some signs of that a quadratic model specification would better 

fit the data. 

5.2 Logistic mixed effect models 

Since the assumptions of the basic OLS model aren’t fully fulfulled we continue by fitting a 

logistic model to the disaggregated data. There are several advantages to this approach.  First, 

there are few distributional assumptions for logistic models (Hair et al. 2010). Second, we can 

now use the disaggregated data, so there will be no loss of information due to aggregation. 

The dependent variable in this model, PV, is now a binary variable that takes on the value 1 if 

the cited patent is PV and 0 otherwise. This will also drastically increase the number of 

observations in the dataset, from 33 (one per year) to 21 969. By increasing the sample size 

we can also allow for more explanatory variables, such as origin, which we have data on but 

coudn’t make use of in the OLS-case.  The disadvantage of the approach is that the results 

will be less straight forward to interpret with regards to theory.  

The explanatory variable, K, will still be aggregated by year, and thus we are combining 

micro- and macro data. For this reason we use a multi level modeling approach, by 

introducing a random intercept to the model, which allows to include both individual level 

data and group level data (Rasbash et al. (2015). We will include dummy variables for origin, 

since previous studies has shown that origin is an important explanaroty factor of citation.  

5.2.1 Models 

The logistic random effect model has a binary outcome (p=0 or p=1) and estimates the log 

odds of the probability  that the response variable p will take on the value of 1, given the 

predictors and random effects. We specify the following five models, 

𝑀𝑜𝑑𝑒𝑙 1:   𝑙𝑛 (

              

   
𝑃(𝑝𝑖𝑗=1|𝑘𝑖𝑗,𝑢𝑗)

𝑃(𝑝𝑖𝑗=0|𝑘𝑖𝑗,𝑢𝑗)
) = 𝛼 + 𝛽1𝑘𝑖𝑗 + 𝑢𝑗     

            (23) 

𝑀𝑜𝑑𝑒𝑙 2:   𝑙𝑛 (

              

   
𝑃(𝑝𝑖𝑗=1|𝑘𝑖𝑗,𝑢𝑗)

𝑃(𝑝𝑖𝑗=0|𝑘𝑖𝑗,𝑢𝑗)
) = 𝛼 + 𝛽1𝑘𝑖𝑗 + 𝛽2𝐽𝑃𝑖𝑗 + 𝑢𝑗   

            (24) 
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𝑀𝑜𝑑𝑒𝑙 3:   𝑙𝑛 (

              

   
𝑃(𝑝𝑖𝑗=1|𝑘𝑖𝑗,𝑢𝑗)

𝑃(𝑝𝑖𝑗=0|𝑘𝑖𝑗,𝑢𝑗)
) = 𝛼 + 𝛽1𝑘𝑖𝑗 + 𝛽2𝐽𝑃𝑖𝑗+ 𝛽3𝑈𝑆𝑖𝑗 +  𝑢𝑗   

           (25) 

𝑀𝑜𝑑𝑒𝑙 4: 𝑙𝑛 (

              

   
𝑃(𝑝𝑖𝑗=1|𝑘𝑖𝑗,𝑢𝑗)

𝑃(𝑝𝑖𝑗=0|𝑘𝑖𝑗,𝑢𝑗)
) = 𝛼 + 𝛽1𝑘𝑖𝑗 + 𝛽2𝐽𝑃𝑖𝑗+ 𝛽3𝐸𝑃𝑖𝑗 +  𝑢𝑗   

          (26) 

𝑀𝑜𝑑𝑒𝑙 5: 𝑙𝑛 (

              

   
𝑃(𝑝𝑖𝑗=1|𝑘𝑖𝑗,𝑢𝑗)

𝑃(𝑝𝑖𝑗=0|𝑘𝑖𝑗,𝑢𝑗)
) = 𝛼 + 𝛽1𝑘𝑖𝑗 + 𝛽2𝐽𝑃𝑖𝑗+ 𝛽3𝑈𝑆𝑖𝑗 + 𝛽3𝐸𝑃𝑖𝑗 +  𝑢𝑗            (27)

  

where  = 1,2, … 𝐽, 𝑖 = 1,2, … , 𝑛𝑗 , and the random effect 𝑢𝑗  is assumed to be normally 

distributed with mean 0 and variance 𝜎2 (Li et al., 2011). j represents the grouping variable 

(year), and i the individual patent. p is a binary variable taking  on the value 1 if the patent 

cites another PV patent, and 0 otherwise and 𝑘𝑖𝑗 the relative size of the PV knowledge 

stock. 𝐽𝑃𝑖𝑗 is a dummy taking on the value 1 if the cited patent is Japanese, 𝑈𝑆𝑖𝑗 is a dummy 

taking on the value of 1 if the cited patent is from the US and 𝐸𝑃𝑖𝑗 is a dummy taking on the 

value 1 if the cited patent is granted by EPO
12

. 𝛼 is  the intercept which represents the 

reference category for the dummies.  

5.2.2 Results 
Table 7 show the estimates of model 1-5 All parameter estimates, except for US, are 

significant on the 1 % level. In this setting the intercept doesn’t have a meaningful 

interpretation. 𝑘𝑖𝑗  is as expected postive, meaning that when the relative knowledge stock of 

PV is bigger relative to non-PV, the probability of a PV-patent citing another PV-patent is 

bigger. Furthermore, if the patent is of Japanese origin, the probality of being cited increases. 

Also European origin has an positive effect, although not as strong. 

 

 

 

 

Table 7. Estimates of model 1-5 

      

 Model 1 Model 2 Model 3 Model 4 Model 5 

Fixed effects      

                                                           
12

 European patents not granted by EPO is included in the reference category and not in EP, ie. European patents 

granted by a national patent office 
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Intercept 1.81859*** 

(0.44060) 

1.39300*** 

(0.43547) 

1.40818*** 

(0.43471) 

1.32262*** 

(0.43481) 

1.30584*** 

(0.43703) 

ln_k 0.24947*** 

(0.07541) 

0.19386*** 

(0.07453) 

0.19410*** 

(0.07435) 

0.18508** 

(0.07434) 

 

0.18388** 

(0.07447) 

JP  0.76416*** 

(0.04410) 

0.74997*** 

(0.04656) 

0.78443*** 

(0.04494) 

0.7945*** 

(0.05079) 

US   -0.02837 

(0.02982) 

 0.01531 

(0.03583) 

EP    0.08315** 

(0.03543) 

0.09324** 

(0.04257) 

Random effect      

σu 0.04747 0.04566 0.04548 0.04529 0.04534 

      

AIC 29363.0 29039.0 29040.1 29035.5 29037.3 

Log 

likelihood 

-14678.5 -14515.5 -14515.0 -14512.7 -14512.6 

Obs= 21 969 

Groups=33 

     

Note: Standard errors in parentheses . *** p<0.01, ** p<0.05, * p<0.10 

Table 8 shows the citing odds for model 1, 2 and 4 for three different sizes of k. Looking at 

model 1 we see that the odds of citing a PV patent only increases marginally (from 6.34 to 

6.72) when k goes from 0.001 to 0.1. Given this model, the citing rate is almost constant, 

regardles of knowledge stock size. This scenario is close to the case where ε approaches 0, 

and the citing share can be described by a Cobb-Douglas function, where the citing rate only 

depends on sigma (see section 3).  

Looking at the other models, where the origin dummies are included, the size of k is has a 

substantially bigger effect on the odds. In all cases increasing k from 0.001 to 0.1 doubles the 

citing odds.  
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Table 8. Citing odds for different model specifications and levels of k 

Odds 

 K=0.001 K=0.01 K=0.1 

Model 1 6.34 6.48 6.72 

Model 2 (jp=1) 2.26 3.54 5.53 

Model 2 (jp=0) 1.05 1.65 2.57 

Model 4  

(Jp=1, Ep=1) 

2.48 3.81 5.83 

Model 4 (Jp=1, Ep=0) 2.29 3.51 5.37 

Model 4 (Jp=0, Ep=0) 1.05 1.60 2.45 

 

The first assumption of the logit model with random intercept is that the dependent variable is 

independent, conditional on u. In practice this means that the probability that a random patent 

is citing a PV-patent should not be affected by another patents probability of doing the same. 

This relates to the model specification. The random intercept is assumed to account for all 

dependence we see in the data, and if that is not the case the model is wrongly specified 

(Gibbons et al., 2010).  

The second assumption is that 𝑢𝑗  is normally distributed with mean 0 and variance 

𝜎2 (Gibbons et al., 2010). The Q-Q plots of the residuals (Figure 17, appendix F) shows that 

the residuals data are approxomately nomally distributed.  

Furthermore there are some sample size considerations. Logistic models demands bigger 

samples than OLS, and is recommended that the sample size should be at least 400*, with at 

least 20* observations per explanatory variable. Since we have a sample of almost 22 000 

observations, this is not a problem for us (Hair et al. 2010). 

5.2.3 Robustness check  

When the sample size is very big, as in our case, even minor effects might be detected by 

hypothesis tests, even though they are too small to have any relevance.  To check if the found 

effects are still significant at smaller sample sizes we reduce the sample size substantially, 

from 21 969 observations to 1650, which gives us 50 observations per year.  We draw a 

random sample without replacement from the original sample, conditioned on year.  This will 

also give a balanced data set, in contrast with the origial sample which was highly 
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unbalanced, with a large share of the observations concentrated to the last years of the time 

series.  

As Table 9 shows, ln_k and JP are still significant for all models, whereas US and EP 

becomes insignificant for all models. The size of all significant coefficents have increased 

quite substatually from the previous case. The reason for this is that the early observations, 

that from previously are shown to be very influential, get a bigger relative weight than when 

we use the full data set. Also in the smaller sample Model 2 gives the best overall 

performance, with the lowest AIC value of the models, although the differences between the 

models are extremely small.  

Figure Figure 18 in appendix F shows the Q-Q plots for random effects for all models. Here 

we find some deviations from normality, but still on an exceptable level.  

To be sure we also perform Shapiro-Wilk normality tests for each of the models, with the 

nollhypothesis that the sample comes from a normal distribution. Table shows that non off the 

nulls are rejected at 10% significance level, meaning that we can’t find any significant 

deviations from normality (Appendix E).  
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Table 9. Regression output for model 1-5 with a smaller sample  

      

 Model 1 Model 2 Model 3 Model 4 Model 5 

Fixed effects      

Intercept 3.3088*** 

(0.7758) 

2.9495*** 

(0.7665) 

2.92360***   

(0.76938) 

2.7894***     

(0.7751) 

2.5782    

*** 

(0.7910) 

ln_k 0.5012*** 

(0.1308) 

0.4538*** 

(0.1289) 

0.45342***   

(0.12895) 

0.4330***    

(0.1295) 

0.4167   

***  

(0.1300) 

JP  0.5395*** 

(0.1541) 

0.56295***   

(0.16373) 

0.5820***    

(0.1582) 

0.6994***     

(0.1820) 

US   0.04751    

(0.11190) 

 0.1742     

(0.1341) 

EP    0.1625     

(0.1377) 

0.2807*    

(0.1649) 

Random 

effects 

     

Sigma2 u 0.1316 0.1230 0.1233 0.1213 0.1210 

      

AIC 2191.7 2180.9 2182.7 2181.5 2181.8 

Log 

likelihood 

-1092.8 -1086.4 -1086.4 -1085.7 -1084.9 

Obs= 1650 

Groups=32 

     

Note: Standard errors in parentheses . *** p<0.01, ** p<0.05, * p<0.10 

 

5.2.4 Conclusions 

The logistic model get significant parameter estimates, showing that the citation rate increases 

with relative size of the PV patent stock. We could also see that origin was an important 

factor. The fact that a cited patent came from Japan had higher influence on the citing odds 

than the patent stock size. This in in line with previous research, showing that origin is a very 

important factor for understanding citing behaviour. In this case it is probably a reflection of 

the fact that most of the citing patets are of US origin. The interpretation would then be that 

sice you are more likely to cite any patent from your own region, only the most relevant 

patents from other regions are cited.  
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Furthermore we saw that the results were still significant after a radical decrease in the sample 

size, with all the effects still pointing in the same direction. The size of the effect changed 

however, due to the fact that the early observations recieved a higher weight in the smaller 

sample. Since the data is heavily unbalanced and we have observations with high levereage, 

the size of the effects should not be given too much emphasis. What is important is that we 

see that there is an effect, which further confirms that we have spillovers between the sectors, 

and these are depending on the size of the knowledge stock.  

The results of the logistic models gives further evidence that it is necessary to take spillovers 

into account when modeling technological development. It also suggests that the OLS-models 

might be suffering from omitted variable bias, for not including origin, which seems to be a 

very important factor for explaining citing behaviour.  
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6 Discussion  
We tested two OLS models and five logistic mixed effect models to see if we could find inter 

industry spillovers for PV-patents. The basic OLS model based on Hart’s (2016) knowledge 

production function showed significant results and parameter estimates within the given 

bounds, but some of the OLS assumptions were violated which means that the results could 

not be generalized. This was probably due to the fact that we had too few observations, and 

would have needed a more complex econometric model that could handle the signs of 

dependence showing in the residuals.  We added a time dummy to the basic OLS model, and 

then the necessary assumptions were fulfilled. Based on this we draw the conclusion that 

knowledge spillovers from other technological fields has been important for the development 

of photovoltaic energy. The results are, however, heavily influences by the early observations 

of the data set, making it difficult to say if the suggested model would give similar results had 

we a longer time period to study.  

The relationship between patent stock size and citation rate was most evident when the PV 

patents stock was very small, and thus the existing number of PV patents was very low. 

Already in the late 1980's the trend flattened out, and while earlier PV patents still remained 

the most cited by European PV patents, their share remained about unchanged at between 55-

75 percent. This is in agreement with the theoretical model, where the marginal productivity 

of knowledge is high when the knowledge stock is small. When the size of the PV knowledge 

stock reached a certain point the marginal productivity flattened out and instead the spillovers 

seemed to come in fixed proportions (only the size of sigma matters).   What is surprising is 

how early this point was reached.  

The logistic model with disaggregated data confirmed that spillovers have had a significant 

impact on the development of PV-technology, and that also origin has been a very important 

factor. In fact, Japanese origin was more important than the relative patent stock size for 

determining citation. This result might be caused by failure to consider dependencies in the 

data, due to lack of information about the origin on the citing patent. From earlier studies it is 

well known that inventors often have a strong preference to cite patents from their own 

country, and thus considering the origin of the citing and potentially cited patent would likely 

improve the results. 

The results imply that models that neglect inter-industry knowledge spillovers might overstate 

the power of historical advantages of older technologies. If new technologies can make use of 

external knowledge they can feed on the technical development in other fields. Given that this 
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is the case, is the assumption of extreme path dependence invalid, which gives a more 

positive outlook for the marginalized “clean” technologies. However, technological distance 

clearly was one of the most important determinants for citing. In fact all the cited patents 

came from a very limited group of closely related technology fields, which makes it possible 

to argue that given a higher level of aggregation with regards categorization, the spillovers 

would be close to zero.  

In general, a larger share of inventions are being patented today, which might suggests that 

the average value of a published patent today is lower than it was in earlier times. If this trend 

is true for for both PV and non-PV patents, this shouldn’t have an effect on the results. 

However, if this “patent inflation” is more apparent in one of the two patent stocks, this could 

influence the results by over evaluating the value of one of the patent stocks.  Since PV is a 

young and fast growing technology the incentives to patent inventions are high. The growing 

profitability of the sector might open up for patenting of less scientifically valuable inventions 

(see eg. de Rassenfosse & Guellec 2009). We also know that there is a tendency to file patent 

at EPO instead of in national patent offices. It is likely that in earlier times only very 

competitive inventions were filed at EPO, so that the average quality level of the EPO patents 

were higher.  Finding patent values was beyond the scope of this study so we can’t rule out 

that changes in patenting behavior have had an effect on the results. If it have had an effect it 

is most likely that we without this would see a stronger correlation between patent stock size 

and citation rate. This is because the PV sector has experienced a higher growth rate than the 

non PV sector for the whole period and are thus more likely to suffer from inflation.  
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7 Conclusions  
Spillovers can be seen as a pool of opportunities available to exploit by the receiving industry, 

which if they are utilized can boost the growth of the industry in the initial phases. After 

intense exploitation, the pool dries out and the growth rate slows down (Clarke  et al. 2008). 

This is a trend that is visible for the development of the PV-technology. The early period 

shows a very high growth rate of PV-patents in combination with big spillovers from other 

technology sectors, especially from electrography, magnetography and chemistry/metallurgy. 

These results are similar to Nemet (2012b), that showed that energy technology has especially 

benefited from spillovers from fields of chemical, electronics and electrical technologies. 

The results of this study indicate that we have inter-industry knowledge spillovers, and that 

they have had a significant impact on the knowledge production in the PV sector. That means 

that at least for the PV sector, Acemoglus model of technological development is not 

applicable. When spillovers are being ignored, the historical advantage of older technologies 

get overstated, meaning studies will give overly pessimistic outlooks for new technologies.  

Further, the results suggest that the spillover rate is positively depending on the relative size 

of the sectors knowledge stock, but is diminishing. This implies that the Cobb Douglas case 

of a constant spillover rate is invalid for the PV technology, i.e. ε <1. 

The fact that the spillovers are small, taking the relative patent stock sizes into account, and 

that the spillover rate stabilizes so early makes it possible to argue that both Acemoglus 

model and the Cobb Douglas function can be useful for studying technological development 

of mature technologies that have found market applications. For understanding the emergence 

of new technologies it is however necessary to take spillovers into account. Based on this 

study it seems that it is also necessary to acknowledge the degree of substitutability between 

different types/sources of knowledge, ε.  

To improve and validate the results of this study a few measures could be taken. One is to 

estimate the production function on a different technology field, to find whether the results 

are generalizable for a broader set of technologies. 

One potential problem with this study is that all patents are assumed to have the same value. 

In reality it is unlikely that this is the case, and by finding methods to diversify the assumed 

values of different patents, the results could be more precise and less noisy. There are mainly 

two parameters that would be highly interesting to take into account in future research of the 

subject. The first is the number of citations received, which is a common way to measure the 
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importance of a patent. The second parameter is the origin of the patent. It is well known, and 

supported by this study, that inventors have a strong tendency to cite patents from their own 

country or region. For further research it would be highly interesting to locate the origin of the 

patents, in order to find citation patterns that can make it possible to do a more sophisticated 

weighting of the patents.  

We saw in this study that material science was an important source of spillovers in the early 

stages when we only had the first generation of PV, and the main focus was to lower the 

material costs. Later on nanotechnology were an important influence, mirroring the third 

generation of solar cells.  Studying each generation of PV technology separately could thus 

give interesting insights on the technological development. Also, as previous research has 

shown, the spillovers seem to be highly correlated with the technological distance between the 

sectors. In this study we have made a rough division between two sectors, PV and non-PV; it 

would be interesting to see how well the technological distance is correlated with the 

spillovers by making a more sophisticated classification including more technological 

categories.   
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Appendices 
Appendix A: PV-energy 

Photovoltaics (PV)  is the direct conversion of radiation into electricity.  PV-systems contain 

solar cells that convert light into electricity. Each cell contains layers of semi-conducive 

materials. When light falls on the cell an electric field across the layers is created, causing the 

electricity to flow. It is the intensity of the light that determines the amount of electricity that 

is generated in each cell (Tyagi  et al. 2013, 2). 

The market for PV energy is still small, only about 0.5 percent of the total world electricity 

generation is provided by photovoltaics.  Global production data for solar energy estimates a 

production between 18GW and 28GW in 2012 (IEA 2013). Yet, the branch is fast growing, 

and the annual growth rate of PV installations has been between 40 and 90 percent since year 

2000. IEA  (2010) estimates PV energy to deliver 5 percent of the world energy demand by 

2030, and 11 percent by 2050. Europe is by far the largest market for PV energy, with 

Germany and Italy as the leading countries, each having more than 5 percent of their total 

electricity demand covered by PV energy. Asia is currently the fastest growing region for PV, 

and China is the leading country in solar cell production (IEA 2013). 

The technology has experienced fast cost reductions, and the unit cost dropped to one third 

between 2008 and 2013.  In order to increase market shares, the efficiency of the solar cell is 

an important parameter. The United States is by far the most important country for 

technological development in solar energy. Between 2002 and 2011 more than 50 percent of 

the worlds solar patents were assigned to American inventors (including both solar thermal 

and PV). Second to US was Japan with 22 percent and Germany with 6 percent (Heslin, 

Rothenberg, Farley & Mesiti P.C. 2010). 

The European PV knowledge production has had two periods of fast growth. The first is in the 

late 1970’s until the early 1980’s. Even though the first silicon solar cell was created already 

in 1954, and that the technology had been an important part of both the American and Soviet 

space program since the 1960’s, this was when it first was considered as an interesting option 

for a bigger market and when PV technology found its way into consumer products (Perlin 

2013, Let it shine). 

PV technology is generally classified into three generations. The first generation is based on 

monocrystalline silicones wafers. These are still dominating the market due to the high 

efficiency of the material, which can reach up to 20 percent (Tyagi et al. 2013).  There are still 
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technological improvements in this area, but widespread adaptations of the technology have 

been hindered by the price and availability of raw silicon.  (Heslin Rothenberg Farley & 

Mesiti,  2009) As the technology have improved, the costs have been more and more 

dominated by material costs. Polycrystallines are also used as a cheaper alternative, but they 

are also much lower in efficiency.  (Green, 2002)  The second generation made up by thin 

film materials, for example CIS/CIGS, CdS/CdTe and Ampurphus silicone. These require less 

semi conductive material than the first generations’ solar cells but are also less efficient 

(Heslin Rothenberg Farley & Mesiti, 2009). Another disadvantage is their adverse 

environmental impact. Despite these flaws the technology is increasing its marketshares 

(Tyagi et al. 2013). The third generation is still in an early stage of development, and includes 

more experimental technologies that are less adapted to the market. It includes dye-sensitized 

solar cells, quantum dots, nano-modified materials (Heslin Rothenberg Farley & Mesiti, 

2009).  They are generally advantageous regarding costs and environmental impact, but are 

suffering from the low efficiency (Tyagi et al. 2013). 
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Appendix B: CPC classification scheme 

Table 10. CPC classification scheme  

List 1: definition 2 of p 

(PV) 

List 2: Definition 2 

of n (non-PV) 

"Y02E10/5*" 

"Y02T50/69" 

"Y02T70/5245" 

"Y02B10/1*" 

"H02N6*" 

"H01L27/142*" 

"H02S*" 

"H02J3/383" 

"H02J3/385" 

"H01L31/02008"  

"H01L31/02021"  

"H01L31/0203"   

"H01L31/02167"  

"H01L31/02168”  

"H01L31/022425" 

"H01L31/022441" 

"H01L31/02245"  

"H01L31/022458" 

"H01L31/0424"   

"H01L31/0485"   

"H01L31/0504"   

"H01L31/0516"   

"H01L31/0522"   

"H01L31/0527"   

"H01L31/068"    

"H01L31/0682"   

"H01L31/0684"   

"H01L31/0687"   

"H01L31/06875"  

"H01L31/0725"   

"H01L31/073"    

"H01L31/0735"  

"H01L31/074"    

"H01L31/0745"   

"H01L31/0747"   

"H01L31/0749"   

"H01L31/076"    

"H01L31/188"    

"H01L31/1884"   

"H01L31/1888" 

Not PV (list 1) 

Not : A*, D*, E*, G* 

Note: *any of its subcategories  
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Appendix C: Patent stock size 

Table 11. Patent stock size per year  

Year PV patent stock Non-PV patent stock 

1977 436 834515 

1978 571 880693 

1979 752 925367 

1980 962 925367 

1981 1209 1018094 

1982 1492 1069946 

1983 1824 1123439 

1984 2196 1181970 

1985 2619 1236968 

1986 3080 1281345 

1987 3567 1318237 

1988 4082 1352324 

1989 4574 1382170 

1990 5000 1408926 

1991 5334 1436998 

1992 5593 1467678 

1993 5818 1500178 

1994 6028 1532580 

1995 6244 1566468 

1996 6445 1602480 

1997 6666 1647110 

1998 6896 1700501 

1999 7181 1761253 

2000 7575 1831915 

2001 8027 1917491 

2002 8561 2009691 

2003 9178 2107051 

2004 9786 2205278 

2005 10415 2306215 

2006 11152 2408064 

2007 11984 2511237 

2008 12971 2612902 

2009 14281 2710138 

Source: EPO 
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Appendix D: Citings per CPC symbol 

Table 12. Number of citings per CPC symbol  

Note: *any subcategory.  Source: EPO 
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Appendix E: Additional regression outputs 

Table 13. Regression with all observations 

Model Basic all obs Basic without 1980 and 

1982 

Time dummy model 

without 1980 and 

1982 

Y     𝑙𝑛 (
𝑐𝑝𝑡

𝑐𝑛𝑡
)  𝑙𝑛 (

𝑐𝑝𝑡

𝑐𝑛𝑡
) 𝑙𝑛 (

𝑐𝑝𝑡

𝑐𝑛𝑡
) 

ε 0.295*** 

(0.0712) 

0.262*** 

(0.0789) 

0.379*** 

(0.0791) 

Constant 2.076*** 

(0.409) 

1.873*** 

(0.445) 

2.694*** 

(0.857) 

Observation

s 

33 29 29 

R-squared 0.357 0.289 0.476 

Note: Standard errors in parentheses . *** p<0.01, ** p<0.05, * p<0.10 

Table 14. Cooks d 

Year Ln(Patent stock size) Ln(Citation ratio) Cook’s D 

1983 .87 -6.42 0.219 

 

1977 -.47 -7.56 0.34 

 

 

Figure 15. Regression plot with all observations.  
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Figure 16. Residual plot basic model including outliers 
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Appendix F: Q-Q plots 
 

 

 
Figure 17.  QQ-plot for ranodm intercept model 1- 5 full sample size 
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Figure 18. q-q plot model 1-5. Smaller sample 

 

 

Table 15. Shapiro-Wilk normality test for smaller sample size 

Model W P-value 

1 0.9611 0.2942 

2 0.96749 0.4331 

3 0.96624 0.4025 

4 0.96968 0.4906 

5 0.96713 0.4241 

 

 

 
 


