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Popular Science 

Potato virus Y (PVY) is a devastating potato pathogen affecting potato (Solanum tuberosum) 

production worldwide. PVY is a tuber-borne virus, and it is also spread mechanically and by 

aphid vectors to more than 40 species. PVY causes a wide range of symptoms on potato foliage 

ranging from symptomless or mild mosaic to defoliation and death. In addition, PVY causes 

potato tuber necrotic ringspot disease, and this greatly affects tuber marketability. Yield losses 

caused by PVY infection can be up to 80%, depending on infection incidence of tuber seeds, 

potato cultivar, PVY isolate, activity of aphid-vectors and environmental conditions. PVY 

displays a high genetic diversity and has the ability to evolve overtime and form new strains 

through crossing (recombination) between different strains and through mutations. In the last 

few decades, novel PVY recombinant genotypes have been described to induce severe 

symptoms in numerous potato cultivars. There are numerous risks associated with the 

emergence of new strains/variants: overcoming resistance sources, yield loss, reduction in tuber 

quality (due to potato tuber necrotic ringspot disease).  

In Sweden, the ordinary PVYO strain used to be most common, but it has been shown in a 

previous study to be replaced by numerous recombinant genotypes, e.g. the tuber necrosis-

inducing PVYN (PVYNTN) strain, as has been reported for many European countries. In 

addition, the presence of resistance-breaking PVYO isolates has been reported in Sweden in a 

previous study. Consequently, genome sequencing is required to confirm the presence of 

recombinant genotypes and to identify potentially new recombinants. Nearly complete genome 

sequence of one non-recombinant resistance-breaking PVYO isolate was determined. The 

resistance-breaking PVYO isolate was 99% identical with the ordinary PVYO strain. We also 

determined nearly complete genome sequences of three recombinant PVYNTN isolates from 

Sweden. The three Swedish PVYNTN isolates were 99% identical with numerous PVYNTN 

isolates from Europe. These findings confirm the presence of the PVYNTN strain, which is 

mainly associated with potato tuber necrotic ringspot disease, in Sweden.  
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Abstract 

Potato virus Y (PVY) is a devastating potato pathogen affecting potato (Solanum tuberosum) 

production worldwide. In the last few decades, novel PVY recombinant genotypes have been 

described to induce severe symptoms in numerous potato cultivars. This study aimed to 

determine complete and partial genome sequences of some Swedish PVY isolates with novel 

biological properties. The complete coding sequence of one resistance-breaking PVYO (O-MB) 

and three PVYNTN isolates were determined, along with six partial genomes. Isolate O-MB 

shared an amino acid identity of 99% with the PVYO and PVYZ strains and was in phylogenetic 

group PVYO/Z. O-MB differs from all studied isolates belonging to the PVYO and PVYZ strains 

by having a valine at position 90 in the HC-Pro protein, and from numerous PVYO and PVYZ 

isolates by having arginine at position 155 and glutamine at position 276 in the P3 protein. 

These amino acid residues may play a role in overcoming the resistance gene Nytbr in potato. 

In addition, the three Swedish PVYNTN isolates shared an amino acid identity of 99% with 

isolates of the variant PVYNTN (A) and were in phylogenetic group PVYNTN. Three of the 

partial genome sequences shared an amino acid identity of 99 – 100% with PVYNTN and PVYZ-

NTN and were in phylogenetic group PVYNTN. These findings confirm the presence of the 

PVYNTN strain in Sweden. Two of the partial genome sequences shared an amino acid identity 

of 100% with the PVYN-W strain, and one sequence shared an amino acid identity of 99% with 

isolates of the PVYO, PVYZ and PVYN-W strains. These three partial genome sequences were 

in phylogenetic group PVYO/Z. Recombination analyses revealed that O-MB is a non-

recombinant isolate, while the Swedish PVYNTN isolates have three recombinant junctions 

located within the HC-Pro/P3, VPg and CP cistrons, which is similar to numerous European 

isolates belonging to the variant PVYNTN (A). Interestingly, PVY defective RNA molecules 

(D-RNAs), i.e. PVY genomes with single-deletions of 1582 to 5149 nucleotide residues in 

length spanning the regions NIb to CP, CI to NIb, 6K2 to CP and CI to CP, were found for 

PVY for the first time. There were ten different patterns of PVY D-RNAs identified in this 

study. The D-RNA of NWO-KE1-2, which belongs to the PVYNTN strain, was found to have 

an in-frame single-deletion of 2907 nucleotide residues spanning CI/ to NIb region as well as 

a duplication of 383 nt located within the CI cistron. It is possible that these D-RNAs could 

play a role in PVY pathogenicity/virulence, adaption and/or evolution. 
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1. Introduction 

1.1. Potato virus Y (PVY) distribution, host range and transmission 

Potato virus Y (PVY) is one of the most important plant viruses with a worldwide distribution 

(Kehoe and Jones, 2016) and infecting a wide range of host plants comprising 495 species in 

72 genera from 31 families, including numerous economically important solanaceous crop 

plants, e.g. potato (Solanum tuberosum), pepper (Capsicum sp.), tomato (S. lycopersicum) and 

tobacco (Nicotiana tabacum) (Kerlan, 2006). PVY infection may result in huge losses in potato 

crops in terms of tuber yield and quality. The infection in potato may be symptomless, but can 

also lead to plant death or the induction of potato tuber necrotic ringspot disease. PVY is a 

tuber-borne virus and it is also transmitted by more than 40 aphid species in a non-persistent 

manner (Quenouille et al., 2013). The green peach aphid (Myzus persicae) is considered to be 

the most efficient vector (Nanayakkara et al., 2012), although the bird-cherry oat aphid 

(Rhopalosiphum padi) is considered to be the most significant vector in Sweden, due to its 

presence in massive numbers (Sigvald, 1985; 1989). 

1.2. PVY genome 

PVY belongs to the genus Potyvirus in the family Potyviridae. PVY virions are flexuous and 

filamentous with a length of about 730 – 740 nm and a diameter of 11 nm. The 5’-end of the 

PVY genome is covalently linked to a genome-linked viral protein (VPg) through a tyrosine 

residue and the 3’-end contains a poly(A)-tail. As in other potyviruses, the PVY genome is a 

positive-sense and single-stranded RNA (ssRNA) molecule of about 9.7 kb that is translated 

into a single polyprotein of about 3062 amino acid (aa) residues. Subsequently, the polyprotein 

is cleaved by three viral proteases into ten multifunctional proteins. In addition, the potyviral 

genome contains a short open reading frame (ORF) P3N-PIPO, which is generated by +2 

frameshifting of the P3 cistron (Quenouille et al., 2013) (Fig. 1). P3N-PIPO encodes a putative 

protein of variable length among PVY isolates, approximately 76 aa (Cuevas et al., 2012). 

Protein 1 (P1) is one of the potyviral proteases and the most variable protein among 

potyviruses. The helper-component proteinase (HC-Pro) is a silencing suppressor protein that 

supresses RNA silencing, the plant defence mechanism, and also is one of the potyviral 

proteases and has many other functions, e.g. in virus multiplication, symptom development, 

aphid transmission, and cell-to-cell and systemic movement. Protein 3 (P3) is suggested to be 

involved in pathogenicity, systemic infection, virus multiplication and movement. The 

functions of the 6 kDa protein 1 (6K1) are unknown. The cylindrical inclusion (CI) is 

responsible for the formation of pinwheel-shaped inclusion bodies. The 6 kDa protein 2 (6K2) 

is involved in virus replication. The VPg has numerous functions. One of the VPg functions is 

its essential role in virus replication and translation. The nuclear inclusion protein a (NIa) acts 

as the major protease in viral polyprotein cleavage. The nuclear inclusion protein b (NIb) is the 

viral RNA-dependent RNA polymerase (RdRp). The coat protein (CP) is indispensable for 

virion assembly, aphid transmission, as well as cell-to-cell and systemic movement 

(Quenouille et al., 2013) (Fig. 1). 
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1.3. PVY genetic diversity and classification of strain groups  

PVY exists in a complex of strain groups and variants. PVY classification is based on: i) 

serology – determined by antibody recognition of the CP. ii) hypersensitive response (HR) in 

test host plants and different potato cultivars carrying certain resistance genes – determined by 

one or several genes. iii) sequence and phylogenetic analyses, including number and positions 

of recombinant junctions (RJs). Serological classification and biological properties of PVY 

strains are not always correlating, because there are numerous PVY strains/variants, which 

have similar serological classification and different biological properties, such as the strains 

inducing tobacco veinal necrosis (PVYN), North American NA-PVYN, PVYN tuber necrosis 

(PVYNTN), PVYE and PVYZ-NTN. There are six non-recombinant strain groups: stipple streak 

(PVYC), PVYN, North American NA-PVYN, ordinary (PVYO), PVYD and PVYZ. In addition, 

there are six recombinant strains: PVYNTN, PVYE, PVY-NE11, PVYN-W (called PVYN:O in 

North America), PVYNTN-NW and PVYZ-NTN (Karasev and Gray, 2013; Kehoe and Jones, 

2016). In addition, there are various variants within a PVY strain that were formed by different 

mutations and/or recombination events. Inoculation with the PVYO strain and its variant PVYO-

O5 triggers HR in potato cultivars possessing the dominant resistance genes Nytbr. In addition, 

inoculation with the strains PVYZ and PVYZ-NTN triggers HR in potato cultivars possessing 

the dominant resistance gene Nztbr (Karasev et al., 2011; Kerlan et al., 2011; Karasev and Gray, 

2013). On the other hand, the strains PVYC, PVYD, PVYN, NA-PVYN, PVYNTN, PVYN-W, 

PVYNTN-NW and PVYE overcome the resistance genes Nytbr and Nztbr. Inoculation with the 

Figure 1. Genome structure of PVY strains and variants. The genome contains one major 

open reading frame (ORF), which is processed into ten mature proteins. In addition, a small 

ORF, P3N-PIPO is expressed in fusion with the P3 cistron. Light green colour represents 

the PVYO or PVYZ strains and light orange colour represents the PVYN strain. Positions of 

recombinant junctions (RJs) between PVYO and PVYN are marked (Hu et al., 2009). 
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recently identified PVYD strain triggered HR in numerous potato cultivars. The majority of 

these cultivars do not possess any of the previously mentioned resistance genes. Hence, it is 

suggested that a hypothetical gene, Ndtbr, elicits HR against the PVYD strain (Kehoe and Jones, 

2016). Furthermore, wild and cultivated potato genotypes possessing the dominant PVY-

specific Ry genes are assumed to have an extreme resistance (ER) to all PVY strains, with ER 

being epistatic to HR (Valkonen, 2015). 

1.4. PVY evolution 

Genetic diversity plays a crucial role in PVY evolution. PVY has the ability to evolve over 

time and forms new strains/variants through mutations and through recombination between 

different strains (Karasev and Gray, 2013). Mutation can play an important role in PVY 

evolution. For example, it has been suggested that a tuber-necrosis-inducing NA-PVYN isolate 

has evolved from a non-inducing NA-PVYN isolate by mutations (Nie and Singh, 2003). In a 

similar manner, we assumed that the PVYZ strain and resistance-breaking PVYO isolates have 

evolved from the ordinary PVYO strain by mutations. Through recombination, it is possible for 

PVY to evolve even faster than with mutations. Recombination has numerous benefits for PVY 

and other viruses, e.g. repair of deleterious mutations, acquisition of new genetic determinants, 

emergence of new strains/variants with higher fitness compared with the parental genotypes 

and maintenance of genetic variation. There are two types of RNA recombination: homologous 

and non-homologous. Homologous recombination results from crossover of two templates 

sharing considerable sequence identity, while non-homologous recombination results from 

crossover of highly variable sequence templates (Simon-Loriere and Holmes, 2012). The 

recombinant strains PVYNTN and PVYN-W and their variants have emerged through different 

events of homologous recombination between the PVYO and PVYN strains, and subsequently 

these recombinant strains have recombined again and generated the recombinant strain 

PVYNTN-NW (Chikh Ali et al., 2010a). Genomic sequences resulting from non-homologous 

recombination between an RNA molecule of the CP cistron and 3’-end of PVY and a host 

retro-transposable element have been reported in numerous grapevine (Vitis vinifera) varieties 

(Tanne and Sela, 2005). Virus genes integrated into the host genome are referred to as non-

retroviral integrated RNA viruses (NIRVs; Tromas et al., 2014) and NIRVs may be formed as 

a result of non-homologous recombination. Recombination detection software programmes are 

commonly used for detecting evidences of recombination in PVY genotypes and results are 

verified by inferring phylogenetic relationships. 

Recombination may lead to generation of subviral RNA molecules: defective (D) RNAs, 

defective interfering )DI) RNAs (Pathak and Nagy, 2009). D-RNAs and DI-RNAs are derived 

from the genome of the (parental) helper RNA virus, while chimeric RNAs are derived from 

the helper RNA virus along with other sources. D-RNAs and DI-RNAs have partially or 

completely deleted genes required for replication, encapsidation or movement, but contain the 

necessary cis-acting elements for replication. Consequently, D-RNAs and DI-RNAs require 

the proteins of their helper virus. DI-RNA is distinguished from D-RNA by it interference with 

viral infection and symptom induction through affecting the multiplication rate of its helper 

virus (Graves et al., 1996; Simon et al., 2004; Pathak and Nagy, 2009). There are different 
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models for the mechanisms of generation of subviral RNA molecules. Template switching or 

replicase jumping during regular replication of the viral genome is the most acceptable model 

for genomic RNA-RNA recombination and for formation of subviral RNA molecules, as being 

supported by biochemical assays. Moreover, cis-acting elements may play a role in guiding 

template-switching events (Pathak and Nagy, 2009). 

Most RNA and DNA viruses tend to have D- and DI-nucleic acids (Hull, 2002). Effective 

translation is suggested to be an important feature for the production and maintenance of 

defective molecules (Tromas et al., 2014). There are two groups of D-RNAs and DI-RNAs: 

single-deletion and multiple-deletion groups. Single-deletion D-RNAs and DI-RNAs have 

been reported for numerous viruses from different families, such as Alfalfa mosaic virus 

(AMV), Broad bean mottle virus (BBMV) and Cucumber mosaic virus (CMV) from family 

Bromoviridae; Citrus tristeza virus (CTV) from family Closteroviridae (Hull, 2002); PVY 

from family Potyviridae (Youssef, 2017). Multiple-deletion D-RNAs and DI-RNAs have been 

reported for members of the family Tombusviridae, e.g. Tomato bushy stunt virus (TBSV) 

(Hull, 2002). PVY D-RNAs were detected by multiplex-PCR and Sanger sequencing (Youssef, 

2017) and they may potentially play a role in virus pathogenicity/virulence and/or adaptation. 

1.5. PVY population structure in Sweden 

A few decades ago, the PVYO strain was the most prevalent one in Sweden (Sigvald, 1985; 

1989), but it has been replaced by a variety of recombinants, including the PVYNTN strain 

(Youssef, 2017). The recombinant PVYNTN strain has been shown to be the most prevalent 

strain in numerous European countries, e.g. the Netherlands, Scotland and Belgium (van der 

Vlugt et al., 2008; Davie, 2014; Kamangar et al., 2014). PVY recombinant strains, e.g. 

PVYNTN, are mainly associated with foliage necrosis in potato, as well as potato tuber necrotic 

ringspot disease, which significantly affects tuber yield and quality (Le Romancer et al., 1994; 

Kerlan et al., 2011; Karasev and Gray, 2013; 2013b; Kogovšek et al., 2016; Youssef, 2017). 

In a recent M.Sc. thesis by Youssef (2017), 42 potato samples were collected from 13 locations 

in Sweden and tested by RT-PCR (Glais et al., 2005; Chikh Ali et al., 2010b; 2013). All of the 

PCR-tested samples were positive for PVY, with 38 samples containing the variant PVYNTN 

(A), either as a single infection or in mixed infections with other genotypes, and with 12 of the 

samples containing the PVYO strain in mixed infections. Sequence analysis of cloned PCR 

fragments of numerous Swedish PVY-infected samples confirmed the presence of PVYN 

genotypes, e.g. PVYNTN. Inoculation experiments showed that none of the tested sample 

extracts, which contained the PVYO strain in mixed infections, triggered HR in potato cv. 

Désirée containing the resistance genes Nytbr and Ndtbr against the ordinary PVYO and PVYD 

strains, respectively. These results indicate the absence of the ordinary PVYO and PVYD strains 

from the tested samples. There are numerous genetic determinants within and outside the HC-

Pro cistron responsible for the induction of HR in plants carrying the Nytbr gene and subsequent 

systemic resistance (Moury et al., 2011). Tian and Valkonen (2013) identified the genetic 

determinants responsible for overcoming resistance based on the Nytbr gene to be the amino 

acid residues 227 to 327 of the HC-Pro protein. Hence, PVY recombinants with HC-Pro of the 

PVYN strain are capable of overcoming the resistance gene Nytbr. This study aimed to determine 
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the complete coding sequence for a few resistance-breaking PVYO isolates and to screen for 

the genetic determinants responsible for overcoming resistance by the Nytbr gene. 

Foliage necrosis was mainly associated with PVY samples containing the PVYNTN strain, as 

single or mixed infections with other recombinant genotypes (Youssef, 2017). PVYNTN isolates 

induce veinal and/or leaf necrosis in inoculated and systemically infected potato leaves, due to 

the enhanced accumulation of reactive oxygen species-associated metabolites (Kogovšek et al., 

2016). Inoculation with extract of sample NTN-2 was associated with foliage necrosis in potato 

cv. Désirée, whereas inoculation with extract of sample NTN-5, which originated from the 

same tuber source, was not associated with any forms of foliage necrosis (Youssef, 2017). 

Therefore, determination of the complete coding sequences of NTN-2 and NTN-5 was carried 

out for screening of genetic determinants responsible for the induction of foliage necrosis in 

cv. Désirée. In addition, we hypothesized that maybe there are new PVY recombinants present 

in the PVY population in Sweden and that these recombinants are able to induce novel 

symptoms in potato cultivars. Consequently, complete and partial genome sequencing of some 

Swedish PVY isolates, especially those associated with severe symptoms in potato, was carried 

out to confirm the presence of recombinant genotypes, as well as to identify potentially new 

recombinant patterns. 

2. Materials and Methods 

2.1. Virus sources 

The sequenced PVY isolates originated from potato samples NTN-2, NTN-5, NWO-KE1, 

NNW-KE2, NNW-KE3, NNW-KE6, NNW-KE266, NNW-KE278, NWO-L and NWO-MB, 

which were collected from different potato growing regions in Sweden during 2008 – 2015. D-

RNA NWO-KE1-5 from sample NWO-KE1, which came from a PVY genome with a deletion 

of 2756 bp, was included in this study. NWO-KE1-5 was sequenced in a previous M.Sc. thesis 

(Youssef, 2017). In addition, one potato sample (NW-DeI) from the Netherlands was included. 

Details of their place of origin, original host plants and foliage and/or tuber symptoms were 

previously described by Youssef (2017). PVY-infected potato plants were maintained under 

greenhouse conditions of 23 °C ± 2 and 16 h photoperiod by growing sprouted tubers from 

PVY-infected mother plants. 

2.2. Sequencing 

2.2.1. RNA extraction, cDNA synthesis and PCR conditions 

RNA extraction and cDNA synthesis were done according to Youssef (2017). The primer pairs 

5'NTR/HR-4063 and HF/3'NTR were utilized for amplifying the PVY genome as two 

fragments (Glais et al., 1998). The primer pair 5'NTR/HR-4063 generates a product of 4063 

bp covering genomic positions 1 – 4063 (5’-UTR to CI cistron) of the PVY genome, whereas 

the primer pair HF/3'NTR generates a product of 5606 bp covering genomic positions 4034 – 

9706 (CI cistron to 3’-UTR). The primer pair F-3739 (5’-AAC ATC ATC AGT GCT AGA 

TAC A-3’) and R-4592 (5’- CAT TCT CAA TTA TGT TGG TTG C-3’) was used to obtain 
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an overlap of 854 bp (genomic positions 3760 – 4569) between the PCR fragments generated 

using the primer pairs 5'NTR/HR-4063 and HF/3'NTR (Fig. 2). No amplification product was 

obtained for the PVY-infected potato samples NWO-L and NWO-MB using the primer pair 

5'NTR/HR. Instead, the forward primer P1-F (Gao et al., 2014), together with the reverse 

primer 4299-R (5’-TTA ACT TGA CTG GCT GCT GTG TTG TG-3’) were used (Fig. 2). The 

primer pair P1-F/4299-R generates a fragment of 4137 bp covering genomic positions 188 – 

4324 (P1 to CI cistrons) (Fig. 2). The primer pairs 5'NTR/HR-4063 and HF/3'NTR were 

obtained from TAG Copenhagen A/S and the primer pair P1-F/4299-R was obtained from 

Invitrogen. All primers were used at a final concentration of 0.2 µM. The 50 µl PCR mix using 

Phusion High-Fidelity DNA Polymerase contained 5 µl cDNA and a final concentration of 

0.02 U/µl Phusion High-Fidelity DNA Polymerase (Thermo Scientific), 1 mM MgCl2, 0.5x HF 

buffer, 0.5x GC buffer, 3% DMSO and 0.2 mM dNTPs (Thermo Scientific). Gradient PCR 

assays (1), (2), (3) and (4) were run employing the primer pairs 5'NTR/HR, HF/3'NTR, F-

3739/R-4592 and P1-F/4299-R, respectively. Conditions for gradient PCR assays were as 

follows: initial denaturation at 98 °C for 30 s, followed by 33 cycles of denaturation at 98 °C 

for 10 s, annealing for 30 s at 52 – 61 °C for PCR (1), and 60 – 65 °C for PCR (2), (3) and (4), 

extension at 72°C for 150 s and final extension for 10 min at 72°C. 

2.2.2. Cloning and sequencing of PCR fragments 

GeneJET gel extraction kit (Thermo Scientific) was utilized for purifying PCR products from 

agarose gels. A total amount of 150 – 250 ng of purified DNA was ligated into pJET cloning 

vector (50 ng) using Clone JET PCR cloning kit (Thermo Scientific), and then transformed 

into lab-made competent cells of Escherichia coli strain DH5α. The transformation was run 

following standard procedures. Plasmid DNA was purified from overnight E. coli cultures 

using GeneJET plasmid miniprep kit (Thermo Scientific), and digested by Fast Digest BglII 

(Thermo Scientific). Clones with the expected insert size were selected for sequencing utilizing 

Sanger sequencing technology at Macrogen (Amsterdam, The Netherlands). One to three 

clones per fragment were sequenced using pJET forward and reverse primers. Sequencing 

Figure 2. Genomic structure of PVY showing locations of the primers, which were used for 

amplifying the PVY genome, and expected product sizes (bp). 
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reads were checked for quality and sequence identity to PVY sequences available in GenBank 

utilizing BLASTn search engine offered by the National Center for Biotechnology Information 

(NCBI) {available at: <https://blast.ncbi.nlm.nih.gov/Blast.cgi>}. All analyses were done after 

excluding primers. Walking primers were designed for obtaining sequence overlaps of at least 

100 bp. Overlapping sequences sharing 99 – 100% nucleotide identity were assembled using 

the multiple alignment option offered by BLASTn.  

The complete coding sequence of isolate O-MB was assembled from two PCR fragments 

covering genomic positions 210 – 4298 and 4064 – 9673. Partial genome sequences (covering 

genomic positions 180 – 769) for Swedish samples NTN-2, NWO-KE1 and NNW-KE2 from 

a previous M.Sc. thesis by Youssef (2017) were included in this study (Appx. Table A). The 

complete coding sequences of isolates NTN-2 and NTN-KE2 were assembled from four 

overlapping PCR fragments covering genomic positions 180 – 769, 386 – 4033, 3760 – 4569 

and 4064 – 9673. In addition, the complete genome of isolate NTN-5 was assembled from three 

overlapping PCR fragments covering genomic positions 32 – 4033, 3760 – 4569 and 4064 – 

9673. All PCR fragments were assembled after removing forward and reverse primers. 

2.3. Nucleotide and amino acid sequence identity analyses 

ORFs of the sequenced Swedish PVY isolates NTN-2, NTN-5, NTN-KE2 and O-MB were 

identified using the search engine ORFfinder offered by NCBI. Screening for the P3N-PIPO 

was done based on data provided by Cuevas et al. (2012). Calculations of nucleotide and amino 

acid sequence identities for full-length and D-RNAs were done using the search engines 

BLASTn, tBLASTx and BLASTx offered by NCBI. All analyses were done after removing 

primers. Sequences were aligned using CLUSTAL-W in MEGA programme version 7.0 

(Kumar et al., 2016) using the default parameters. Sequences with deletions were aligned 

manually. All alignment sessions were imported in fasta format. Nucleotide and amino acid 

identities were determined using multiple sequence alignment by uploading fasta files in the 

search engines BLASTn and tBLASTx, respectively. Molecular classification of GenBank 

matched isolates were done based on information provided by Lorenzen et al. (2008), Hu et al. 

(2009), Karasev et al. (2011), Kerlan et al. (2011), Galvino-Costa et al. (2012), Kehoe and 

Jones (2016) and our findings. 

PVY polyprotein cleavage sites were determined though sequence comparisons based on 

information provided by Adams et al. (2005). The amino acid sequence of HC-Pro and P3 for 

six Swedish isolates (NTN-2, NTN-5, NWO-KE1-1, NTN-KE2, NWO-L-1 and O-MB) as well 

as isolates from different strain groups obtained from GenBank (Appx. Table B) were screened 

for unique amino acid differences through sequence comparisons. The six Swedish isolates and 

complete genome sequences of 22 PVY isolates from GenBank (Appx. Table B) were 

compared at amino acid positions 236 to 302 in the HC-Pro protein. This regions has been 

identified by Tian and Valkonen (2013) to be responsible for triggering/overcoming resistance 

by the Nytbr gene. 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.4. Phylogenetic analyses 

The phylogenetic analyses included nucleotide sequences available in GenBank of 23 PVY 

isolates of different strain groups (Appx. Table B), as well as four complete coding sequences 

(NTN-2, NTN-5, NTN-KE2 and O-MB) and six partial genome sequences (NWO-KE1-1, 

NNW-KE3, NNW-KE6, NNW-KE278, NWO-L-1 and NWO-L-2) of Swedish isolates from 

this study. The complete nucleotide sequence of an isolate of Pepper severe mosaic virus 

(PepSMV; Ahn et al., 2006) was used as an outgroup (Appx. Table B). Phylogenetic analyses 

were run after removing primers as well as proximal 5’- and 3’-regions. Sequence alignment 

was done using CLUSTAL-W in MEGA programme version 7.0 (Kumar et al., 2016) using 

default parameters. Two separate phylogenetic analyses were run, with the first analysis 

including nucleotide sequences covering genomic positions 180 – 4033 and the second analysis 

including positions 4064 – 9589. Phylogenetic relationships of aligned nucleotide sequences 

were inferred by the Maximum-Likelihood method implemented in MEGA programme version 

6.0 (Tamura et al., 2013) with 1000 bootstrap replicates for branch evaluation (Felsenstein, 

1985; Tamura and Nei, 1993; Tamura et al., 2013). 

2.5. Recombination analyses 

The nucleotide sequences of NTN-2, NTN-5, NTN-KE2 and O-MB were analyzed for 

evidences of genomic recombination. Recombination analysis was run using recombination 

detection programme version 4.0 (RDP4) package (Martin et al., 2015) employing RDP, 

GENECONV, Chimaera, BootScan, MaxChi, SiScan, PhylPro, LARD and 3SEQ programmes. 

A recombination pattern was considered when detected by at least four of the previously 

mentioned programmes with a P-value of < 1 × 10-6. 
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3. Results 

3.1. Nucleotide and amino acid sequence identity analyses 

The complete coding sequences of the four Swedish PVY isolates NTN-2, NTN-5, NTN-KE2 

and O-MB were determined. In addition, partial genome sequences of six Swedish PVY 

isolates and ten sequences of PVY D-RNAs, including one PVY D-RNA sequence (NW-DeI) 

from the Netherlands, were determined.  

Sequence analysis of cloned amplification products intended to cover nucleotide positions 1 – 

4063 revealed mis-priming, as sequences starting at position 386 were obtained for isolates 

NTN-2, NWO-KE1-1 and NTN-KE2, at position 1036 for a fragment from sample NWO-KE1, 

and at position 3354 for an isolate from sample NNW-KE3 (data not shown). These mis-

priming problems occurred because the reverse primer HR-4063 annealed as a forward primer, 

instead of the forward primer 5'NTR. A full-length fragment of 5606 bp (genomic positions 

4034 – 9706) using the primer pair HF/3'NTR was obtained for samples NTN-2, NTN-5, 

NNW-KE2, NNW-KE6, NNW-KE278, NWO-L and NWO-MB. For sample NWO-KE1, a 

full-length fragment was not obtained using the same primer pair, although high-quality RNA 

extracted at different stages of viral infection was utilized and the PCR assay was run under 

optimal conditions. 

The overlapping PCR fragment of 854 bp generated by the primer pair F-3739/R-4592 (Fig. 2) 

was obtained for isolates NTN-2, NTN-5 and NTN-KE2. The overlapping regions of the 854 

bp fragments with PCR fragments (genomic positions 1 – 4063 and 4034 – 9706) generated by 

the primer pairs 5'NTR/HR-4063 and HF/3'NTR for the previously mentioned isolates shared 

a nucleotide sequence identity of 99 – 100%. These findings confirmed that these fragments 

came from the same genotype enabling the assembly of nearly complete genomes. The 

overlapping regions for fragments from sample NWO-L shared a nucleotide sequence identity 

of 98%, and these sequences were then not assembled into a longer contig (data not shown). 

The determined sequence of NTN-2 is of 9547 nt, NTN-5 is of 9637 nt, NTN-KE2 is of 9548 

nt and O-MB is of 9516 nt. The large ORF of NTN-2, NTN-5 and O-MB encodes a putative 

polyprotein of 3061 aa. Meanwhile, sequence of NTN-KE2 contains a nucleotide substitution 

at position 2277 leading to the creation of a stop codon (UAG) and the split of the large ORF 

of 3061 aa into two ORFs of 2299 aa and 695 aa. NTN-KE2 The length of the ORF P3N-PIPO 

varied among PVY isolates. The ORF P3N-PIPO was identified for the Swedish isolates NTN-

2, NTN-5, NWO-KE1-1, NTN-KE2, NWO-L-1 and O-MB to start at nucleotide position 2919 

with the G1-2 A3-7 motif (GGAAAAAAA) and terminating with the stop codon (UAA) at 

position 3150. The ORF P3N-PIPO of the Swedish isolates encodes a putative protein of 76 

aa, which is similar to several isolates from the strains PVYC, PVYO, PVYE, PVYZ-NTN, 

PVYNTN, PVYN-W and PVYNTN-NW. Isolates NTN-2 and NTN-5 shared 100% amino acid 

identity of the translated P3N-PIPO ORF and the two isolates shared 99% amino acid identity 

with NWO-KE1-1, NTN-KE2 and NWO-L-1, and 96% with O-MB (data not shown). 
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Isolate NTN-2 shared nucleotide identity of 99% with NTN-5, NWO-KE1-1 (nucleotide 

positions 180 – 4033), NTN-KE2, NNW-KE278 (nucleotide positions 4064 – 9673) and NWO-

L-1 (nucleotide positions 210 – 4298) as well as 91% with NNW-KE6, 90% with NWO-L-2 

and 89% with O-MB. For nucleotide positions 4064 – 9673, isolate O-MB shared nucleotide 

and amino acid identities of 99% with NNW-KE6 and NWO-L-2, while the complete sequence 

of O-MB shared nucleotide and amino acid identities of 99% with PVYO isolates, e.g. 

ID1_5_62A, CO2140 and PVYO-Oz from the USA, and FL from Canada, as well as with the 

PVYZ isolate CRM2 from the UK (Tables 1 and 2). When comparing publicly available 

sequences, it was found that the nucleotide sequence identity among isolates of the PVYO strain 

ranged from 97 to 99%, which is the same identity as when comparing sequences of the PVYO 

and PVYZ strains (data not shown). The Swedish isolates NTN-2, NTN-5 and NTN-KE2 

shared highest nucleotide and amino acid identities at 99% with PVYNTN (A) isolates, such as 

3D from Serbia, NTN from Slovenia, IUNG-4 from Poland, PB312 from the USA, IUNG-8 

from Germany and La Union from Colombia (Tables 1 and 2). Isolates NWO-KE1-1 

(nucleotide positions 180 – 4033), NNW-KE278 (nucleotide positions 4064 – 9673) and NWO-

L-1 (nucleotide positions 210 – 4298) shared nucleotide and amino acid identities of 99 – 100% 

with isolates of the PVYNTN and PVYZ-NTN strains. Isolate NNW-KE3 shared nucleotide 

identity of 99% and amino acid identity of 100% with the PVYN-W strain. Similarly, isolate 

NNW-KE6 shared nucleotide and amino acid identities of 99% with the PVYN-W strain. Isolate 

NWO-L-2 shared nucleotide and amino acid identities of 99% with the PVYO, PVYZ and 

PVYN-W strains (Tables 1 and 2). 

Cleavage sites of the polyprotein were identified through sequence comparisons for the 

Swedish isolates, along with other isolates from GenBank. The motif MIQF was found to be 

the putative cleavage site for P1/HC-Pro for the Swedish isolate O-MB, in addition to isolates 

of PVYC, PVYD, PVYNTN-NW, PVYO, PVYO-O5 and PVYZ. The motif MIQF was found to be 

the putative cleavage site for P1/HC-Pro for the Swedish PVYNTN isolates NTN-2, NTN-5. The 

motif MVQF was found to be the putative cleavage site for P1/HC-Pro for the Swedish isolates 

NWO-KE1-1, NTN-KE2 and NWO-L-1, and isolates from the PVYC, NA-PVYN, PVYN, 

PVYNTN, PVYNTN-NW, PVYN-W and PVYZ-NTN strains. The motif YRVG was found to be the 

putative cleavage site for HC-Pro/P3 for all PVY strain groups, with some exceptions (data not 

shown).  

A total of 22 complete genome sequences of PVY isolates from different strain groups, in 

addition to six Swedish PVY isolates, were screened for the amino acid residues 236 to 302 in 

the HC-Pro protein that Tian and Valkonen (2013) identified as being responsible for 

triggering/overcoming resistance by the Nytbr gene. The Swedish isolate O-MB, together with 

one PVYC isolate and isolates of PVYO, PVYO-O5 and PVYZ were found to have the eight 

amino acid residues (I236, K238, S247, V252, Q262, R296, K270 and I301) located in the HC-Pro 

protein and previously identified as being responsible for triggering the Nytbr gene in potato 

(Tian and Valkonen, 2013). Whereas, the Swedish PVYN isolates NTN-2, NTN-5, NWO-KE1-

1, NTN-KE2 and NWO-L-1, together with isolates from PVYE, PVYN, PVYNTN, PVYN-W, 

PVYNTN-NW and PVYZ-NTN possess the eight amino acid residues (N236, L238, A247, I252, R262, 

K296, R270 and V301) identified to be required for overcoming Nytbr resistance (Fig. 3).  
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The P1, HC-Pro and P3 proteins were found to be highly variable among PVY isolates from 

different strain groups, including the Swedish PVY isolates, and no unique amino acid 

differences between PVYZ and PVYO were detected. HC-Pro protein of isolate NTN-2 differed 

by having leucine at position 314 and that of NTN-KE2 by having glutamine at position 411 

from all analyzed PVY isolates of different strain groups. For the same protein, NWO-L-1 was 

found to differ by having serine at position 459 from the strains PVYE, PVYN, PVYNTN, PVYN-

W, PVYNTN-NW and PVYZ-NTN, and O-MB differed by having valine at position 90 from all 

isolates belonging to the PVYO and PVYZ strains. For the P3 protein, isolates NTN-2 and NTN-

5 were found to differ at positions 175, 249, 255 and 272, and isolate NWO-L-1 differed at 

positions 268 and 316 from other Swedish PVYNTN (A) isolates with a few exceptions. Isolate 

O-MB differed from numerous PVYO isolates by having arginine at position 155 and glutamine 

at position 276 in the P3 protein. Furthermore, the foliage-necrosis-inducing isolate NTN-2 

differed from the non-inducing isolate NTN-5 in two amino acid residues located in the HC-

Pro and VPg proteins (data not shown). 

A total of ten different patterns of PVY D-RNAs from five potato samples were determined. 

The sequenced PVY D-RNAs were associated with samples NTN-5, NW-DeI, NWO-KE1, 

NNW-KE2 and NNW-KE266. The NWO-KE1-2 D-RNA shared 99% nucleotide identity with 

numerous PVYNTN (A) isolates, e.g. 3D, La Union, IUNG-4, PB312 and IUNG-13, as well as 

the Japanese PVYZ-NTN isolate Eu-12Jp. The D-RNAs NTN-5-2, NWO-KE1-2, NWO-KE1-

4, NWO-KE1-6, NWO-KE1-7, NNW-KE2 and NNW-KE266 shared a nucleotide identity of 

99 – 100% with numerous isolates of the PVYNTN and PVYZ-NTN strains. The D-RNA of the 

Dutch isolate NW-DeI shared a nucleotide identity of 99% with the PVYN-W strain and the D-

RNA of the Swedish isolate NWO-KE1-3 shared 99% identity with isolates from the PVYNTN, 

PVYN-W and PVYNTN-NW strain groups. The D-RNA of NWO-KE1-5 shared a nucleotide 

identity of 97 – 100% with isolates from numerous PVY strain groups (Table 3). 

An in-frame single-deletion of 1582 nucleotide residues spanning the NIb to CP genomic 

region was identified for the D-RNA NNW-KE2 (pattern 1) and an in-frame single-deletion of 

2994 nucleotide residues spanning the 6K2 to CP genomic region was identified for D-RNA 

NWO-KE1-4 (pattern 4). In-frame single-deletions of 2756 – 3953 nucleotide residues 

spanning the CI to NIb genomic region were detected for the D-RNAs NWO-KE1-5 (pattern 

2), NWO-KE1-2 (pattern 3), NW-DeI (pattern 5) and NWO-KE1-3 (pattern 6). Moreover, in-

frame single-deletions of 4126 – 5149 nucleotide residues spanning the CI to CP genomic 

region were detected for the D-RNAs NNW-KE266 (pattern 7), NTN-5-2 (pattern 8), NWO-

KE1-7 (pattern 9) and NWO-KE1-6 (pattern 10) (Table 4, Fig. 4). D-RNAs patterns 1, 4, 7, 8, 

9 and 10 have a deletion the 5’- proximal part of the CP cistron and D-RNA pattern 4 has a 

deletion in the 3’-proximal part of the 6K2 cistron (Fig. 4).  

The sequenced PVY D-RNAs were found to have 5 to 7 nucleotide residues long direct repeats 

(DR) flanking deletion junction sites, except for D-RNA NWO-KE1-2 Additionally, NWO-

KE1-2 was found to have a duplication of 383 nt located within the CI cistron (nucleotide 

positions 4193 – 4575) (Table 4, Fig. 4). The D-RNA NWO-KE1-2 has a single-deletion of 

2907 nucleotide residues spanning the CI to NIb genomic region.  
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aLength excluding forward and reverse primers. bGenomic position is based on our alignment. cStrain grouping of GenBank matched isolates were done based on information 

provided by Lorenzen et al. (2008), Hu et al. (2009), Karasev et al. (2011), Kerlan et al. (2011), Galvino-Costa et al. (2012), Kehoe and Jones (2016) and our findings. 

Table 1. Results of GenBank searches with BLASTn for sequences of Swedish PVY isolates 

Sample ID Isolate ID Sequence lengtha Genomic coverageb Matched isolates Strain groupc % Query cover % identity GenBank Accession 

no. 

NTN-2 NTN-2 9489 180 – 9673 3D PVYNTN 100 99 KJ946936.2 

IUNG-4 PVYNTN 100 99 JF927752.1 

PB312 PVYNTN 100 99 EF026075.1 

IUNG-8 PVYNTN 100 99 JF927756.1 

NTN PVYNTN 100 99 KM396648.1 

NTN-5 NTN-5 9637 32 – 9673 IUNG-8 PVYNTN 100 99 JF927756.1 

IUNG-4 PVYNTN 100 99 JF927752.1 

NTN PVYNTN 100 99 KM396648.1 

IUNG-13 PVYNTN 100 99 JF927761.1 

La Union PVYNTN 100 99 KR149260.1 

NNW-KE2 NTN-KE2 9490 

 

180 – 9673 IUNG-4 PVYNTN 100 99 JF927752.1 

3D PVYNTN 100 99 KJ946936.2 

IUNG-13 PVYNTN 100 99 JF927761.1 

IUNG-8 PVYNTN 100 99 JF927756.1 

NTN PVYNTN 100 99 KM396648.1 

NWO-MB O-MB 9460 210 – 9673 CO2140 PVYO 100 99 HQ912914.1 

SCRI-O PVYO 100 99 AJ585196.1 

CRM2 PVYZ 100 99 KP691322.1 

ID130 PVYO 100 99 HQ912888.1 

ID1_5_62A PVYO 100 99 HQ912890.1 

NWO-KE1 NWO-KE1-1 3854 180 – 4033 3D PVYNTN 100 99 JF927752.1 

IUNG-8 PVYNTN 100 99 JF927756.1 

IUNG-4 PVYNTN 100 99 JF927752.1 

PB312 PVYNTN 100 99 EF026075.1 

NTN PVYNTN 100 99 KM396648.1 
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aLength excluding forward and reverse primers. bGenomic position is based on our alignment. cStrain grouping of GenBank matched isolates were done based on information 

provided by Lorenzen et al. (2008), Hu et al. (2009), Karasev et al. (2011), Kerlan et al. (2011), Galvino-Costa et al. (2012), Kehoe and Jones (2016) and our findings. 

Cont. Table 1. Results of GenBank searches with BLASTn for sequences of Swedish PVY isolates 

Sample ID Isolate ID Sequence 

lengtha 

Genomic 

coverageb 

Matched isolates Strain groupc % Query cover % identity GenBank Accession 

no. 

NNW-KE3 NNW-KE3 710 3355 – 4033  261-4 PVYN-W 100 99 AM113988.1 

1107 PVYNTN-NW 100 99 KC296439.1 

1106 PVYNTN-NW 100 99 KC296438.1 

IUNG-14 PVYN-W 100 99 JF927762.1 

IUNG-5 PVYN-W 100 99 JF927753.1 

NNW-KE6 NNW-KE6 5594 4064 – 9662 PN10A PVYN-W 100 99 DQ008213.1 

IUNG-6 PVYN-W 100 99 JF927754.1 

LR PVYN-W 100 99 HQ912896.1 

N1 PVYN-W 100 99 HQ912863.1 

N3 PVYN-W 100 99 HQ912868.1 

NNW-KE278 NNW-

KE278 

5606 4064 – 9673 IUNG-15 PVYNTN 100 99 JF927763.1 

11627-12 PVYNTN 100 99 KC634007.1 

11227-2 PVYNTN 100 99 KC634004.1 

ID155 PVYNTN 100 99 HQ912869.1 

Eu-12Jp PVYZ-NTN 100 99 AB702945.1 

NWO-L NWO-L-1 4089 210 – 4298 11439 PVYNTN 100 99 KC634005.1 

11627-10 PVYNTN 100 99 KC634006.1 

11629-9 PVYNTN 100 99 KC634008.1 

1101 PVYNTN 100 99 KC296434.1 

Linda PVYNTN 100 99 AJ890345.1 

NWO-L-2 5606 4064 – 9673 CRM2 PVYZ 99 99 KP691322.1 

ID1_5_62A PVYO 99 99 HQ912890.1 

ID14_2_14a, PVYN-W 99 99 HQ912870.1 

A95 PVYN-W 99 99 HQ912866.1 

ICIA PVYO 99 99 HQ912864.1 
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aLength excluding forward and reverse primers. bGenomic position is based on our alignment. cStrain grouping of GenBank matched isolates were done based on information 

provided by Lorenzen et al. (2008), Hu et al. (2009), Karasev et al. (2011), Kerlan et al. (2011), Galvino-Costa et al. (2012), Kehoe and Jones (2016) and our findings. 

Table 2. Results of GenBank searches with BLASTx for sequences of Swedish PVY isolates 

Sample 

ID 

Isolate ID Sequence 

lengtha 

Genomic coverageb Matched isolates Strain 

groupc 

% query 

cover 

% 

identity 

GenBank Accession no. (protein 

data) 

NTN-2 NTN-2 9489 180 – 9373 NTN PVYNTN 100 99 AIY63190.1 

3D PVYNTN 100 99 AJT60331.2 

PB312 PVYNTN 100 99 ABK13680.1 

IUNG-4 PVYNTN 100 99 AFJ05128.1 

IUNG-8 PVYNTN 100 99 AFJ05132.1 

NTN-5 NTN-5 9637 180 – 9373 IUNG-4 PVYNTN 100 99 AFJ05128.1 

  IUNG-8 PVYNTN 100 99 AFJ05132.1 

  NTN PVYNTN 100 99 AIY63190.1 

  IUNG-13 PVYNTN 100 99 JF927761.1 

  3D PVYNTN 100 99 AJT60331.2 

NNW-

KE2 

NTN-KE2 9490 180 – 9373 3D PVYNTN 100 99 AJT60331.2 

IUNG-4 PVYNTN 100 99 AFJ05128.1 

PB312 PVYNTN 100 99 ABK13680.1 

IUNG-8 PVYNTN 100 99 AFJ05132.1 

La Union PVYNTN 100 99 AKG94974.1 

NWO-

MB 

O-MB 9460 211 – 9373 ID1_5_62A PVYO 100 99 AEI52933.1 

CO2140 PVYO 100 99 AEI52957.1 

FL PVYO 100 99 ADO14470.1 

PVY-Oz PVYO 100 99 ABK13679.1 

CRM2 PVYZ 100 99 ALH24905.1 

NWO-

KE1 

NWO-

KE1-1 

3854 180 – 4033 IUNG-4 PVYNTN 99 99 AFJ05128.1 

3D PVYNTN 99 99 AJT60331.2 

NTN PVYNTN 99 99 AIY63190.1 

PB312 PVYNTN 99 99 ABK13680.1 

La Union PVYNTN 99 99 AKG94974.1 
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aLength excluding forward and reverse primers. bGenomic position is based on our alignment. cStrain grouping of GenBank matched isolates were done based on information 

provided by Lorenzen et al. (2008), Hu et al. (2009), Karasev et al. (2011), Kerlan et al. (2011), Galvino-Costa et al. (2012), Kehoe and Jones (2016) and our findings. 

Cont. Table 2. Results of GenBank searches with BLASTx for sequences of Swedish PVY isolates 

Sample ID Isolate ID Sequence 

lengtha 

Genomic 

coverageb 

Matched 

isolates 

Strain 

groupc 

% query 

cover 

% 

identity 

GenBank Accession no. (protein 

data) 

NNW-KE3 NNW-KE3 710 3355 – 4033 IUNG-14 PVYN-W 99 100 AFJ05138.1 

SASA-207 PVYN-W 99 100 CAE50910.1 

ME162 PVYN-W 99 100 AEI52915.1 

IUNG-12 PVYN-W 99 100 AFJ05136.1 

ID431 PVYN-W 99 100 AEI52905.1 

NNW-KE6 NNW-KE6 5594 4064 – 9373 N3 PVYN-W 99 99 AEI52911.1 

PN10A PVYN-W 99 99 AAY25497.1 

N1 PVYN-W 99 99 AEI52906.1 

ID14_2_14a PVYN-W 99 99 AEI52913.1 

ID431 PVYN-W 99 99 AEI52905.1 

NNW-

KE278 

NNW-

KE278 

5606 4064 – 9373 11289-1 PVYNTN 99 100 AGL81300.1 

ID155 PVYNTN 99 100 AEI52912.1 

L26 PVYZ-NTN 99 100 ACO35930.1 

N4 PVYNTN 99 100 ACO35929.1 

NTNK1 PVYNTN 99 99 BAN16650.1 

NWO-L NWO-L-1 4089 211 – 4298 1105 PVYNTN 99 99 AGH27744.1 

I-16 PVYNTN 99 99 AMW92179.1 

Eu-12Jp PVYZ-NTN 99 99 BAN58738.1 

11627-10 PVYNTN 99 99 AGM51291.1 

11227-2 PVYNTN 99 99 AGM51289.1 

NWO-L-2 5606 4064 – 9373 ID243 PVYO 99 99 AEI52938.1 

ID281 PVYO 99 99 AEI52936.1 

FL PVYO 99 99 ADO14470.1 

CRM2 PVYZ 99 99 ALH24905.1 

N3 PVYN-W 99 99 AEI52911.1 
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aLength excluding forward and reverse primers. bGenomic position is based on our alignment. cStrain grouping of GenBank matched isolates were done based on information 

provided by Lorenzen et al. (2008), Hu et al. (2009), Karasev et al. (2011), Kerlan et al. (2011), Galvino-Costa et al. (2012), Kehoe and Jones (2016) and our findings. 

Table 3. Results of GenBank searches with BLASTn for sequences of PVY D-RNAs 

Sample ID D-RNAs Fragment 

lengtha 

Genomic 

coverageb 

Matched isolates Strain groupc % Query cover % identity GenBank Accession no. 

NTN-5 NTN-5 582 4064 – 4291 F89II PVYNTN 100 100 KX184819.1 

F17 PVYNTN 100 100 KX184817.1 

Eu-12Jp PVYZ-NTN 100 100 AB702945.1 

NTNTK1 PVYNTN 100 100 AB711146.1 

IUNG-15 PVYNTN 100 100 JF927763.1 

9317 – 9673 F89II PVYNTN 100 99 KX184819.1 

F17 PVYNTN 100 99 KX184817.1 

GBVC_PVY_26 PVYN-W 100 99 JQ969039.2 

11627-12 PVYNTN 100 99 KC634007.1 

M3 PVYZ-NTN 100 99 KF850513.1 

NWO-KE1 NWO-KE1-2 3053 4064 – 5218 IUNG-13 PVYNTN 100 99 JF927761.1 

I-17 PVYNTN 100 99 KT599908.1 

3D PVYNTN 100 99 KJ946936.2 

NTN PVYNTN 100 99 KM396648.1 

Eu-12Jp PVYZ-NTN 100 99 AB702945.1 

4193 – 4575 IUNG-13 PVYNTN 100 100 JF927761.1 

I-17 PVYNTN 100 100 KT599908.1 

3D PVYNTN 100 100 KJ946936.2 

NTN PVYNTN 100 100 KM396648.1 

Eu-12Jp PVYZ-NTN 100 100 AB702945.1 

8127 – 9642 3D PVYNTN 100 100 KJ946936.2 

NTN PVYNTN 100 100 KM396648.1 

IUNG-13 PVYNTN 100 99 JF927761.1 

I-17 PVYNTN 100 99 KT599908.1 

Eu-12Jp PVYZ-NTN 100 99 AB702945.1 
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aLength excluding forward and reverse primers. bGenomic position is based on our alignment. cStrain grouping of GenBank matched isolates were done based on information 

provided by Lorenzen et al. (2008), Hu et al. (2009), Karasev et al. (2011), Kerlan et al. (2011), Galvino-Costa et al. (2012), Kehoe and Jones (2016) and our findings. 

Cont. Table 3. Results of GenBank searches with BLASTn for sequences of PVY D-RNAs 

Sample ID D-RNAs Fragment 

lengtha 

Genomic 

coverageb 

Matched isolates Strain groupc % Query cover % identity GenBank Accession no. 

NWO-KE1 NWO-KE1-3 1627 4090 – 4495 

 

IUNG-14 PVYN-W 100 99 JF927762.1 

IUNG-12 PVYN-W 100 99 JF927760.1 

MAF-VOY PVYN-W 100 99 JQ924286.1 

F89II PVYNTN 100 99 KX184819.1 

F17 PVYNTN 100 99 KX184817.1 

8450 – 9673 IUNG-14 PVYN-W 100 99 JF927762.1 

 SYR-II-DrH PVYNTN-NW 100 99 AB461453.1 

 IUNG-7 PVYN-W 100 99 JF927755.1 

 IUNG-3 PVYN-W 100 99 JF927751.1 

 MAF-VOY PVYN-W 100 99 JQ924286.1 

NWO-KE1-4 

 

2612 

 

4064 – 5730 IUNG-13 PVYNTN 100 99 JF927761.1 

NTN PVYNTN 100 99 KM396648.1 

IUNG-8 PVYNTN 100 99 JF927756.1 

3D PVYNTN 100 99 KJ946936.2 

VNP413 PVYNTN 100 99 HG810950.1 

8726 – 9673 IUNG-13 PVYNTN 100 100 JF927761.1 

NTN PVYNTN 100 100 KM396648.1 

3D PVYNTN 100 99 KJ946936.2 

IUNG-8 PVYNTN 100 99 JF927756.1 

VNP413 PVYNTN 100 99 HG810950.1 

NWO-KE1-5 280 5967 – 6021 SGS-AG PVYN-W 98 98 JQ924288.1 

MAF-VOY PVYN-W 98 98 JQ924286.1 

FL PVYO 98 98 HM367075.1 

La Union PVYNTN 98 97 KR149260.1 

SYR-III-S2 PVYNTN-NW 98 97 KP793715.1 
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aLength excluding forward and reverse primers. bGenomic position is based on our alignment. cStrain grouping of GenBank matched isolates were done based on information 

provided by Lorenzen et al. (2008), Hu et al. (2009), Karasev et al. (2011), Kerlan et al. (2011), Galvino-Costa et al. (2012), Kehoe and Jones (2016) and our findings. 

Cont. Table 3. Results of GenBank searches with BLASTn for sequences of PVY D-RNAs 

Sample ID D-RNAs Fragment 

lengtha 

Genomic coverageb Matched isolates Strain groupc % Query cover % identity GenBank Accession no. 

NWO-KE1 NWO-KE1-5 280 8779 – 9047 CRM2 PVYZ 100 100 KP691322.1 

WA-13 PVYO 100 100 HM590407.1 

SCRI-O PVYO 100 100 AJ585196.1 

IUNG-14 PVYN-W 100 99 JF927762.1 

IUNG-10 PVYN-W 100 99 JF927758.1 

NWO-KE1-6 460 4065 – 4260 I-6 PVYNTN 100 100 KT599906.1 

NTN PVYNTN 100 100 KM396648.1 

GBVC_PVY_3 PVYNTN 100 100 JQ969035.2 

GBVC_PVY_37 PVYNTN 100 100 JQ969033.2 

Eu-12Jp PVYZ-NTN 100 100 AB702945.1 

9411 – 9673 I-6 PVYNTN 100 99 KT599906.1 

NTN PVYNTN 100 99 KM396648.1 

IUNG-13 PVYNTN 100 99 JF927761.1 

LR PVYN-W 100 99 HQ912896.1 

Yarumal_varB PVYNTN 100 100 KX184819.1 

NWO-KE1-7 565 4064 – 4611 F89II PVYNTN 100 99 KX184819.1 

I-17 PVYNTN 100 99 KT599908.1 

3D PVYNTN 100 99 KJ946936.2 

GBVC_PVY_37 PVYNTN 100 99 JQ969033.2 

Eu-12Jp PVYZ-NTN 100 99 AB702945.1 

9656 – 9673 Yarumal_varB PVYNTN 100 100 KX184819.1 

Yarumal PVYNTN 100 100 KX184819.1 

F89II PVYNTN 100 100 KX184819.1 

F65 PVYNTN 100 100 KX184819.1 

F17 PVYNTN 100 100 KX184817.1 
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aLength excluding forward and reverse primers. bGenomic position is based on our alignment. cStrain grouping of GenBank matched isolates were done based on information 

provided by Lorenzen et al. (2008), Hu et al. (2009), Karasev et al. (2011), Kerlan et al. (2011), Galvino-Costa et al. (2012), Kehoe and Jones (2016) and our findings. 

Cont. Table 3. Results of GenBank searches with BLASTn for sequences of PVY D-RNAs 

Sample ID D-RNAs Fragment 

lengtha 

Genomic coverageb Matched isolates Strain 

groupc 

% Query cover % identity GenBank Accession 

no. 

NNW-KE2 NNW-KE2 4024 4064 – 7666  IUNG-4 PVYNTN 100 99 JF927752.1 

3D PVYNTN 100 99 KJ946936.2 

VNP413 PVYNTN 100 99 HG810950.1 

IUNG-15 PVYNTN 100 99 JF927763.1 

IUNG-8 PVYNTN 100 99 JF927756.1 

9250 – 9673 IUNG-4 PVYNTN 100 100 JF927752.1 

IUNG-8 PVYNTN 100 100 JF927756.1 

3D PVYNTN 100 99 KJ946936.2 

IUNG-15 PVYNTN 100 99 JF927763.1 

11627-12 PVYNTN 100 99 KC634007.1 

NNW-KE266 NNW-

KE266 

1946 4150 – 5831 VNP413 PVYNTN 100 99 HG810950.1 

3D PVYNTN 100 99 KJ946936.2 

9703-4 PVYNTN 100 99 KC296441.1 

IUNG-4 PVYNTN 100 99 JF927752.1 

HN1 PVYNTN 100 99 HQ631374.1 

   9345 – 9609 3D PVYNTN 100 100 KJ946936.2 

IUNG-4 PVYNTN 100 100 JF927752.1 

VNP413 PVYNTN 100 99 HG810950.1 

I-17 PVYNTN 100 99 KT599908.1 

1101 PVYNTN-NW 100 99 KC296434.1 

NW-DeI 

(Dutch) 

NW-DeI 2198 4064 – 5118 IUNG-2 PVYN-W 100 99 JF927750.1 

GBVC_PVY_34 PVYN-W 100 99 JQ969041.2 

IUNG-5 PVYN-W 100 99 JF927753.1 

09-3a PVYN-W 100 99 JF795485.1 

SASA207 PVYN-W 100 99 AJ584851.1 

8446 – 9589 IUNG-2 PVYN-W 100 99 JF927750.1 

GBVC_PVY_34 PVYN-W 100 99 JQ969041.2 

IUNG-5 PVYN-W 100 99 JF927753.1 

09-3a PVYN-W 100 99 JF795485.1 

SASA207 PVYN-W 100 99 AJ584851.1 
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Figure 3. Amino acid sequence alignment of HC-Pro residues 236 to 302 of PVY isolates from all strain groups, including the Swedish isolates 

O-MB, NTN-2, NTN-5, NWO-KE1-1, NTN-KE2 and NWO-L-1 sequenced in this study. The Swedish isolate O-MB was found to have the 

amino acid residues N236, L238, A247, I252, R262, K296, R270 and V301 previously determined to be responsible for overcoming resistance by the Nytbr 

gene (Tian and Valkonen, 2013). The Swedish isolates NTN-2, NTN-5, NWO-KE1-1, NTN-KE2 and NWO-L-1 were found to have the amino 

acid residues I236, K238, S247, V252, Q262, R296, K270 and I301 determined to be responsible for triggering the Nytbr gene (Tian and Valkonen, 2013). 

Isolate O-MB is marked in blue and the Swedish PVYNTN isolates are marked in red. 
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Table 4. Sequenced PVY D-RNA molecules 

D-RNA Pattern D-RNA  Deleted regiona Deletion sizeb Sequence motifc Defective cistrons Strain group 

D-RNA (1) NNW-KE2  7667 – 9249  1582 CATTGAA NIb and CP PVYNTN 

D-RNA (2) NWO-KE1-5   5638 – 8394  2756 ACAGCA CI to NIb NGd 

D-RNA (3) NWO-KE1-2  5218 – 8125 2907 Genome duplicatione CI to NIb PVYNTN 

D-RNA (4) NWO-KE1-4  5731 – 8725 2994 TCCAAAA 6K2 to CP PVYNTN 

D-RNA (5) NW-DeI  5119 – 8444 3325 AAGCA CI to NIb PVYN-W, PVYO 

D-RNA (6) NWO-KE1-3  4496 – 8449 3953 ATGGCA CI to NIb NG 

D-RNA (7) NNW-KE266  5218 – 9344 4126 TGCATAC CI to CP NG 

D-RNA (8) NTN-5-2  4292 – 9316 5024 AGAGAGG CI to CP PVYNTN, PVYZ-NTN 

D-RNA (9) NWO-KE1-7  4612 – 9656 5044 GTGGT CI to CP NG 

D-RNA (10) NWO-KE1-6  4260 – 9409 5149 AAGTATT CI to CP NG 

aDeleted nucleotide region based on our alignment. bDeletion size in base pair (bp). cNucleotide sequence motifs found at one end for the sequenced PVY D-

RNAs and repeated at both ends of the corresponding deletion junction sites in wild-type genomes. dNumerous strain groups including PVYNTN, PVYZ-NTN, 

PVYNTN-NW, PVYN-W, PVYE, PVYO and PVYZ. eDuplication of 383 nt located within the CI cistron at nucleotide positions 4193 – 4575. 
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Figure 4. Genomic structure of PVYO, PVYN, PVYN-W (A) and PVYNTN (A), 

together with the ten identified PVY D-RNA patterns. Light green colour 

represents the PVYO or PVYZ strains, orange colour represents the PVYN strain 

and grey colour represents a PVY genotype of unknown strain group. Positions 

of recombinant junctions (RJs) between PVYO and PVYN are marked. 

Positions and sizes (bp) of deleted genomic regions as well as nucleotide 

sequence motifs flanking deletion junction sites are indicated. 
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3.2. Phylogenetic analyses 

In phylogenetic analyses of sequences covering genomic positions 180 – 4033, the Swedish 

isolate O-MB clustered with PVYZ isolate CRM2 and PVYO isolate SCRI-O from the UK, and 

were in phylogenetic group PVYO/Z together with isolates of PVYO-O5, PVYC and PVYD (Fig. 

5). The Swedish isolates NTN-2, NTN-5, NWO-KE1-1, NTN-KE2 and NWO-L-1 clustered 

with isolates of PVYNTN (A) and PVYZ-NTN, and were in phylogenetic group PVYNTN. 

Furthermore, NNW-KE3 showed a close relationship with PVYN-W (A) isolate FrKV15 from 

France in phylogenetic group PVYNTN (Fig. 5). 

In phylogenetic analyses for sequences covering genomic positions 4064 – 9589, isolate O-

MB again clustered with PVYO isolate SCRI-O. NWO-L-2 clustered with PVYZ isolate CRM2 

and NNW-KE6 clustered with isolates of the PVYN-W strain (Fig. 6). Isolate O-MB as well as 

NNW-KE6 and NWO-L-2, and isolates of the PVYO, PVYZ and PVYN-W strains were in 

phylogenetic group PVYO/Z. The Swedish isolates NTN-2, NTN-5 and NTN-KE2 clustered 

with isolates of the variant PVYNTN (A), and were in phylogenetic group PVYNTN. NNW-

KE278 clustered with isolates of the PVYZ-NTN strain and different variants of PVYNTN in 

phylogenetic group PVYNTN (Fig. 6).  

The results of the two phylogenetic analyses (covering genomic positions 180 – 4033 and 4064 

– 9589) confirmed the presence of the PVYNTN strain in Sweden. Isolate O-MB, and isolates 

of the PVYO, PVYZ and PVYN-W strains were in phylogenetic group PVYO/Z (Fig. 6). NWO-

L-2 clustered with PVYZ isolate CRM2 and NNW-KE6 clustered with isolates of the PVYN-

W strain in the phylogenetic group PVYO/Z. Isolates NTN-2 and NTN-5 as well as isolates 

NTN-KE2 and NWO-KE1-1 were found to be closely related based on the phylogenetic 

relationships (Fig. 6). 
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Figure 5. Phylogenetic analysis by Maximum-Likelihood method of nucleotide sequences covering genome 

positions 180 – 4033 of 22 PVY isolates from GenBank, together with the Swedish isolates NTN-2, NTN-5, 

NWO-KE1-1, NTN-KE2, NNW-KE3, NWO-L-1 and O-MB. The percentages of replicate trees, in which the 

associated taxa clustered together in the bootstrap test (1000 replicates), are shown next to the branches. Branches 

with low bootstrap value (less than 70%) have been collapsed. Branch length is drawn to scale with the bar 

indicating 0.05 nt substitutions per site. The nucleotide sequence of an isolate of PepSMV (Ahn et al. 2006) was 

used as an outgroup. Swedish PVY isolates are indicated. 
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Figure 6. Phylogenetic analysis by Maximum-Likelihood method of nucleotide sequences covering genome 

positions 4064 – 9673 of 22 PVY isolates from GenBank, together with the Swedish isolates NTN-2, NTN-5, 

NTN-KE2, NNW-KE6, NNW-KE278, NWO-L-2 and O-MB. The percentages of replicate trees, in which the 

associated taxa clustered together in the bootstrap test (1000 replicates), are shown next to the branches. Branches 

with low bootstrap value (less than 70%) have been collapsed. Branch length is drawn to scale with the bar 

indicating 0.05 nt substitutions per site. The nucleotide sequence of an isolate of PepSMV (Ahn et al. 2006) was 

used as an outgroup. Swedish PVY isolates are indicated. 



26 

 

3.3. Recombination analysis 

No recombination breakpoints were detected for the Swedish isolate O-MB, which is similar 

to isolates from PVYO, PVYO-O5 and PVYZ. Recombination analysis of NTN-2, NTN-5 and 

NTN-KE2 revealed that these isolates are putative recombinants with three RJs at nucleotide 

positions 2416 located within HC-Pro/P3, at 5830 in VPg and at 9176 in the CP. This is similar 

to isolates of the variant PVYNTN (A) and of the PVYZ-NTN strain (Table 5; Appx. Table B). 

  

Table 5. Putative recombination breakpoint sites of Swedish PVY genomes detected by 

recombination detection programmes 

Isolate ID 

 

Strain 

Group 

 

 

Recombination site and corresponding 

cistron 

P-valueb Length 

(nt) 

 

Possible 

parents 

 Recombination 

site (s)a 

Corresponding 

cistron (s) 

NTN-2 PVYNTN 2416, 5830, 9176 HC-Pro/P3, VPg 

and CP 

5.5 × 10-12 9547 PVYO, PVYZ 

and PVYN 

NTN-5 PVYNTN 2416, 5830, 9176 HC-Pro/P3, VPg 

and CP 

1.45 × 10-12 9637 PVYO, PVYZ 

and PVYN 

NTN-KE2 PVYNTN 2416, 5830, 9176 HC-Pro/P3, VPg 

and CP 

7.3 × 10-12 9548 PVYZ and 

PVYN 

O-MB PVYOc None-recombinant - - 9516 PVYZ 

aNucleotide positions of recombination breakpoints. bGreatest P-value among recombinants identified by 

the recombination-detecting programmes RDP, GENECONV, BootScan, MAXChi, Chimaera, SiScan and 

PhylPro implemented in RDP4. cIsolate O-MB is primarily classified as a resistance-breaking PVYO isolate, 

and not as PVYZ, as it has not been tested before for its ability to trigger the Nz gene.
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4. Discussion 

In this thesis, the complete coding sequence of one resistance-breaking PVYO isolate (O-MB) 

and three PVYNTN isolates (NTN-2, NTN-5 and NTN-KE2) from Sweden were determined. In 

addition, partial genome sequences of six Swedish PVY isolates and ten sequences of PVY D-

RNAs, including one Dutch PVY D-RNA, were determined. To the best of our knowledge, 

this is the first report of PVY D-RNAs. The nearly complete genome sequences of NTN-2, 

NTN-5 and NTN-KE2 were found to vary in length (9547 – 9637 nt). The difference in length 

of the Swedish PVYNTN isolates occurred as a result of mis-priming, as the reverse primer HR-

4063 annealed (at genomic position 386) as a forward primer, instead of primer 5'NTR 

(genomic position 1). A full-length fragment of 5606 bp (genomic positions 4034 – 9706) using 

the primer pair HF/3'NTR was obtained for samples NTN-2, NTN-5, NNW-KE2, NNW-KE6, 

NNW-KE278, NWO-L and NWO-MB. A fragment of 5606 bp was not amplified for sample 

NWO-KE1, although high-quality RNA extracted at different stages of viral infection was 

utilized and the PCR assay was run under optimal conditions. Instead several PCR fragments 

of different molecular weights were amplified with the largest size being of 3053 bp. These 

results may suggest that there was no amplification of the full-length fragment, because the D-

RNAs were preferentially amplified in the PCR. 

The preliminary classification of Swedish isolates as belonging to PVYNTN using serology, 

multiplex-RT-PCR and inoculation tests (Youssef, 2017) was confirmed in this study by 

sequence analyses. The complete coding sequences of NTN-2, NTN-5 and NTN-KE2 isolates, 

and partial genome sequences of NWO-KE1-1, NNW-KE278 and NWO-L-1 shared an amino 

acid identity of 99% to isolates of the PVYNTN strain. The complete coding sequence of O-MB 

and partial genome sequence of NWO-L-2 shared amino acid identity of 99% with the PVYO 

and PVYZ strains, and two partial genome sequences shared 99% with the PVYN-W strain. The 

Swedish isolates O-MB, NNW-KE6 and NWO-L-2, together with isolates belonging to the 

PVYO and PVYZ strains were in phylogenetic group PVYO/Z. 

Despite the fact that the PVYO and PVYZ strains have shown different biological properties 

after inoculation on potato cultivars carrying the genes Nytbr and Nztbr (Kehoe and Jones, 2016), 

they clustered in the same phylogenetic group, PVYO/Z. In a similar manner, for phylogenetic 

analyses of sequences covering genomic positions 180 – 4033, isolates of the PVYC and PVYD 

strains were in phylogenetic group PVYO/Z. These findings revealed a disagreement between 

biological and phylogenetic grouping of PVY strains/variants. Isolates NTN-2, NTN-5 and 

NTN-KE2 as well as isolates NWO-KE1-1, NNW-KE278 and NWO-L-1 were in phylogenetic 

group PVYNTN. It was found that NTN-2 and NTN-5 as well as NTN-KE2 and NWO-KE1-1 

are closely related based on the phylogenetic relationships. Isolates NTN-2 and NTN-5 

originated from the same tuber source, whereas NWO-KE1-1 and NTN-KE2 originated from 

the same seed lot (Youssef, 2017).  

Recombination analyses revealed that the Swedish PVYNTN isolates NTN-2, NTN-5 

and NTN-KE2 have typical features of the variant PVYNTN (A) and the PVYZ-NTN strain with 

three RJs located within the HC-Pro/P3, VPg and CP cistrons, which are the same RJs as 
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numerous PVYNTN (A) isolates from Europe (Kamangar et al., 2014). These findings 

confirmed the presence of PVY recombinant genotypes, such as PVYNTN, in Sweden, as has 

been reported in several countries from Europe, e.g. the Netherlands, Scotland and Belgium 

(van der Vlugt et al., 2008; Davie, 2014; Kamangar et al., 2014). In addition, isolate O-MB 

was found to be a non-recombinant, which is similar to isolates from PVYO, PVYO-O5 and 

PVYZ (Karasev et al., 2011; Ogawa et al., 2012; Kehoe and Jones, 2016). It was assumed that 

novel symptoms observed in PVY-infected potato plants were associated with the presence of 

new PVY recombinants in Sweden (Youssef, 2017), but no new recombination patterns were 

detected in this thesis. Instead, numerous PVY D-RNAs were found in different potato 

samples. 

The large ORF of NTN-2, NTN-5 and O-MB encodes a putative polyprotein of 3061 aa, which 

is similar to PVY isolates from all strain groups. The presence of a nonsense mutation at 

position 2277 generated a stop codon (UAG) that led to the split of the large ORF of NTN-

KE2 into two ORFs encoding two putative proteins of 2299 aa and 695 aa. Presence of 

nonsense mutations may lead to the generation of non-functional viruses, which require a 

helper virus for its replication. In order to verify these findings, more clones from sample 

NNW-KE2 are needed to be sequenced and checked for the presence of this nucleotide 

substitution. The length of the ORF P3N-PIPO has been found to vary among PVY isolates 

(Cuevas et al., 2012). The ORF P3N-PIPO for the Swedish isolates (NTN-2, NTN-5, NWO-

KE1-1, NTN-KE2, NWO-L-1 and O-MB) and several PVY isolates from different strain 

groups was identified to encode a putative protein of 76 aa. 

Based on serological tests, multiplex RT-PCR and sequencing of PCR fragments, sample 

NWO-MB was previously found to have a mixed infection of PVYO, PVYNTN and PVYNTN-NW 

(Youssef, 2017). Inoculation of potato plants of cv. Désirée suggested that the PVYO variant 

in this sample was breaking the resistance of the Nytbr gene, because no visible HR was 

triggered and the inoculated plants became systemically infected (Youssef, 2017). Sequencing 

of the complete PVYO coding region of this isolate revealed that the putative HC-Pro amino 

acid sequence contained the eight amino acid residues identified as being responsible for 

recognition by the Nytbr gene (Tian and Valkonen, 2013). Isolates of the PVYC and PVYZ 

strains have also been shown to overcome resistance based on the Nytbr gene (Dullemans et al., 

2011; Kehoe and Jones, 2016), even if they have these eight amino acid residues in the HC-

Pro protein. On the other hand, the Swedish isolates NTN-2, NTN-5, NWO-KE1-1, NTN-KE2 

and NWO-L-1 were found to possess the eight amino acid residues required for overcoming 

resistance based on the Nytbr gene. Therefore, it is assumed that resistance to PVY by the Nytbr 

gene may be determined by numerous genetic determinants within and outside the HC-Pro 

cistron (Moury et al., 2011). Sequence comparisons revealed that O-MB differs from all 

studied isolates belonging to the PVYO and PVYZ strains by having a valine residue at position 

90 in the HC-Pro protein, and from some isolates of the PVYO and PVYZ strains by having 
arginine at position 155 and glutamine at position 276 in the P3 protein. These amino acid 

residues may play a role in overcoming resistance by the Nytbr gene. I hypothesized that the 

non-recombinant PVYZ strain and resistance-breaking PVYO isolates have evolved from the 

ordinary PVYO strain by mutations. In a similar manner, a tuber-necrosis-inducing isolate of 
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the NA-PVYN strain was found to have evolved from a non-inducing NA-PVYN isolate by 

mutations (Nie and Singh, 2003). It is also possible that the presence of PVYO isolates in mixed 

infection with PVY recombinants, including D-RNAs, may lead to overcoming resistance by 

the Nytbr gene. This is especially because the resistance-breaking PVYO variant was always 

found in mixed infections with various PVY recombinants. This hypothesis has to be proven 

by further inoculation studies. Furthermore, sequence comparisons revealed that the foliage-

necrosis-inducing isolate NTN-2 differs from the non-inducing isolate NTN-5 by two amino 

acid residues located in the HC-Pro and VPg proteins. Therefore, it is suggested that these 

amino acid residues could be responsible for the induction of foliage necrosis in potato. 

Recombination plays a crucial role in PVY evolution (Karasev and Gray, 2013). It is likely that 

D-RNA formation and genomic RNA-RNA recombination of RNA viruses both occur as a 

result of template switching or replicase jumping during regular replication (Pathak and Nagy, 

2009) and it is assumed that similar processes occur for PVY. Biochemical assays have 

suggested that strong hairpin structures, AU-rich sequence (s) or breakpoints in the donor RNA 

promote template switching of the viral replicase to the acceptor RNA. The replicase utilizes 

short sequence (2 to 5 nt) complementarity between the donor and the acceptor templates as a 

primer for resumption of the replication on the acceptor RNA (Pathak and Nagy, 2009). For 

example, deletion in RNA-2 of BBMV is induced by duplication of a complementary sequence 

close to the base of the hairpin formed by duplication in the reverse order (Hull, 2002). 

Interestingly, the sequenced PVY D-RNAs were found to have nucleotide sequence motifs of 

5 – 7 nt flanking deletion junction sites, except for D-RNA NWO-KE1-2. Instead, evidence of 

duplication was detected for NWO-KE1-2. These motifs were found to be repeated at both 

ends of the corresponding junction sites in wild-type genomes, which may induce deletion 

within the corresponding junction sites. Furthermore, cis-acting elements may also play a role 

in guiding template-switching events (Pathak and Nagy, 2009).  

In this thesis, a total of ten different patterns of PVY D-RNAs from five potato samples were 

identified. The sequenced D-RNAs were found to have in-frame single-deletions ranging from 

1582 – 5149 nucleotide residues in length spanning the regions NIb to CP, CI to NIb, 6K2 to 

CP and CI to CP. Single-deletions D-RNAs and DI-RNAs have been reported for numerous 

plant viruses from different families, such as AMV, BBMV and CMV from family 

Bromoviridae and CTV from family Closteroviridae.  

CMV D-RNAs of RNA3 were found neither to be associated with virus accumulation nor 

symptoms intensity, whereas those associated with BBMV induced severe symptoms in some 

host plants (Hull, 2002). In this thesis, two group of PVY D-RNAs were found. The first group 

of PVY D-RNAs (patterns 1, 2, 3, 4, 5, 6, 9 and 10) were found to be associated with severe 

foliage symptoms in potato cv. Désirée. The second group of PVY D-RNAs (patterns 7 and 8) 

were found to be associated with mild foliage symptoms in potato cv. Désirée (Youssef, 2017). 

Hence, infectious clones of these D-RNAs are required to investigate the possible role (s) of 

D-RNAs in PVY pathogenicity/virulence, adaption and/or evolution. It is also worth 

investigating whether the PVY D-RNAs are encapsidated within the CP of the functional virus 

or not.  
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5. Conclusions 

The variant PVYNTN (A) was found in Sweden and seems to be common. Recombination 

analyses revealed no new recombination patterns. It is suggested that there are other genetic 

determinants responsible for triggering the Nytbr gene in potato other than the amino acid 

residues I236, K238, S247, V252, Q262, R296, K270 and I301 located in the HC-Pro protein. The amino 

acid residues valine at position 90 in the HC-Pro protein as well as arginine at position 155 and 

glutamine at position 276 in the P3 protein, together with other genetic determinants, may play 

a role in overcoming resistance by the Nytbr gene. It is also suggested that the non-recombinant 

PVYZ strain and the resistance-breaking PVYO isolates have evolved by mutation from the 

ordinary PVYO strain. D-RNA molecules of PVY are common and could play an important 

role in virus pathogenicity/virulence, adaption and/or evolution. 

6. Further Prospective 

Studying the role of PVY D-RNAs in virus pathogenicity/virulence is necessary for a better 

understanding of PVY epidemiology and evolution. Identification of the genetic determinants 

in PVY that are responsible for overcoming resistance in cultivated potato cultivars is important 

for breeding. Developing new PCR-based diagnostic methods is required for rapid and efficient 

characterization of the Swedish PVY isolates. 
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9. Appendices  

Table A. Previously determined sequences for Swedish PVY isolates 

Sample ID Clone ID Genomic 

coveragea 

Genomic 

location 

Host Reference 

NTN-2 NTN-2-22 180 – 769 P1 S. tuberosum cv. 

Unknown 

Youssef (2017) 

NWO-KE1 KE1-4 180 – 769 P1 S. tuberosum cv. King 

Edward 

Youssef (2017) 

NNW-KE2 KE2-21 180 – 769 P1 S. tuberosum cv. King 

Edward 

Youssef (2017) 

aGenomic coverage is based on our alignment after removing forward and reverse primers 

Table B. Published potyvirus sequences included in the analyses 

Strain Isolate ID Host Country GenBank 

accession no. 

Reference 

PVYZ ATL1 Solanum tuberosum 

cv. Atlantic 

Australia KP691317.1 Kehoe and Jones 

(2016) 

CM2 S. tuberosum cv. Cara UK KP691319.1 Kehoe and Jones 

(2016) 

CRM2 S. tuberosum cv. 

Pentland Crown 

UK KP691322.1 Kehoe and Jones 

(2016) 

 DS S. tuberosum cv. 

Desiree 

UK KP691326.1 Kehoe and Jones 

(2016) 

PVYO ME120 S. tuberosum USA HQ912892.1 Karasev et al. (2011) 

PVYOUK S. tuberosum UK JX424837.1 Tian and Valkonen 

(2013) 

PVYO-Oz Unknown USA EF026074.1 Kerlan et al. (2011) 

SCRI-O S. tuberosum UK AJ585196.1 Schubert et al. (2007) 

PVYO-O5 ID269 S. tuberosum USA FJ643477.1 Karasev et al. (2011) 

ME173 S. tuberosum USA FJ643479.1 Karasev et al. (2010) 

PVYC Chile3 C. baccatum cv. 

Crystal 

Chile FJ214726.1 Moury (2010) 

PRI-509 S. tuberosum cv. 

Zeeuwse Blauwe 

The 

Netherlands 

EU563512.1 Dullemans et al. 

(2011) 

PVYD KIP1 S. tuberosum cv. 

Kipfler 

Australia KP691329.1 Kehoe and Jones 

(2016) 

PVYN 605 S. tuberosum Switzerland X97895.1 Jakab et al. (1997) 

NA-PVYN Nicola N. tabacum Germany AJ890346.1 Schubert et al. (2007) 

PVYE PVY-AGA S. tuberosum cv. Agata Brazil JF928459.1 Galvino-Costa et al. 

(2012) 

PVY-

NE11 

NE-11 Unknown USA DQ180180.1 Lorenzen et al. (2008) 

PVYZ-

NTN 

L26 S. tuberosum USA FJ204165.1 Hu et al. (2009) 

M3 S. tuberosum cv. 

Fianna 

Mexico KF850513.1 Quintero-Ferrer et al. 

(2014) 

PVYNTN 

(A) 

9703-4 N. tabacum China KC296441.1 Schubert et al. (2015) 

I-6 S. tuberosum cv. 

Granola (Super John) 

Indonesia KT599906.1 Chikh Ali et al. (2016) 

NTN S. tuberosum cv. 

Pentland Squire 

Slovenia KM396648.1 Kutnjak et al. (2015) 
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Cont. Table B. Published potyvirus sequences included in the analyses 

Strain 

group 

Isolate ID Host Country GenBank 

accession no. 

Reference 

PVYNTN (A) PVY-AST S. tuberosum cv. 

Asterix 

Brazil JF928460.1 Galvino-Costa et al. 

(2012) 

VNP413 S. tuberosum Vietnam HG810950.1 Schubert et al. 

(2015) 

PVYN-W 

(A) 

FrKV15 S. tuberosum France HM991454.1 Kamangar et al. 

(2014) 

PVYN-W 

(B) 

Wilga5 S. tuberosum Germany AJ890350.1 Schubert et al. 

(2007) 

PVYN-W 

(C) 

261-4 S. tuberosum Germany AM113988.1 Schubert et al. 

(2007) 

PVYNTN-NW 

(A) 

SYR-NB-

16 

S. tuberosum L. Syria AB270705.1 Chikh Ali et al. 

(2007) 

PVYNTN-NW 

(B) 

SYR-II-2-

8 

Unknown Syria AB461451.1 Chikh Ali et al. 

(2010) 

PVYNTN-NW 

(C) 

SYR-III-

L4 

Unknown 

 

Syria AB461454.1 Schubert et al. 

(2015) 

PepSMV PepSMV C. annuum South 

Korea 

AM181350.1 Ahn et al. (2006) 
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