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Home range determinants have been well-studied in many species, as is the case for adult 

roe deer. However, drivers of neonate roe deer home range size have not been covered in 

previous research. Earlier studies demonstrate a negative relationship between both 

increasing food availability and population density on adult roe deer home range size. 

Because neonate roe deer are highly dependent of their mothers during the first weeks of 

life, I expected that fawn home range size would be affected similarly by similar factors. It 

was also predicted that home range size and daily movements would be affected by fox 

density, temperature, year, fawn age, birth weight, sex, tick burden, and some mother 

qualities. Based on 91 radio-collared neonate roe deer (118 in movement analysis) and 12 

adult females (14 in movement analysis) – comprising of 17 complete female-fawn 

relationships (23 in movement analysis), in two different study areas in south central and 

eastern Sweden, I show that, as expected, home range sizes of fawns and females were 

positively correlated. Moreover, neonate home range size and movements varied 

significantly between areas. The difference between the areas was partly explained by 

contrasting densities of which increasing abundances of both fox and roe deer caused smaller 

home ranges and shorter movements. Results are attributed to that both the increasing 

densities of roe deer and fox cause social constraints and avoidance behaviour, consequently 

decreasing both movements and home range size. This study is the first to determine the 

main drivers of neonate home range size and provides new knowledge of neonate roe deer 

spatial use encouraging for future studies based on these findings. 

  

Abstract 
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Djurs vistelseområden eller hemområden är väl undersökta inom forskning och själva 

termen ”hemområde” är vida känd som definitionen av ett område där ett djur rör sig för att 

få utlopp för sina dagliga behov. Detta kan vara allt från att hitta mat eller möjligheten att 

gömma sig undan rovdjur. I dag vet man till stor del vad som påverkar vuxna rådjurs val av 

hemområde och hur stora de blir. Däremot är det inte tidigare kartlagt vad som formar och 

påverkar de nyfödda kidens hemområde. Man vet mycket om vad som påverkar kidens 

överlevnad i olika miljöer och områden, när antalet rådjur varierar samt i relation till 

mammornas (getternas) egenskaper. Denna studies syfte har därför varit att täcka detta 

outforskade vetenskapsområde och besvara frågan: Vad är det som påverkar 

hemområdesstorleken hos små rådjurskid? Även faktorer som påverkar kidens dagliga 

förflyttning undersöktes samt om denna förflyttning har något samband med 

hemområdesstorleken. Studien genomfördes genom att fånga och märka nästan nyfödda 

rådjurskid med små lätta (70g) radiosändarhalsband som tillät radiopejling. 

Det var väntat att det skulle finnas ett samband mellan getens och kidets 

hemområdesstorlek och dagliga förflyttning. Det sambandet och eftersom vuxna rådjurs 

hemområden är mindre i områden med stort antal rådjur och stor mängd åkermark, antogs 

även att kidens hemområden skulle visa samma mönster. Det förväntades även att 

rådjurskids hemområden skulle vara mindre och daglig förflyttning skulle vara kortare med 

områden av hög rådjurstäthet på grund av ett undvikande beteende från rådjurens sida. Andra 

faktorer som undersöktes var studieområde, täthet av räv, år, kidets ålder, moderns ålder, 

kidets vikt, moderns vikt, temperatur, kön, mängd fästingar funna på kid samt längd 

förflyttning av modern. 

Som förväntat var antalet rävar och rådjur samt getens hemområde de tre faktorer som 

hade störst påverkan på kidens hemområden. Studien antyder också att ju varmare 

sommarväder desto mindre hemområden får kiden, troligen för att dessa rör sig mindre och 

vill undvika överhettning. Det var även en skillnad mellan de två studieområdena. Det 

område som hade de minsta hemområdena hade även den största mängden rådjur och rävar 

och högre temperaturer, vilket sammantaget förklarar mycket av denna skillnad i 

hemområdesstorlek. Vuxna rådjur undviker varandra och speciellt precis efter kidens födsel 

vilket kan förklara varför mängden rådjur har en påverkan. Dessa resultat är nya i 

forskningsområdet då man för första gången kan få svar på vilka faktorer som påverkar 

rådjurskidens hemområdesstorlek och kan vara ett värdefullt bidrag till framtida forskning. 

Populärvetenskaplig sammanfattning 
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A home range is defined as a “part of an animal’s cognitive map of its environment 

that it chooses to keep updated”, and it has a dynamic shape and size determined by 

multiple extrinsic and intrinsic factors (Powell & Mitchell, 2012). An early 

definition by Burt (1943) stated that it is an area where an animal roams to search 

for food. Today the definition is revised and defined as an area where the 

performance of an individual’s daily activities and needs is made possible, such as 

foraging needs and predator avoidance (Powell & Mitchell, 2012). What a home 

range for an individual is depends on various factors. An individual home range may 

change between different locations and vary in size throughout life (Powell & 

Mitchell, 2012). Different life stages of an animal will generate a different home 

range since these stages differ in needs. Newborns are generally more susceptible 

to environmental conditions and suffer a higher risk of mortality (Nelson & Woolf, 

1987; Gaillard et al., 1997; Jarnemo et al., 2004) meaning that survival is the most 

important focus; while adults may instead have stronger focus on reproduction and 

adjust their home ranges in relation to potential partners (Dahle & Swenson, 2003). 

Home ranges of adult roe deer (Capreolus capreolus) have been well-studied and 

some known effects are that these home ranges vary in relation to resource 

abundance, intraspecific density, and season, depending on the needs of the 

individual (Kjellander et al., 2004; Panzacchi et al., 2009; Morellet et al., 2013). 

Less is known about the home ranges of neonate roe deer. Most studies have focused 

on fawn survival, movements, and mother interactions (Gaillard et al., 1998; Linnell 

& Andersen, 1998; Jarnemo, 2004; Jarnemo & Liberg, 2005; Panzacchi et al., 2009; 

Panzacchi et al., 2010). This means that, to my knowledge, neonate roe deer home 

range size is an unexplored topic. Therefore, the focus of this study is to determine 

the main drivers of neonate roe deer home range size in relation to its daily 

movements and other extrinsic and intrinsic factors. 

  

1 Introduction 
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1.1 Home range determinants of roe deer 
Home range size is generally the outcome of trade-offs between nutritional needs, 

energy requirements, and predation risk. In particular, resource availability is 

commonly a determinant of home range size in several different mammal species, 

such as chipmunks (Tamias striatus), grizzly bear (Ursus arctos), and red deer 

(Cervus elaphus, Mares et al., 1982; Edwards et al., 2013; Adam et al., 2015). Since 

roe deer are selective browsers consistently choosing high quality forage when 

available (Moser et al., 2006), higher abundances of high quality food consequently 

decrease home range size, likely to avoid unnecessary energy expenditure 

(Panzacchi et al., 2009; Saïd et al., 2009; Nordström, 2010; Morellet et al., 2013). 

For example, home ranges in less productive areas were shown to be twice as big 

compared to areas of higher productivity (Kjellander et al., 2004). Choice of feeding 

patch is also a trade-off between quality and quantity. This means that forage species 

with the highest nutritional quality may not always be chosen if the patch is small 

(Moser et al., 2006). The roe deer is therefore also considered a habitat generalist 

by displaying a plastic feeding behaviour and chose sites with higher abundance of 

low quality forage when high quality resources are scarce (Abbas et al., 2011). This 

means that roe deer can benefit from fragmentation because they can shift between 

forage sites when necessary (Abbas et al., 2011). Roe deer also spend much time 

near habitat edges, indicating that different habitats can provide different types of 

resources preferential to them (Tufto et al., 1996).  

Because resource availability commonly varies among seasons, seasonal 

variations in home range size are also expected in roe deer. Indeed, studies on adult 

roe deer also show that quality of forage and season are valid predictors of home 

range size (Saïd et al., 2009; Morellet et al., 2013). This pattern is clearly a 

consequence of roe deer belonging to the income breeder style (Jönsson, 1997), i.e. 

a species that relies on current food availability to maximize reproduction and 

lactation to sustain their fawns (Andersen et al., 2000). However, such seasonal 

variations observed in home range size also depend on local population density. 

Indeed, increasing densities of roe deer can influence their spatial distribution. In 

two long-term studies of roe deer in Sweden and France, home range size of adult 

roe deer showed to have a strong negative relationship with intraspecific density 

(Kjellander et al., 2004). When roe deer density was low, home range size was more 

influenced by seasonality; with larger size differences between winter and summer, 

than during high roe deer density (Kjellander et al., 2004). A study conducted with 

data spanning across Europe on a latitudinal gradient showed that home range size 

of roe deer varied on a monthly and weekly scale with a minimum size during spring 

and maximum during winter (Morellet et al., 2013). These patterns were related to 

variations in temperature and day length, where a decreasing home range size was 



10 
 

related to lower temperatures for both northern (North 61o) and southern locations 

(North 41o); with a reversed pattern found in the middle regions (Morellet et al., 

2013). Climatic fluctuations in precipitation and temperature were also shown to 

have negative effects of home range sizes (Börger et al., 2006b).  

In a comparative analysis on ruminants, including roe deer, it was found that 

body mass was a good predictor of home range size; and the relationship was even 

more pronounced during the summer season for the browser group (Mysterud et al., 

2001). However, body mass was not a significant predictor of home range size in a 

study by Saïd et al. (2009). The previously mentioned study found that resource 

abundance influenced the home range size of adult female roe deer, and argue for 

that body mass is probably not a good predictor alone. They continue explaining 

that home range size is likely more adjusted to fluctuating factors such as food 

availability. A large female is, however, argued to have the advantage of relatively 

lower energy expenditure per reproductive event and according to the income 

breeder strategy, roe deer will maximize litter size accordingly (Andersen et al., 

2000). The mother may affect its fawn in various ways. Gaillard et al. (1998) show 

that family effects on sibling survival also exist in absence of predators, concluding 

that sibling fawns inherit their mother’s characteristics (Gaillard et al., 1998). 

1.2 The neonate roe deer period: movement and home 
range in relation to predation risk 

During fawning season, roe deer females with fawns have larger home ranges than 

females without, which is explained by mothers needing larger areas to forage 

enough to support energetic costs of lactation (Tufto et al., 1996). The female roe 

deer have a synchronized birth strategy with peak birth period around mid-May to 

early June in parts of Europe (Gaillard et al., 1993; Aanes & Andersen, 1996; 

Linnell & Andersen, 1998; Jarnemo et al., 2004; Plard et al., 2013). The 

synchronized birth strategy is suggested to be linked with vegetation development 

and spring flush and again in line with the income breeder strategy (Plard et al., 

2014). This strategy also likely favours fawn survival, since fawns born outside the 

birth peak period suffered higher risk of predation (Jarnemo et al., 2004). However, 

studies are not unanimous in this conclusion (Linnell & Andersen, 1998). An 

important cause of neonate roe deer mortality during this time is predation from red 

foxes (Vulpes vulpes, Jarnemo, 2004; Jarnemo & Liberg, 2005; Panzacchi et al., 

2009).  

The roe deer is a typical hider species where the fawns hide in a bed site of their 

own choice generally within 20 m (pers. comm. A. Jarnemo, 15 January 2017) from 

a location chosen by the female (Van Moorter et al., 2009). The fawn then receives 
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visits from the female around every seventh hour (Espmark, 1969). The strategy of 

hiding is a method for neonate roe deer to avoid predators (Linnell & Andersen, 

1998). A smaller fawn home range and decreasing movements within a forest-

dominated area in Norway have shown to increase predation risk and predictability 

of bed site locations (Panzacchi et al., 2009). Fawns are more active in forest areas 

than in croplands and the amount of activity increases with age (Panzacchi et al., 

2010). The increasing survival with more movement in forests is probably related 

to the availability of hiding places. There may be hiding places of lesser quality in 

forests and it might therefore be easier to find for a predator compared to a crop 

field where it is difficult to distinguish one location from another (Linnell et al., 

1999; Van Moorter et al., 2009). It is also mainly related to the increasing movement 

of the female whose resources in forests are distributed over larger areas than in 

croplands (Jarnemo, 2004).  

The lower activity levels in agricultural areas is likely because of female 

visibility being at its maximum here (Panzacchi et al., 2010), and she may act as a 

visual cue for predators resulting in higher risk of exposure of her fawn’s location. 

However, when the female is close enough, she can also successfully protect her 

fawns from small predators. For example, Jarnemo (2004b) found that, when the 

female was in the vicinity, she successfully deterred the fox under the attack in 90 

per cent of the cases. Females are also closer to their fawns in croplands than in 

other habitats pointing out a possibility to adjust the distance according to habitat 

(Panzacchi et al., 2010). This trend is presumably a behavioural adjustment by the 

females to be able to defend its young from predators (Panzacchi et al., 2010).  

1.3 Aim 
 

This study covers neonate roe deer home ranges during their hiding phase, i.e. 

between birth and two months of age, when mortality is high (Aanes & Andersen, 

1996; Jarnemo et al., 2004). The study also investigates movement within the home 

range using the measure of daily average movement (DAM). Due to the high 

mortality and its previously mentioned connection with amount of activity and 

movement within different habitats (Panzacchi et al., 2010), the daily average 

movement will provide even further information about neonate roe deer space use. 

The study aims to test the relationship between movement and home range size and 

to compare these two metrics with different types of extrinsic and intrinsic factors, 

possibly affecting spatial use in two neonate roe deer populations. The aim will be 

achieved by answering the following questions and test their associated predictions. 
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1) Is there a significant difference of fawn home range size and DAM between 

two study areas? 

 

I hypothesize to find smaller home ranges in one study area (Bogesund) than the 

other (Grimsö) due to 1) the higher roe deer density that results in less space to 

inhabit, and 2) the higher proportion of agricultural areas for the mothers available 

in Bogesund (Kjellander et al., 2004; Panzacchi et al., 2009; Nordström 2010; 

Morellet et al., 2013). Due to the larger proportion of agricultural areas, I expect 

that there will be decreasing daily average movement due to it being favourable for 

survival in these habitats (Panzacchi et al., 2009).   

 

2) Is neonate roe deer home range size and DAM influenced by their mothers’ 

qualities and spatial behaviour such as home range size, body mass, and age? 

 

So-called family effects between siblings have been demonstrated, possibly 

indicating strong effects of inheritance (Gaillard et al., 1998). Therefore, I expect 

that a fawn’s home range size will be related to its mother’s. For example, generally 

there is a habitat-dependent distance between a fawn and a mother and because food 

availability is considered primarily (Panzacchi et al., 2010). Therefore, females 

must move over large areas to sustain themselves due to low food availability and 

fawns will do the same. Due to the expected connection between movement and 

home range size, I also expect that the daily movements of the fawn will have a 

positive relationship with its mother’s movement. Assuming that the first two 

mother attribute predictions are true, I expect that home range size and daily average 

movement of fawns will be related to their mother’s body mass because large 

females have larger home ranges (Mysterud et al., 2001), suggesting a relationship 

between the two. Moreover, I expect that by increasing female age both neonate 

home range size and daily movements will decrease. Indeed, experience may lead 

to a better balance between energy expenditure and nutritional quality and risk, and 

may thus change a behaviour in a long-lived species. For example, by giving birth 

at an earlier date with increasing age (Plard et al., 2014). Other behaviours can be 

affected as well, for example, adult female white-tailed deer (Odocoileus 

virginianus) have larger home range size and fawn-rearing success with increasing 

age (Ozoga & Verme, 1986). In roe deer, adult female age has previously been 

shown to have a negative effect on their own home range size (Saïd et al., 2009). 

 

3) Are neonate roe deer home range size and DAM influenced by 

environmental factors such as roe deer population density, predator density, 

or by the proportion of agricultural land? 
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First, since I expect a correlation between female and neonate home range sizes and 

movements, I also expect that the determinants previously discovered affecting 

female home range size will similarly affect neonate home range size. Since adult 

roe deer home ranges decrease in size with increasing food availability and because 

agricultural areas represent high-quality resources for roe deer (Panzacchi et al., 

2009; Nordström 2010; Morellet et al., 2013), I expect a decreasing size with an 

increasing proportion of cropland. Also, fawns in cropland habitat move less than 

those in forests (Panzacchi et al., 2009), which is also expected to lead to a smaller 

home range. Moreover, I expect that fawns will have smaller home ranges in areas 

of high roe deer density, since this relationship have been found in adult roe deer 

(Kjellander et al., 2004). They will also move less due to the restricted movements 

of individual roe deer in roe deer dense areas, which are hypothesized to be due to 

social constraints (Pettorelli et al., 2003). Finally, I predict that decreasing daily 

average movements and home range size will decrease with increasing fox density 

since hiding is a low-movement strategy to avoid predators (Linnell & Andersen, 

1998).  

 

4) Do neonate roe deer home range size and DAM relate to fluctuating climatic 

factors such as changes in temperature and precipitation? 

 

A change in home range size, in June due to temperature and amount of precipitation 

is expected because of previously shown effects on home ranges of these factors 

(Gaillard et al., 1997; Börger et al., 2006; Raganella-Pelliccioni et al., 2006; 

Morellet et al., 2013). It is expected that increasing mean temperature in June will 

lead to an increased neonate roe deer home range size and daily movements since 

thermoregulation and light penetration is important and hypothermia is a common 

cause of death for fawns (Andersen & Linnell, 1998; Jarnemo, 2004; Van Moorter 

et al., 2009). Further, an increasing mean amount of precipitation in June is expected 

to decrease home range size and movements to avoid hypothermia and due to the 

increase in potential food availability (Plard et al., 2015). Since roe deer are income 

breeders and need to fill their energetic requirements regardless of environmental 

variation (Andersen et al., 2000; Morellet et al., 2013), behavioural responses are 

expected to be related to between-year variations as well. 

 

5) Is there a gender difference in the size of a home range and the DAM for 

fawns? 

 

Aanes and Andersen (1996) concluded that an increased proportion of agricultural 

land resulted in increased mortality in male neonates. I thus suspect that males will 

have smaller home ranges due to the high quality of the agricultural area as a hiding 
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habitat, and increasing movements compared to female fawns, when controlling for 

the proportion of agricultural area, since increasing movement in agricultural areas 

relates to decreased survival (Panzacchi et al., 2009). 

 

6) Are there intrinsic effects of fawn quality determining neonate home range 

size and movements, such as birth weight, age, and tick burden? 

 

It is expected that an increasing fawn weight will increase home range size and 

consequently longer movements because of larger mothers’ ability to provide more 

food to their fawns (Andersen et al., 2000), and because of the allometric 

relationship between body mass and home range size of browsers (Mysterud et al., 

2001). More concentrated use of an area in red deer and high density of cervids is 

related to increasing tick density (Handeland et al., 2013; Qviller et al., 2016). Since 

smaller adult home ranges are connected to an increasing population density 

(Kjellander et al., 2004), this leads to the assumptions that fawns with smaller home 

ranges (i.e. moving within a more concentrated area) and subsequently shorter 

travelled distance per day, may be under larger tick pressure. Lastly, since distance 

between female and fawn increase with age (Panzacchi et al., 2010), I hypothesize 

that both home ranges and DAM will increase with increasing fawn age.  
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2.1 Study site 
The study was carried out in two different areas of Sweden on approximately on the 

same latitude; Grimsö Wildlife Research Area 59°72´87´´N, 15°47´20´´W and 

Bogesund 59°39´33´´N, 18°28´45´´W. Grimsö is located south central in Sweden 

and the research area covers 13.5 km2. Land use in the area is mainly high 

production forest (74 %); bogs, fens, and rocks comes in second (18 %). The rest 

constitute of lakes and rivers (5 %), and a small percentage of agricultural area (3 

%). The research area is situated 50 - 180 m above sea level and had a mean annual 

precipitation of 739 mm between 1961 - 2014 (SMHI, 2016b). A few people live in 

the area and there are only three larger farms which contribute to the coverage of 

agricultural area. The forests in the area mainly consists of conifer trees and 

dominating species are Norway spruce (Picea abies) and Scots pine (Pinus 

sylvestris). The deciduous trees in the area represent a minority but most common 

is birch (Betula spp.). Small shrubs as bilberry (Vaccinium myrtillus), heather 

(Calluna vulgaris), and lingonberry (Vaccinium vitis-idaea) are common plants in 

the understory. In more open areas such as clear cuts, the forb fire weed is common 

which is an important food source for roe deer (Cederlund & Nyström, 1981). 

Bogesund research area is situated in east central Sweden in the inner part of the 

Stockholm archipelago, situated on a mainland peninsula northeast of the inner city 

and covers 1.2 km2. Compared to Grimsö, Bogesund has a considerable larger 

proportion of agricultural land with a coverage of 25 per cent. Approximately 65 

per cent is forested and the remaining 10 per cent is covered by bogs or represent 

more rocky areas. Common trees in the forested habitat are, as in Grimsö, Norway 

spruce, Scots pine but deciduous trees are more common than in Grimsö, such as 

birch, oak (Quercus robur), linden (Tilia cordata), and willow (Salix spp.). Ground 

vegetation excluding lichen and mosses covered more ground in Bogesund than in 

2 Materials and methods 



16 
 

Grimsö in 1994; whereas dwarf shrubs had a higher coverage in Grimsö (Guillet, 

1994 in Guillet, 1996). Other open areas comprise of meadows and young forest 

plantations. Common ground vegetation is bilberry and abundant herbaceous 

vegetation. Common crops are oilseed rape, oats, and wheat. The rest of the fields 

are pastures or hay and silage production for livestock or horses. Mean annual 

precipitation rates was 591 mm between 1961 - 2014 (SMHI, 2016b). 

2.2 Data collection 
Between 2013 - 2016, 118 neonate roe deer were captured and equipped with VHF-

collars (Followit, Lindesberg, Sweden) with a drop-off function and an expanding 

collar designed to wear, brake layer by layer, and gradually expand. The collars had 

a life span of around 1.5 years. The methods for catching the fawns were conducted 

in various ways. Neonate roe deer hide and stay still when approached in the 

vegetation which makes it easy to pick them up by hand. This method was done 

when possible. Otherwise, a hoop-net was used for some individuals and occasions. 

Methods used to find fawns were mostly through observations of marked or 

unmarked adult females, observation of GPS-cluster in ArcGIS (when the female 

roe deer had GPS-collars), or following a VHF-marked female in real time. Data 

sampled during fawn capture and used in the analyses consisted of weight, number 

of ticks, sibling and mother ID (if marked), and sex. Behavioural data and state of 

the umbilical cord was also recorded (see “Date of birth”).  

The fawns were recaptured one or more times when possible and were located 

once a day (with some exceptions due to technical errors) throughout the summer 

period between May and August. VHF-locations were usually based on three 

bearings, however, when signals were weak, only two bearings were used. Repeated 

locations through triangulation of deer has proven to be useful in determining total 

home range area in previous research (Heezen & Tester, 1967). This sampling 

strategy resulted in multiple locations of the fawns during summer. In average 39 

(min 27, max 60) locations per fawn were recorded up to the age of 62 days. Of the 

118 captured fawn, 91 fawns had enough positions (>27) to be included in the 

subsequent home range analysis. 

Adult females were equipped either with a VHF-collar (151 MHz, Followit, 

Sweden, at Bogesund) or a GPS-collar (Vectronic Aerospace GmbH, Berlin, 

Germany, model Pro-light). Total number of included females was 14 unique 

individuals in the daily average movement analysis and 12 in the home ranges 

analysis.  



17 
 

2.3 Outlier exclusion 
GPS-positions from females with a positional dilution of precision (PDOP) value 

over 10 were excluded. PDOP is a measure of quality of GPS-locations, with lower 

values indicating a higher accuracy of the generated location (D’eon & Delparte, 

2005). Using a lower cut could have introduced unnecessary bias in the data by 

removing too large part of all GPS positions; whereas a cut at 10 removed major 

outliers while avoiding the exclusion of a too large part of the original dataset 

(D’eon & Delparte, 2005). 

Outliers in fawn data were excluded by calculating a barycenter of the home 

range with only using points that had a lower total distance than 3000 meter between 

the previous and the following point. This was done because the barycenter with all 

positions was distorted by some error coordinates. A study by Panzacchi et al. 

(2009) showed an average daily movement in one of their areas of 530 m (SD 450 

m). The two study areas in Panzacchi et al. (2009) were situated in Norway and had 

a similar habitat composition as Grimsö and Bogesund. Maximum possible distance 

of these numbers was approximately 1000 m (530m+450m); consequently, a cut of 

1500 m was used between the barycenter and the positions in this project. 50 % of 

the distance was added to the 1000 m as a buffer to not make unnecessary 

assumptions, since the cut in this study was made from the barycenter and not 

between positions. After exclusion of major outliers, a new barycenter was created 

from the new dataset and here a cut was made with 1000 m from the barycenter 

according to the maximum travelled distance in Panzacchi et al. (2009).  

Trajectories were visually analysed, and positions which were excluded by 

distance but had consecutive points in the same area were included manually 

afterwards. These could not be assumed to be outliers due to the consecutive 

location pattern. Positions which were autocorrelated were removed since results 

can be biased if these are not independent from each other (Hansteen et al., 1997). 

A cut was made with a minimum time difference of seven hours between positions, 

which was similar to the mean time difference between suckling events in roe deer 

that have been shown to be six hours and 47 minutes (Espmark, 1969). This meant 

that the likelihood of the fawn having moved between locations was high. 
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2.4 Assessment of home range size and daily movement 

2.4.1 Home range size 

Generally, the number of positions used to estimate home ranges are of minimum 

30 (Seaman et al., 1999; Girard et al., 2002). However, many fawns were lost by 

this decision and using a cut of 27 generated a sufficiently larger dataset that 

justified including them. Because much more locations were available for GPS-

collared females, for them I randomly selected one location per day during the fawn 

monitoring period (June-July). 

For both fawns and does, estimations of individual home range size were 

conducted using the Kernel method (90 %) with an 80 % correction of href. The 

Kernel method uses a bivariate probability density function to estimate home range 

size (Worton, 1989). Home ranges created with the MCP-method (Minimum 

Convex Polygon) have only been presented with effect sizes to display the extent of 

the actual fixes compared to the Kernel estimator, however they were not used in 

the statistical analysis since MCP calculates no probability of use (Nilsen et al., 

2008). However, MCP has previously commonly been used in studies making the 

inclusion advantageous (Laver & Kelly, 2008). According to Kie et al. (2010), the 

standard smoothing parameter for Kernel home range estimation (href) can 

sometimes over-buffer home ranges, but a correction of 80 % of the standard 

smoothing removes most of this error and seems suitable for many datasets. The 

correction of 80 % was added in this study to reduce this error and the home ranges 

were afterwards checked visually for biological relevance. Indeed, home ranges 

with the correction became more fragmented than without it. This confirms that by 

correcting the href a more detailed home range is presented (Worton, 1989). The 

decision was to use the correction of 80 %. This was done since the home ranges 

were otherwise considerably larger and the differences between fawn VHF data’s 

home ranges and GPS female data’s home ranges were also larger.  

Individual home range composition was estimated using ArcGIS (Version 

10.4.0.5524 for Desktop, 1999-2015) with a background map from Swedish 

Mapping Cadastral and Land Registration Authority (SEPA, 2014). The estimated 

proportion of agricultural area per home range was performed in the same program 

by overlaying the background map with home ranges of both fawns and females and 

calculating the per cent coverage. 
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2.4.2 Daily movement  

The daily movement (DAM) of fawns was estimated as meters moved per day. The 

movement was calculated as a daily average distance travelled. DAM was based on 

distances between several positions that had known times. A minimum of ten 

positions was used when choosing which individuals to include in the analysis. This 

minimum was applied since the relationship between DAM and number of VHF 

positions showed no significant correlation (R2 = -0.008, p > 0.8), and a minimum 

amount of ten positions rendered a sufficiently larger sample size. 

In the calculation, I included positions from both fawns and females that had a 

time difference of between 7 - 50 hours. The reason to not go over 50 hours was to 

capture positions that would give an average movement per day more accurately 

since a home range is limited, and positions with a time-difference over 50 hours 

were few. In the data, I could see that a longer time span between positions did not 

lead to an increased distance between two locations. Including such positions would 

therefore have skewed the distance travelled per day. However, for females with a 

VHF collar, a significant increase in distance could be seen with increasing time 

between positions, but the relationships had a low correlation coefficient (R2 = 

0.065, p ≤ 0.001). The increase levels off after 200 hours but for the estimations to 

be comparable, same hour span (7 - 50) was used. I also chose only daytime 

positions from GPS data (between 05:00 – 22:00), since all VHF-data was collected 

during the day, and approximately 60 positions per individual were randomly 

chosen within this time-span.  

2.5 Explanatory variables 
The explanatory variables of individual fawns that were tested were age, number of 

ticks found during capture of fawn, proportion of agricultural area of fawn home 

range, sex, and mean birth weight. The included variables of individual adult 

females were home range size, mean weight, daily average movement, and age. The 

site-specific variables included were site, fox index, and mean temperature in June. 

Precipitation was dropped in all models due to low power because of rank deficiency 

when testing the most complex models. Final included variable was year of capture. 

2.6 Date of birth  
Date of birth (DOB) was estimated through a point system based on fawn behaviour 

possibly corresponding to a certain age and was developed from the original method 

Jullien et al. (1992). The original age estimation of Jullien et al. (1992) had a more 

thorough description of the umbilical cord than applied in this study. The categories 



20 
 

and point system in this study was instead primarily based on the behaviour of 

several fawns with known exact age, while umbilical cord state was checked and 

given points added accordingly (Table 1). 

 

Table 1. Point system for umbilical cord status 
State of umbilical cord Points 

Bloody/soft, red/white 0 

Visible, brown 1 

Visible, dry black 2 

Visible, scar 3 

 

An evaluation of certain types of behaviours was performed. These were: head 

position raised before capture (yes = 1, no = 0), ears moving before capture (yes = 

1, no = 0), struggling during capture (yes = 1, no = 0), screaming during capture 

(yes = 1, no = 0), and lastly if the fawn ran away after release (yes = 1, no = 0). After 

summing up all points - a certain number of points corresponded to a certain age 

(Table 2). 

 

Table 2. The sum of a behavioural point system developed with inspiration by 

Jullien et al. (1992) indicate approximate age-span of fawn in days and also the 
right column shows the age in days used in the analysis 

Points Approximate age (days) Age used in analysis (days) 

0 0 0 
1 1 - 2 1.5 

2 3 3 
3 4 - 7 5.5 

4 8 - 11 9.5 
5 12 - 13 12.5 
6 12 - 13 12.5 

7 < 14 14 

 

If all possible variables were monitored at capture, age was calculated directly from 

marking date. If not all variables were monitored, a minimum and a maximum was 

created, and a mean birth date estimated. Age was estimated for all captures and the 

determined date of birth (DOB) was the last possible date, meaning the youngest 

possible estimation of age. This since it was assumed that the capture event could 

have affected the behaviour of a fawn towards behaving older later on, but not the 

opposite. Then a correction for siblings was made by again choosing the latest 

possible date for all. The DOB was then checked for plausibility to avoid a date that 

would have been after first capture. Also, if the date was only one day before the 

first capture then the next possible date was used since this situation would have 
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been visible on the umbilical cord. If the umbilical cord was either red and bloody 

or soft and white, then the age was assumed to be zero regardless of behaviour. 

The calculated DOB was used when extracting the included positions. I chose a 

time-interval between DOB and two months ahead. The choice to include the two 

months after birth was made due to that the predation risk of fox lasts to up until 

around six weeks (Aanes & Andersen, 1996) and the neonate hiding phase lasts for 

about one to two months (Linnell, 1994, in Linnell & Andersen, 1998). The risk of 

using a longer time-span would be to include fawns’ movements outside the hiding 

period and therefore not within the youngest neonatal stage within two months from 

birth, in the aim of this thesis. 

2.7 Other fawn variables 
Tick estimates were based on counts of attached ticks found on each fawn at capture, 

and the tick variable was created by using the residuals from the regression between 

age in days and total number of counted ticks (R2 = 0.17, p ≤ 0.0001). This was done 

to correct for fawn age since an older age meant more attached ticks. Mean birth 

weight was calculated through an average of birth weights over multiple captures. 

Birth weight was calculated by multiplying age (DOB - Marking Date) with 0.15 kg 

to remove a mean weight gain for fawns per day (Linnell & Andersen, 1998; 

Jarnemo, 2004), then subtracting the weight gain from the weight at marking. 

2.8 Site-specific variables 
Fox index was an observation/effort index and calculated as a mean between 20 

May and 20 June based on the number of fox observations divided by the number 

of people performing field work each day.  

Roe deer index was based on spring pellet count surveys in both Grimsö and 

Bogesund and was made possible by the Swedish Infrastructure for Ecosystem 

Science (SITES), in this case by Grimsö Research Station, who conducted the 

surveys. Pellet counts were conducted every fall and spring through quadratic 

transects 1x1 km, and cleaned from pellets every fall to generate a more accurate 

winter density estimate. The number of sites depended on size of the area, in Grimsö 

32 areas were surveyed with in total 600 sites (1 site/200 m) containing four circular 

plots/site. In total 2400 plots of 10 m2 each (diameter 3.56 m). Pellet piles (1 pile ≥ 

10 pellets) were counted in all plots. A mean number of pellet piles produced per 24 

h of 22 was used which is recommended in pellet count surveys for roe deer 

(Cederlund & Liberg, 1995). The density index was calculated as follows and 

transformed into an estimate of number of individuals per km2: 
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Summer temperature was included as the mean temperature in June each year to 

represent the impact of weather on fawn daily life and was collected from the open 

database SMHI Open Data (SMHI, 2016). The weather stations used were “Örebro” 

and “Kloten” for Grimsö, and “Skarpö” for Bogesund. 

2.9 Variables of female roe deer  
Female roe deer body mass, was based on weights retrieved during one or several 

repeated captures between 2.5 - 6.5 of age since weights are likely stable between 

these ages, which are considered as prime-age (Hewison & Gaillard, 2001). Using 

weights from repeated captures corrects for yearly variation and age effects on 

weight. If no weight had been taken within this interval of ages, then the closest 

corresponding older age’s weight was used (7.5 or older). One weight of a young 

1.5-year-old female (24.7 kg) was included since no other weight was available. 

2.10 Statistical analyses 
A linear mixed model (LMM) approach was used assuming a Gaussian distribution 

which was tested for by the Shapiro Test. The variable home range size (hereafter 

HR) was log-transformed to fit the distribution whereas DAM was already normally 

distributed. I tested ten different set of models for both home range size and daily 

average movement, based on two different datasets each.  

First, for each main dependent variable, I created two global models based on 

the full dataset (HR n = 91, DAM n =118), and including the simple effects of Sex 

(two modalities), Site (two modalities: Bogesund vs. Grimsö), Age, proportion of 

agricultural area in fawn home-range (hereafter %Agr), Mean Birth Weight, Mean 

Tick Residuals (all numerical variables), Year, and as well as the two-way 

interaction between Site and %Agr. I excluded %Agr from the models explaining 

DAM because it the proportion of agricultural area was only possible to calculate 

from the fawns with a home range (n=91), and it would reduce the dataset to include 

this variable. 

Secondly, to investigate in more detail the influence of site-specific variables, I 

performed another set of models including roe deer population index (hereafter Roe 

Index) and mean temperature in June instead of Site. That is, the most complex 

model tested in this second set of models included for HR: Roe Index, %Agr, Mean 

(Total no of piles in plots / Mean no of days since fall clean-up / Mean no of piles per roe deer per day) * Surveyed area (ha) 
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Temperature, Year, Age, Mean Birth Weight, Mean Tick Res, and for DAM: Roe 

Index, Mean Temperature, Year, Age, Mean Birth Weight, Mean Tick Res, and Sex. 

The fox index variable (hereafter Fox) was not considered due to high correlation 

with Roe Index (0.89), and was instead investigated in separate analyses excluding 

the Roe Index (see Appendix 1). The variable Sex was excluded in HR to avoid 

overfitting the model (Hawkins, 2004). 

Thirdly, to investigate the influence of mother characteristics on fawn 

performance, I conducted analyses with subsets of data from both response variables 

(HR n = 17, DAM n = 23) where the most complex model included for HR: Roe 

Index + Year + Age + Mother Home Range Size + Mother Age + Mother Mean 

Weight (hereafter Mother Body Mass) + Mean Birth Weight, for DAM: Roe Index 

+ Year + Age + Mean Birth Weight + DAM Mother + Mother Age + Mother Body 

Mass. Site was not included in the subset analyses due only three fawns represented 

Bogesund in both dataset. Instead, Roe Index was included in one model and Fox in 

another (see Appendix 1) with all other variables similar as for the Roe Index. The 

variables Sex, %Agr, Mean Temperature, and Mean Tick Residuals were removed 

to avoid overfitting the smaller dataset and the variable collar type (VHF or GPS) 

was removed since there was no difference in DAM between the two (t = 2.24, df = 

2, p = 0.15). The random effect mother ID was added in all the models to control 

for siblings. The included variables in the subsets were all chosen according to 

relevance and to avoid overfitting and to reduce the risk of downsizing the datasets 

because of missing values. For example, DAM mother was only included in the 

DAM models and the variable mother home range size was only included in the HR 

models.  

The R2-values used in the results are coefficients of determination calculated 

according to Nakagawa & Schielzeth (2013) and Johnson (2014). Models were 

compared and selected based on Akaike’s Information Criterion (AIC) value 

(Burnham & Anderson, 2001) and according to the rule of parsimony, I selected the 

simplest model among models with a low difference in AIC value, having a ΔAIC 

< 2 compared to the best model. I also present all the models with ΔAIC < 2 because 

they have substantial support for being included in the discussion (Burnham et al., 

1995).  

Statistics were performed in the program R (R Core Team, 2015) and packages 

“adehabitatHR”, “adehabitatLT”, “rgdal”, “MuMIn”, “AICcmodavg” were used for 

home range and movement estimation, coordinate conversion, and for data analysis 

(Calenge, 2006; Bartoń, 2015; Bivand et al., 2016; Mazerolle, 2016). 
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3.1 Descriptive results 
In total, 47 male and 44 female fawns were included in the HR analysis and 63 males 

and 55 females were included in the DAM analysis. In the subset where mother-

specific variables were included, the distribution was ten males and seven females. 

Gender distribution divided per site, showed that of the fawns of Grimsö, 26 were 

males and 27 were females in the HR analysis and 36 males and 35 females were in 

the DAM analysis. In Bogesund, there were 18 females and 20 males included in 

the HR analysis and 20 females and 27 males were included in the DAM. Mean 

birth date of all fawns was May 31st.  

Mean home range size of all fawns was not significantly different in size from 

the mothers (Student’s t-test, t = -0.35, df = 13.92, p = 0.73; Table 3). The same 

pattern was seen with the MCP-method 

(Table 3). Fawn home range size was 

larger in Grimsö than in Bogesund (Fig. 1).  

 Similarly, I found that females from 

Grimsö have larger home range sizes than 

those living in Bogesund, although the 

difference was not significant (N = 13, 

Student’s t-test, t = 1.7689, df = 10.145, p 

= 0.107). When considering all available 

data on females, and not only females with 

radio-collared fawns, it did however result 

in significantly larger home ranges in 

Grimsö (mean = 136.1, median = 107.4) 

than at Bogesund (mean = 64.7, median = 

63.5; N = 23, Student’s t-test, t = 4.05, df 

3 Results 

Figure 1. Individual fawn home range sizes (y-

axis) in Grimsö (1) and Bogesund (2) (x-axis) in 

Sweden, presented with confidence intervals 

(grey area) and means (blue lines). 
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= 19.22, p = 0.0007). Daily average movements (DAM) was longer, but not 

significantly, in Grimsö compared to Bogesund for comparisons of both females 

and fawns (Table 3; Student’s t-test, t < 1, p > 0.09, in both cases). 

 

Figure 2. Relationship between home range size and daily average movement of 

fawns (black line, R2 = 0.36, p ≤ 0.0001), in Grimsö (blue triangles) and at 
Bogesund (red diamonds), based on VHF-collared neonate roe deer marked in 

southern Sweden 2013 – 2016. 

 

There was a significant positive relationship between DAM and fawn home range 

size (Fig. 2), both in Grimsö (R2 = 0.39, p ≤ 0.0001) and Bogesund (R2 = 0.23, p = 

0.003). Mean per cent agricultural area of fawn home ranges was larger in Grimsö, 

but the median showed an opposite pattern, which meant that there were a few more 

extreme values (Table 3). There was no statistical difference in per cent agricultural 

land between sexes either (Student’s t-test, t = -0.1999, df = 88.89, p = 0.84). There 

was no relationship between number of locations per fawn and generated size of 

home range, therefore no correction was made for this (R2 = 0.009, p = 0.19).  
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Table 3. Mean fawn and female home range size (ha), daily average movements 

(m/day), and proportion of agricultural area (%) estimated by two different 
methods (Kernel 90 and MCP). Sample size (N), median, and standard deviations 

(sd) are indicated for the two areas Bogesund (B) and Grimsö (G), all divided into 
three subgroups: Fawns, fawns with known mothers included in the subsets, and 

mothers. Fawns with known mother and mothers are included in the subset 

analyses and highlighted here in grey 

 

The analysis including mothers for both HR and DAM included a wide age-span of 

females from 2 to 11 years old (mean age around 5 years old). Adult females were 

heavier in Grimsö than in Bogesund (Table 4, range between 21.7-30.1). Fox and 

roe deer density were clearly higher in Bogesund than Grimsö (Table 4). There were 

no differences between weight at birth between female and male fawns (Female 

mean = 1.89 kg, Male mean = 1.81 kg; DAM N = 118, Student’s t-test, t = 0.74, df 

= 114.83, p = 0.46), but there was a difference in weights between sites (Grimsö 

mean = 1.89 kg, Bogesund mean = 1.71 kg; DAM N = 118, Student’s t-test, t = 2.33, 

df = 110.58, p = 0.022). 

 

  

   Both areas Grimsö Bogesund 

 Type of measure N (G, B) Mean (SD) Median Mean (SD) Median Mean (SD) Median 

Fawn 

(all) 

HR1 (K90) 91 (53, 38) 89.65 (35.98) 85.51 107.78 (35.12) 91.76 64.36 (16.97) 60.01 

HR2 (MCP)  91 (53, 38) 46.62 (30.28) 38.63 60.98 (31.09) 50.07 26.59 (11.81) 24.26 

% Agr (in HR1) 91 (53, 38) 13.3 (16.6) 6.6 14.2 (19.5) 5.7 12.1 (11.5) 8.4 

DAM (m/day) 118 (71, 47) 428.9 (140.7) 425.96 449.9 (144.8) 461.57 404.92 (133.2) 391.71 

Fawn 

(subset) 

HR1 (K90) 17 (14, 3) 109.16 (37.63) 92.74 118.24 (34.78) 102.23 66.79 (13.99) 58.87 

HR2 (MCP)  17 (14, 3) 63.6 (34.45) 48.29 70.99 (33.42) 59.89 29.13 (8.44) 24.35 

% Agr (in HR1) 17 (14, 3) 3.7 (5.6) 0 2.8 (4.1) 0 8.3 (5.5) 9.9 

DAM (m/day) 23 (20, 3) 492.22 (132.5) 493.59 494.88 (137.1) 494.76 474.48 (118.3) 493.59 

Mother 

(subset) 

HR1 (K90) 13 (10, 3) 94.72 (48.42) 83.14 102.06 (53.29) 94.3 70.26 (11.16) 64.29 

HR2 (MCP) 13 (10, 3) 59.67 (47.8) 49.91 66.9 (53.19) 53.11 35.59 (13.7) 31.41 

% Agr (in HR1) 13 (10, 3) 13.7 (6) 0 7 (4.4) 0 15.9 (9.4) 10.8 

DAM (m/day) 18 (15, 3) 353.13 (151.5) 291.03 366.33 (161.8) 299.13 287.1 (63.1) 282.93 
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Table 4. Mean, standard deviation (SD), and sample size (N) of the variables Roe 

Index, Fox Index, Mother age, Mother Body Mass, Temperature, and 
Precipitation, with units in parentheses, are presented for both study areas as well 

as for Grimsö and Bogesund separately 

3.2 Home range size  
The best model selected included Site and Year only (Table 5A). The effects of both 

Bogesund and year 2016 were negative (Table 5B), in 2016, home ranges were 

considerably smaller (Fig. 6). Both variables had high importance along with % Agr 

(Table 5C), which was also included in the second-best model. With an increase in 

% Agr, the fawns showed a decrease in HR size. 

 

Table 5A. Model selection table on candidate models (Models) of the LMM 

analysis explaining home range size including the variable site together with 

number of parameters (K), log likelihood estimate (logLik), corrected Akaike's 

Information Criterion corrected for small sample sizes (AICc), Akaike's 

Information Criterion (ΔAIC), and weights of models (ω). Selected model 

highlighted in bold 

 
 Both areas Grimsö Bogesund 

Variable N Mean SD Mean SD Mean SD 

Roe Index (ind/km2) 7 2.74 2.65 0.9 0.36 5.18 2.27 

Fox (ind/day) 7 0.13 0.1 0.08 0.02 0.2 0.13 

Mother Age (HR, years) 13 4.62 2.43 4.8 2.74 4 1 

Mother Age (DAM, years) 17 5.17 2.79 5.4 3 4 1 

Mother Body Mass (HR, kg) 13 25.62 2.4 26.22 1.99 23.65 2.99 

Mother Body Mass (DAM, kg) 17 25.48 2.45 25.87 2.25 23.65 2.99 

Temperature (mean, June) 7 13.7 0.96 13.22 0.99 14.33 0.51 

Precipitation (mm, June total) 7 54.89 25.94 56.85 31.83 52.27 21.92 

Models K logLik AICc ΔAIC ω 

Site + Year 7 3.49 8.38 0.00 0.12 

% Agr + Site + Year 8 4.60 8.56 0.19 0.11 

Sex + Site + Year 8 4.01 9.73 1.35 0.06 

% Agr + Sex + Site + Year 9 5.17 9.88 1.50 0.06 

% Agr + Site + Year + Site:% Agr 9 5.01 10.21 1.83 0.05 
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Table 5B. Model-averaged estimates for each explanatory variable (Variable) 
including relative effects (Estimate), standard error (SE), adjusted standard error 

(Adjusted SE), z value (z), and p-value (p, significance highlighted in bold) 

Variable Estimate SE Adjusted SE z p 

(Intercept) 4.832 0.191 0.193 24.977 < 0.01 

Site (B) -0.522 0.072 0.073 7.176 < 0.01 

Year 2014 -0.135 0.135 0.137 0.986 0.324 

Year 2015 -0.157 0.133 0.135 1.159 0.246 

Year 2016 -0.366 0.133 0.135 2.709 0.007 

%Agr -0.32 0.206 0.209 1.531 0.126 

Sex (M) 0.038 0.035 0.036 1.048 0.295 

Site (B):%Agr 0.397 0.448 0.455 0.873 0.383 

Age 0.001 0.005 0.005 0.269 0.788 

Mean Tick Res 0.0005 0.008 0.008 0.062 0.951 

Mean Birth Kg  -0.002 0.044 0.044 0.048 0.962 

 

Table 5C. The relative importance (Importance) of each variable and the number 
of models the variable is included in (N models = 160, N individuals = 91) 

Variable Site Year % Agr Sex Age Mean Tick 

Res 

Mean Birth 

Kg 

% Agr:Site 

Importance 1.00 0.93 0.56 0.34 0.23 0.23 0.22 0.17 

No of models 96 80 96 80 80 80 80 32 

 

For the site-specific model, Roe Index was the only variable retained in the best 

model (Table 6A), with lower densities resulting in larger home ranges (Table 6B, 

Fig. 5). Considering model-averaging the most important variables were Roe Index 

and % Agr, but Mean Temp is also worth mentioning (Table 6C). Both the % Agr 

and Mean Temp had negative, but not significant effects on HR size. 
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Table 6A. Model selection table on candidate models (Models) of the LMM 

analysis explaining home range size including the site-specific variables Roe 
Index and Mean Temp together with number of parameters (K), log likelihood 

estimate (logLik), corrected Akaike's Information Criterion corrected for small 
sample sizes (AICc), Akaike's Information Criterion (ΔAIC), and weights of models 

(ω). Selected model highlighted in bold 

Models K logLik AICc ΔAIC ω 

Roe Index 4 1.44 5.59 0.00 0.09 

% Agr + Roe Index 5 2.55 5.61 0.02 0.09 

Mean Temp + Roe Index 5 2.01 6.68 1.09 0.05 

Mean Tick Res + Roe Index 5 1.93 6.84 1.25 0.05 

% Agr + Mean Temp + Roe Index 6 3.08 6.84 1.25 0.05 

% Agr + Mean Birth Kg + Roe Index 6 2.80 7.40 1.80 0.04 

% Agr + Mean Tick Res + Roe Index 6 2.78 7.43 1.84 0.04 

Mean Birth Kg + Roe Index 5 1.62 7.46 1.87 0.04 

Age + Roe Index 5 1.60 7.50 1.90 0.04 

% Agr + Age + Roe Index 6 2.71 7.58 1.99 0.03 

 

Table 6B. Model-averaged estimates for each explanatory variable (Variable) 
including relative effects (Estimate), standard error (SE), adjusted standard error 

(Adjusted SE), z value (z), and p-value (p, significance highlighted in bold) 

Variable Estimate SE Adjusted SE z p 

(Intercept) 5.095 0.757 0.761 6.693 < 0.01 

Roe Index -0.011 0.002 0.002 5.820 < 0.01 

%Agr -0.288 0.196 0.199 1.449 0.147 

Mean Temp -0.067 0.062 0.062 1.075 0.283 

Mean Tick Res -0.006 0.009 0.008 0.705 0.481 

Mean Birth Kg 0.025 0.044 0.044 0.555 0.579 

Age 0.003 0.005 0.005 0.560 0.575 

Year 2014 -0.293 0.143 0.145 2.028 0.043 

Year 2015 -0.298 0.163 0.165 1.809 0.071 

Year 2016 -0.261 0.136 0.138 1.897 0.058 
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Table 6C. The relative importance (Importance) of each variable and the number 
of models the variable is included in (N models = 128, N individuals= 91) 

Variable Roe  

Index 

% Agr Mean 

Temp 

Mean Tick Res Mean Birth 

Kg 

Age Year 

Importance 1.00 0.47 0.39 0.29 0.27 0.26 0.22 

No of models 64 64 64 64 64 64 64 

 

Since the Roe Index and Fox were heavily correlated it was not possible to include 

them both in the same models. To find out if the density of predators influenced the 

home range size of fawns, I conducted a separate analysis without Roe Index and 

instead including Fox (see Appendix 1, Table 1A). In this analysis, the most 

parsimonious model was instead including the variables Fox, Mean Temp, and Year, 

of which all were significant, had negative effects, and had high importance values 

>0.98 (see Appendix 1, Table 1A-C). The variable, % Agr, also had relatively high 

importance and low p-value, showing the tendency of a prevalent effect.  

When investigating the influence of mother characteristics, the best model was 

including Mother Body Mass and Roe Index (Table 7A). Both Mother HR Size and 

Mother Body Mass were included in the top models and had similar weights 

(respectively differing by 0.02 and 0.04 from the best model). Fawn HR size 

increased with increasing adult Mother HR Size (Fig. 3; Table 7B), even though an 

outlier strongly affected that relationship rendering it not significant when tested 

separately. When considering the principle of parsimony, the subset showed again 

that Roe Index was the strongest determinant of the size. The chosen model for fawn 

HR size was therefore only including Roe Index. Most important variables were 

Roe Index and Mother HR Size (Table 7C).  
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Table 7A. Model selection table on candidate models (Models) of the LMM 

analysis explaining home range size including the mother quality variables and 
Roe Index together with number of parameters (K), log likelihood estimate 

(logLik), corrected Akaike's Information Criterion corrected for small sample 
sizes (AICc), Akaike's Information Criterion (ΔAIC), and weights of models (ω). 

Selected model highlighted in bold 

Models K logLik AICc ΔAIC ω 

Mother Body Mass + Roe Index 5 4.60 6.26 0.00 0.17 

Mother HR Size + Roe Index 5 4.46 6.53 0.28 0.15 

Roe Index 4 2.21 6.90 0.65 0.13 

Mother HR Size 4 2.04 7.25 0.99 0.11 

 

Table 7B. Model-averaged estimates for each explanatory variable (Variable) 

including relative effects (Estimate), standard error (SE), adjusted standard error 

(Adjusted SE), z value (z), and p-value (p, significance highlighted in bold) 

Variable Estimate SE Adjusted SE z p 

(Intercept) 5.683 1.833 1.894 3.000 0.0027 

Mother Body Mass -0.064 0.04 0.043 1.484 0.138 

Roe Index -0.017 0.007 0.008 2.298 0.022 

Mother HR Size 0.004 0.002 0.002 1.896 0.058 

Age -0.048 0.045 0.048 0.994 0.32 

Mother Age 0.003 0.036 0.039 0.078 0.938 

Mean Birth Kg 0.048 0.098 0.107 0.443 0.658 

Year 2014 0.024 0.297 0.312 0.076 0.939 

Year 2015 0.451 0.349 0.364 1.240 0.215 

Year 2016 -0.069 0.33 0.348 0.197 0.844 

 

Table 7C. The relative importance (Importance) of each variable and the number 

of models the variable is included in (N Models = 128, N Individuals = 17) 

Variable Roe 

Index 

Mother HR 

Size 

Mother Body 

Mass 

Age Mean Birth 

Kg 

Mother 

Age 

Year 

Importance 0.71 0.42 0.31 0.17 0.10 0.10 0.02 

No of models 64 64 64 64 64 64 64 

 

In this subset analysis, the variable Site was excluded due to low sample size. 

Mother Body Mass was here included in one of the top models and was the third 

most important variable (Table 7C). Mother Body Mass was also significantly lower 



32 
 

at Bogesund than in Grimsö which contributed to this result (Student’s t-test, t = 

5.0671, df = 21.666, p ≤ 0.0001). 

Similar as with the full dataset, I conducted a separate analysis including Fox 

instead of Roe Index (see Appendix 1, Table 2A). In these candidate models, the 

variable Mother HR Size was significant and was the only one included in the most 

parsimonious model. It had a considerably higher weight than the other models and 

a ΔAIC < 2. Fox had an importance of 0.38 and was the only variable in second 

simplest model (see Appendix 1, Table 2C). Fox had similar negative effect on HR 

size as in the full dataset (see Appendix 1, Table 2B). The positive relationship 

between Mother and fawn HR size was tested separately as well through log-

transformed linear regression excluding top right outlier in graph (n =16, R2 = 0.016, 

p = 0.28, Fig. 3). 

  

 

Figure 3. The relationship (black line) between roe deer mother and neonate home 

range sizes generated from locations collected in southern Sweden 2013 – 2016 
compared to the expected 1:1 relationship between the two (dashed red line). 

3.3 Daily average movement 
The first DAM dataset analysed showed that the most parsimonious model included 

the variables Site and Year, the same result as for the home range size (Table 8A). 

Fawns in Bogesund had a significantly lower DAM than in Grimsö (with 85 m less 
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movements per day, i.e. 19 % of the DAM mean in Grimsö; Table 3; Table 8B). 

The effect of DAM was also 114 m shorter per day for the year 2016 compared to 

other years. I obtained similar results when considering the relative importance from 

model-averaging, as the most important variables were Year and Site (Table 8C, 

Fig. 4A; Fig 4B). The positive effect of Mean Tick Res had a relatively high 

importance as well and was included in two of the five top models ΔAIC <2. 

 

Table 8A. Model selection table on candidate models (Models) of the LMM 

analysis explaining daily average movement including the site variable together 
with number of parameters (K), log likelihood estimate (logLik), corrected 

Akaike's Information Criterion corrected for small sample sizes (AICc), Akaike's 
Information Criterion (ΔAIC), and weights of models (ω). Selected model 

highlighted in bold 

Models K logLik AICc ΔAIC ω 

Site + Year 7 -731.60 1478.21 0.00 0.18 

Mean Tick Res + Site + Year 8 -730.61 1478.55 0.34 0.15 

Mean Birth Kg + Mean Tick Res + Site + Year 9 -729.85 1479.36 1.15 0.10 

Mean Birth Kg + Site + Year 8 -731.31 1479.94 1.73 0.08 

Sex + Site + Year 8 -731.38 1480.08 1.87 0.07 

 

Table 8B. Model-averaged estimates for each explanatory variable (Variable) 
including relative effects (Estimate), standard error (SE), adjusted standard error 

(Adjusted SE), z value (z), and p-value (p, significance highlighted in bold) 

Variable Estimate SE Adjusted SE z p 

(Intercept) 508.926 54.71 55.208 9.218 < 

Site (B) -84.744 27.106 27.404 3.092 0.002 

Year 2014 33.095 45.933 46.416 0.713 0.476 

Year 2015 -68.974 44.156 44.62 1.546 0.122 

Year 2016 -113.768 43.263 43.726 2.602 0.009 

Mean Tick Res 5.268 3.368 3.404 1.547 0.122 

Mean Birth Kg 19.3 19.024 19.224 1.004 0.315 

Sex (M) -15.791 22.106 22.353 0.706 0.48 

Age -0.363 0.977 0.987 0.367 0.713 
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Table 8C. The relative importance (Importance) of each variable and the number 
of models the variable is included in (N models = 64, N individuals = 118) 

Variable Year Site Mean Tick 

Res 

Mean Birth 

Kg 

Sex Age 

Importance 0.99 0.97 0.51 0.35 0.29 0.25 

No of models 32 32 32 32 32 32 

 

 

The same dataset with the site-specific model showed that Roe Index and Year were 

the two variables included in the most parsimonious model (Table 9A). The two 

variables were both significant and caused negative effects on DAM (Table 9B). 

DAM was only reduced by 2 m with increasing density of roe deer (range between 

0.57 – 7.81 ind/km2). Important variables were the same as the ones selected in the 

most parsimonious model (Table 9C). The variable Mean Tick Res did again have 

high importance with its positive effect. 

 

  

Figure 4. The predicted relationship (blue line) with confidence interval (grey area) of the model output 
from Table 8A-C displaying individual daily movements of neonates with A) site, and B) year, both 

generated from locations collected in southern Sweden 2013 – 2016. 
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Table 9A. Model selection table on candidate models (Models) of the LMM 

analysis explaining daily average movement including the site-specific variables 
Roe Index and Mean Temp together with number of parameters (K), log likelihood 

estimate (logLik), corrected Akaike's Information Criterion corrected for small 
sample sizes (AICc), Akaike's Information Criterion (ΔAIC), and weights of models 

(ω). Selected model highlighted in bold 

Models K logLik AICc ΔAIC ω 

Roe Index + Year 7 -731.08 1477.17 0.00 0.12 

Mean Tick Res + Roe Index + Year 8 -730.40 1478.13 0.96 0.07 

Mean Birth Kg + Roe Index + Year 8 -730.60 1478.52 1.34 0.06 

Mean Birth Kg + Mean Tick Res + Roe Index + Year 9 -729.45 1478.56 1.38 0.06 

Roe Index + Sex + Year 8 -730.90 1479.13 1.95 0.04 

 

Table 9B. Model-averaged estimates for each explanatory variable (Variable) 

including relative effects (Estimate), standard error (SE), adjusted standard error 

(Adjusted SE), z value (z), and p-value (p, significance highlighted in bold) 

Variable Estimate SE Adjusted SE z p 

(Intercept) 636.45 298.765 300.284 2.119 0.034 

Roe Index -1.854 0.685 0.691 2.681 0.007 

Year 2014 7.582 46.777 47.236 0.161 0.872 

Year 2015 -89.085 53.237 53.684 1.659 0.097 

Year 2016 -99.191 44.685 45.159 2.197 0.028 

Mean Tick Res 4.952 3.4034 3.44 1.440 0.15 

Mean Birth Kg 20.274 19.023 19.22 1.055 0.292 

Sex (M) -13.656 22.28 22.525 0.606 0.544 

Mean Temp -25.392 30.567 30.786 0.825 0.409 

Age -0.396 0.975 0.986 0.402 0.688 

 

Table 9C. The relative importance (Importance) of each variable and the number 

of models the variable is included in (N models = 128, N individuals = 118) 

Variable Roe  

Index 

Year Mean Tick 

Res 

Mean Birth 

Kg 

Mean 

Temp 

Sex Age 

Importance 0.88 0.87 0.47 0.36 0.34 0.27 0.25 

No of models 64 64 64 64 64 64 64 

 

A second analysis path trying to explain the variation in DAM was performed 

including Fox while Roe Index was excluded. The best model was the same as for 
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the home range size with Fox, Mean Temp, and Year, with all having negative 

effects on DAM (see Appendix 1, Table 3A-B). The most parsimonious model 

however included only Fox and Year. Year was a significant variable while Fox was 

on verge of significance (see Appendix 1, Table 3B, p = 0.055). The relative 

importance of Fox was more important than the Roe Index. All the variables Fox, 

Mean Temp, Year, Mean Tick Res, and Mean Birth Kg had high to relatively high 

importance, but the importance of Year was lower in the analysis including Fox than 

in the Roe Index analysis path (Table 9C; see Appendix 1, Table 3C). Importance 

of Mean Temp was double compared to the site-specific model with the Roe Index 

instead (see Appendix 1, Table 3C). 

Finally, analysis of DAM with the subset of data on fawn-mother pairs, showed 

that none of the included variables were in the most parsimonious model (Table 

10A). Therefore, the null model was selected, whereas the model including Mother 

Age was in second place. None of the variables showed significant effects (Table 

10B). The importance of both Mother Age and fawn Age in relation to the sum of 

weights ΔAIC < 2 showed that they both might have had some effect in explaining 

the variation (Table 10C). 

 

Table 10A. Model selection table on candidate models (Models) of the LMM 

analysis explaining daily average movement including the mother quality 

variables and Roe Index together with number of parameters (K), log likelihood 

estimate (logLik), corrected Akaike's Information Criterion corrected for small 
sample sizes (AICc), Akaike's Information Criterion (ΔAIC), and weights of models 

(ω). Selected model highlighted in bold 

Models K logLik AICc ΔAIC ω 

(Null) 3 -143.20 293.67 0.00 0.19 

Mother Age 4 -142.11 294.45 0.78 0.13 

Age 4 -142.55 295.32 1.64 0.08 
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Table 10B. Model-averaged estimates for each explanatory variable (Variable) 

including relative effects (Estimate), standard error (SE), adjusted standard error 
(Adjusted SE), z value (z), and p-value (p, significance highlighted in bold) 

Variable Estimate SE Adjusted SE z p 

(Intercept) 457.895 236.646 247.826 1.848 0.065 

Mother Age -16.609 11.18 11.978 1.387 0.166 

Age 4.835 3.305 3.542 1.365 0.172 

DAM Mother -0.161 0.225 0.24 0.673 0.501 

Roe Index -1.433 2.796 2.993 0.479 0.632 

Mean Birth Kg -7.83 51.473 55.124 0.142 0.887 

Mother Body Mass 1.258 12.929 13.834 0.091 0.928 

Year 2014 -39.907 88.186 94.311 0.423 0.672 

Year 2015 -81.036 82.794 89.234 0.908 0.364 

Year 2016 -139.297 81.867 88.348 1.577 0.115 

 

Table 10C. The relative importance (Importance) of each variable and the number 
of models the variable is included in (N models = 128, N individuals = 23) 

Variable Mother 

Age 

Age DAM 

Mother 

Roe  

Index 

Mother Body 

Mass 

Mean Birth 

Kg 

Year 

Importance 0.35 0.27 0.21 0.18 0.16 0.16 0.01 

No of models 64 64 64 64 64 64 64 

 

The analysis was performed exchanging Fox for Roe Index and resulted in the same 

outcome by not rejecting the null model (see Appendix 1, Table 4A-C). However, 

this analysis with Fox resulted in a larger effect by a decrease of 46 m compared to 

Roe Index with < 2 m decrease. 

3.4 Summary of results 
Based on all eight different models (with four datasets), the most parsimonious 

models selected are presented (Table 11) and showed that Site, Year, and Roe Index 

are the most common features included (Fig. 1; Fig. 4A; Fig. 4B; Fig. 5; Fig. 6).  
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Figure 5. The predicted relationship (blue line) with confidence interval (grey 

area) from the model output from Table 6A-C of individual variation of fawns’ 
home range sizes (y-axis), generated from locations collected in two areas in 

Sweden (Grimsö & Bogesund) 2013 – 2016, over a range of roe deer densities (x-

axis). 

 

Figure 6. The predicted relationship from the model output from Table 5A-C of 

variation of neonate roe deer home range sizes (y-axis) between years (x-axis) 

generated from locations collected in two areas in Sweden (Grimsö & Bogesund) 

2013 – 2016. Individual home range sizes (points), means (blue lines), and 
confidence intervals (grey areas) are displayed. 
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In the site-specific model for both HR and DAM the final variables included were 

Site and Year, whereas the site-specific models for HR included only Roe Index, 

while DAM included both Roe Index and Year. The subset of HR displayed the 

same parsimonious model as for the full dataset with Roe Index being the only 

variable included. By comparing models with or without the mother identity 

included as a random factor, individual variation among mothers appeared to 

account for a large part of the variance in fawn HR sizes, as suggested by the marked 

increase observed in the R2-values (Table 11). There was also some variation 

between individuals for DAM, but not as much as for HR size. The variable Year 

was often included in the selected best models and there was a clear pattern of 

smaller home ranges during 2016 and larger in 2013 (Fig. 6).  

 

Table 11. The selected, most parsimonious models (Model) and their correlation 

coefficients from different analyses (Origins displayed by referral to table or 
appendix table) of fixed effects (Marginal R2) and both fixed and random effects 

(Conditional R2). Response variables home range size (HR) and daily average 
movement (DAM) are both represented excluding subsets of daily average 

movements for the roe deer index and fox index where the null model was 

accepted for both 

Model Table Marginal R2 Conditional R2 

log(HRsize) ~ Site + Year + (1| MotherID) 5A 0.515 0.926 

log(HRsize) ~ Roe Index + (1| MotherID) 6A 0.483 0.925 

log(HRsize) ~ Fox + Mean Temp + Year + (1| MotherID) Ap. 1:1A 0.53 0.928 

log(HRsize) ~ Roe Index + (1|MotherID) 7A 0.322 0.962 

log(HRsize) ~ Mother HR size + (1|MotherID) Ap. 1:2A 0.295 0.962 

DAM ~ Site + Year + (1| MotherID) 8A 0.263 0.314 

DAM ~ Roe Index + Year + (1| MotherID) 9A 0.269 0.322 

DAM ~ Fox + Year + (1| MotherID) Ap. 1:3A 0.236 0.318 
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This study showed that neonate roe deer home range size was influenced by site, 

roe deer population density, fox density, temperature, mother home range size, and 

year, which were all included in the selected best models and had varying 

importance. Prediction (1) stated that fawn home range size and daily movements 

are larger and longer in Grimsö than in Bogesund and was confirmed. The home 

range sizes of fawns are also positively related to their mothers’ home range size, 

thereby partly accepting prediction (2) as well. However, the movement of fawns 

was seemingly not explained by any of the other mother characteristics such as 

mother body mass, age, or movement. High densities of roe deer and fox were, as 

expected in prediction (3), negatively affecting home range size and movements. 

The proportion of agricultural land did not cause any effect on home range size or 

movements, thereby rejecting the part of prediction (3) saying that increasing 

amounts of agricultural land would result in fawns moving less and over smaller 

areas. Prediction (4) stating that fawn home range size and movements would vary 

with environmental influence and year was in part both accepted and rejected. Both 

home range size and movements varied between years as expected, but temperatures 

showed to have the opposite than expected effect as increasing temperature led to 

smaller home ranges. Since precipitation was never tested I could neither accept or 

reject this prediction. Considering the intrinsic effects of sex, age, and birth weight 

of the fawns, none of the factors caused effects on either individual size of home 

range or movement. There are no differences in early somatic growth rates between 

genders (Andersen & Linnell, 1997), justifying combing sexes in some of the 

analyses on the neonates, in this study. The age of the youngest fawn with a home 

range was 37 days, which correspond to > 5 weeks of age and close to the age where 

predation risk decreases rapidly (Aanes & Andersen, 1996; Jarnemo et al., 2004), 

which in turn may be a reason for the lack of effect by age. Finally, tick burden on 

neonates did not explain any significant variation in HR or DAM, although it was 

of some importance in the latter. Therefore, both predictions 5 and 6 were rejected.  

4 Discussion 
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Further, neonate roe deer daily movements and home range sizes were 

significantly and positively related, meaning that there is possibly a causal 

relationship between the two. This means that animals with large home ranges also 

move over longer daily distances. Whether movements are frequent and short, or 

few and long, is not analysed here and is instead a topic for the future. These findings 

are of use when discussing the different effects in further detail. 

4.1 Differences between sites 
As mentioned, fawn home range size was larger in Grimsö than Bogesund. That 

home range size of adults is habitat-dependent have been shown by previous studies 

(Börger et al., 2006), and here, it seems that a similar relationship exists in neonate 

roe deer home range size as well, although between sites instead of specific habitats. 

Roe deer have a plastic behaviour when it comes to foraging and anti-predator traits 

which can increase their survival (Abbas et al., 2011; Bonnot et al., 2015), and 

argues for that they may easily adjust to local characteristics. The difference 

between sites shows that local effects can influence home range sizes and daily 

average movements of fawns. There can be multiple reasons for fawn home ranges 

being larger in Grimsö and some are highlighted below. 

4.1.1 Index of roe deer density and the proportion of agricultural land 

In Bogesund, the density of roe deer is high compared to Grimsö and the high roe 

deer index did also correlate with a decrease in home range size (Table 4; Table 6A-

B). The differences in densities are especially clear when visually examined (Fig. 

5). The relationship between home range size and roe deer density also agrees with 

what Kjellander et al. (2004) found for adult roe deer in the same area (Bogesund). 

Although the proportion of agricultural area was not found to influence home range 

size (Table 5B; Table 6B; see Appendix 1, Table 1B), it may indirectly affect roe 

deer density by increasing carrying capacity of a habitat (Drożdż, 1979). 

Considering the high total proportion of agricultural land (i.e. a broad proxy for food 

availability) in Bogesund this may result in a smaller home range size due to the 

overall increased and compressed food availability, allowing a more energy-

efficient food search. 

However, since the food availability (i.e. proportion of agricultural area) for the 

mother did not affect fawn home range size, what could else could cause roe deer 

density to affect fawn home range size negatively? Female roe deer are not territorial 

as the males are during the rut (Vanpé, 2007) but they do avoid each other during 

summer months by showing less overlap during the fawning season (Maublanc et 
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al., 2012). Female roe deer also show more aggression towards each other during 

the fawning season with half of all aggressive encounters being performed in the 

first ten days after birth (Maublanc et al., 2012). This avoidance behaviour can 

therefore lead to smaller home ranges in high density areas. However, another 

measure of food availability may have been better suited in this study since there is 

no overall index for food availability including all habitats. A total measure of food 

availability could be an important determinant of fawn home range size since it has 

been shown to be a good predictor for adult female home ranges (Saïd et al., 2009; 

Morellet et al., 2013). 

If home range size is largely due to roe deer density, high densities can force 

individuals to inhabit a more sub-optimal forested area, which relates to higher 

predation risk due to the predictability and a decrease of hiding places for fawns 

(Panzacchi et al., 2009; Van Moorter et al., 2009). The high density will also result 

in an increasing importance of habitat quality, with low quality causing increased 

fawn mortality (Pettorelli et al., 2003). Consequently, this fragile relationship will 

be even more susceptible to environmental fluctuations and human-caused changes. 

Therefore, I believe that a female and its fawn will have less possibility to exploit 

new areas if the original home range is disturbed by for example mowing, which 

will cause a shift in the preferred habitat (Linnell et al., 2004). Forage in the “new” 

home range will then sustain more inhabitants. Mowing could potentially have 

influenced fawn home range size in this relation. Mowing affects the fawn’s 

preference of a farmland habitat for cover and the mother´s for food (Linnell et al., 

2004). Since habitat choice in an agricultural landscape has been shown to be more 

based on the vegetation development rather than the age of fawns (Linnell et al., 

2004), it would have been advantageous to have known the time when mowing 

occurs. Other consequences due to high roe deer density may be apparent in the 

following year due to a decreased adult body mass of fawns born in a high-density 

area and consequently an increase in stillbirths (Andersen & Linnell, 1998; Pettorelli 

et al., 2002). 

The high roe deer density also caused small but decreasing effects on daily 

movements. The effect of movements was greater in Bogesund. Perhaps the 

potential avoidance pattern between individuals that appears at high roe deer 

densities slightly decreases movement. Though not likely a major decrease since the 

mother will have the same energetic requirements and should aim for moving in 

relation to necessary food intake. However, decreasing possibilities to move may be 

one of the limitations causing low adult body mass of fawns born in high density 

areas (Toïgo et al., 2006) and lower birth weights when born during a peak (Gaillard 

et al., 1997). This means that the density of roe deer might have amplifying and 

long-lasting effects on fawns through the decrease in both home range size and 

movements on body mass and ultimate fitness. 
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4.1.2 Index of fox density 

The fox density was higher in Bogesund and was also a factor shown to affect home 

range size and movements of roe deer fawns as well (see Appendix 1, Table 1A-C; 

see Appendix 1, Table 3A-C), similar to what was expected. The corresponding 

pattern has been found in voles as well where the presence of predators decreased 

home range size significantly, and was interpreted as a direct behavioural 

adjustment to avoid contact with predators (Desy et al., 1990). Roe deer fawns in 

areas with low fox density could therefore advantageously have a larger home range 

without an increasing risk.  

In addition to the high fox density, the total coverage of agricultural areas in 

Bogesund can influence the behaviour of fawns. Since it is more difficult to find 

hidden fawns in an agricultural area, the predation risk might decrease with less 

movement (Panzacchi et al., 2009) and subsequently, having a smaller home range 

since these factors are correlated (Fig. 2). Fawns moving less therefore survive, 

while fawns moving more suffer from higher rates of predation, causing the negative 

effect on fawn movements and home range size.  

However, it would have been interesting to investigate other predators as well, 

even though the fox index is lower in Grimsö, the roe deer in this area have in total 

more predators to avoid, e.g. fox, lynx, and wolf, although predation by wolves still 

seems to be of lesser importance (Davis et al., 2016). After all, mortality caused by 

lynx can represent a large proportion of total fawn mortality (Jędrzejewski et al., 

1993; Nordström, 2010). 

4.1.3 Year 

The yearly variation seen on both daily movements and home range size of fawns 

in this study is explained to some extent by the variation in roe deer and fox 

densities. Year also corresponds to some stochastic variability that has not been 

included in the model. For example, the vole populations of two study areas, Grimsö 

and Bogesund, are factors affecting food availability for foxes, and a decrease in the 

voles will lead to an increasing offtake of roe deer fawns (Kjellander & Nordström, 

2003). With the foxes focusing more on roe deer in the poor vole years, this can 

potentially cause effects on both female and fawn behaviour and their daily 

movements. Consequently, also an indirect effect on the home range size of fawns, 

due to the correlation shown in this study (Fig. 2). In fact, a vole index (methodology 

see Kjellander & Nordström, 2003) estimated in both Grimsö and Bogesund, reveal 

that the vole population size was low from spring 2015 to spring 2016 in Grimsö 

and a low vole density in Bogesund in spring 2016 as well. In any case, the fall vole 

index shows a strong increase in Grimsö 2016 that potentially could have the above-
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described impact. Especially for 2016 when a smaller home range size was observed 

in this study (Fig. 6). A question that follows is if the Grimsö fall increase in voles 

leads to an increase in home range size in 2017’s fawns? This remains to be seen. 

Further explanations for the effect on home range size in 2016 were that this year 

coincided with peak fox and roe deer densities in Bogesund which might cause the 

decreasing home ranges. However, both densities were just slightly under the mean 

for Grimsö.  

4.1.4 Environmental factors 

The difference between sites could also be attributed to environmental factors. In a 

study within northern Europe, home range size of roe deer decreased with increasing 

temperature and NDVI (Normalized Difference Vegetation Index, Morellet et al., 

2013). The temperature was higher in Bogesund than Grimsö in this study (Table 

4). Mean temperature was consistently negatively affecting both home range size 

and daily movements in my study which was opposite to my expectations. A 

previous study found that younger fawns avoiding light penetration increased their 

survival (Van Moorter et al., 2009). Therefore, the result observed in this study may 

have shown decreasing movements due to avoidance of hyperthermia.  

There can be an indirect effect of temperature in this study as well since higher 

temperature may lead to increase growth of vegetation, although the effect of 

temperature does vary (Rustad et al., 2001). Thus, the need to move decreases and 

home ranges of adult females can be smaller to reduce energy expenditure while 

foraging (Saïd et al., 2009; Morellet et al., 2013). 

Roe deer density, fox density, temperature, and total proportion of agricultural 

land in Bogesund may all together explain some of the variation in neonate roe deer 

home range size, although the three first factors are the only ones significantly 

shown to do so in this study. However, the results revealed that there was a lot of 

individual variation in home range size, suggesting that more factors are explaining 

the resulting size. 

 

4.2 Mother characteristics 
Finally, my expectations that mother’s characteristics influence fawn home range 

size and movements are partially supported. Especially for variations in home range 

size which are markedly accounted for by individual variation between mothers. 

Indeed, although around 50% of the variance in home range size is explained by the 

correlation with environmental factors (site, year, roe deer density, fox density, and 
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mean temperature) more than 90% of the variance is explained when also accounted 

for by mother identities. Concerning the mother’s characteristics tested, the size of 

a female’s home range did show a positive relationship with its fawn’s home range, 

which means that the fawn inherits a wider movement pattern from its mother. The 

relatively small sample size in this study does, however, warrant caution about the 

results. Though, an argument reinforcing this result could be that for example fawn 

body mass (Andersen et al., 2000) is correlated with mothers’ characteristics 

showing an inheritance. Further, the success rate in defending its young (Jarnemo, 

2004) should result in a limited maximal distance between fawns and females. 

Home range size is also dependent on food availability (Panzacchi et al., 2010), 

which would explain why the mothers do not simply decrease their home range size 

to stay close to their young. Further arguing for the connection is that predation risk 

is only considered secondarily after food availability (Panzacchi et al., 2010). 

Therefore, a plausible explanation is that the fawn must move with the mother for 

the latter to find forage. The simultaneous movement pattern between females and 

fawns is more pronounced in a forested habitat and they also have the shortest 

distance between each other when they are active (Panzacchi et al., 2010). This fact, 

in combination with the relatively high percentage of forested habitats in both areas, 

can explain the relationship between the two. The connection would also explain 

why there were similar effects on home range size for both fawns and females by, 

for example, high roe deer density (Kjellander et al., 2004). 

4.3 Improvements 
There was an unexpected difference between fawn and female home range size in 

this study. One might assume that the fawn will have a smaller home range size than 

its mother since it will only move to where the female has left the fawn (Van 

Moorter et al., 2009), at least within a short distance (pers. comm. A. Jarnemo, 15 

January 2017). In this study, the mean home range size of fawns in Grimsö was 

equivalent, or even slightly larger than their mother during the same time. It may be 

explained by the presence of certain predators which in the white-tailed deer results 

in the fawn moving over larger distances and sometimes out of the mother’s territory 

(Ozoga & Verme, 1986). It could also be due to the differences in radio-tracking 

equipment. The adult females included in the HR analysis wore a GPS-collar, while 

all the fawns have been wearing VHF-collars. There was no difference in daily 

average movement between VHF- and GPS-collars of females (Student’s t-test, t = 

-0.53, df = 3.44, p = 0.63), but this does not prove that there may be errors in the 

fawns’ positions. From experience, the mothers’ VHF-collars are easier to find and 

track, probably due to them being higher up and carry a stronger transmitter while 
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fawns are usually hiding close to the ground with a weaker transmitter and quite 

commonly next to objects that may interfere with the tracking.  

4.4 Conclusions and perspectives 
These results are original in the sense of being the first report of what determines 

the home range size of neonate roe deer. Overall, the results showed that site, roe 

deer density, fox density, mean temperature in June, and the mother’s home range 

size, likely represent important drivers of a fawn’s home range size. There is also a 

tendency suggesting that the proportion of agricultural area has an impact. 

Further studies should focus on investigating fawn habitat use in relation to the 

home range size and movements, which would be a better estimate of how the fawn 

perceive and react to landscape features than only the proportion of agricultural area 

present in the home range as considered in this thesis. This, in combination of 

quantifying number of hiding places could provide more information regarding the 

characteristics of home range sizes favourable in different areas. The importance of 

hiding places has already been connected to fawn survival (Van Moorter et al., 

2009), and would therefore be an interesting topic to pursue. 

An aim should also be to investigate the connection between fawns and their 

mothers further since, even though there was a correlation between a fawn’s and a 

mother’s home range, the sample size in this study was relatively low. It would also 

be interesting to look at the evolution of the home range size from birth to adult 

since habitat use differ heavily between beginning of May to the first of July (Linnell 

et al., 2004). Due to the low number of positions in this study, I could not divide the 

home ranges into different ages. I suggest that it would either be useful to use GPS-

collars on fawns as well if collars are low enough in weight, or to put more effort in 

the triangulation. In that way one will get more data for the same period and could 

include evening and night activity in the analysis as well. Since roe deer generally 

show a crepuscular activity pattern (Pagon et al., 2013) and most of the triangulation 

was performed during daytime, it might be favourable to include more positions 

covering both day and night for a more accurate home range size estimation. 

As a summary, this thesis provides new knowledge to the field of roe deer 

ecology, specifically in the spatial behaviour of roe deer fawns and the connection 

with their mothers in two contrasting landscapes. The two study areas, Grimsö and 

Bogesund, show the differences in neonate roe deer home range size between 

different intraspecific densities, fox abundance, and environmental variables. This 

new knowledge of roe deer fawns can be included in future method developments 

of management plans, research studies, and as a basis in the decision-making 

processes regarding wildlife. When knowing that the spatial use of fawns is similar 



47 
 

as for adults and that they are affected in the same manner, this results in further 

knowledge useful for investigating actual browsing pressure and food availability 

for predators on both a local and a larger scale. It also provides more details 

regarding the variation in the distribution of roe deer, which may be favourable 

regarding in the use and development of density estimates. This is important since 

density estimates are a basis in wildlife management with regards to hunting 

pressure and wildlife accidents. 
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Appendix 1 
Site-specific model selection tables with fox index instead of roe deer index. 

 

Table 1A. Model selection table on candidate models (Models) of the LMM 
analysis explaining home range size including the site-specific variables Fox 

Index and Mean Temp together with number of parameters (K), log likelihood 
estimate (logLik), corrected Akaike's Information Criterion (AICc), Akaike's 

Information Criterion (ΔAIC), and weights of models (ω). Selected model is 

highlighted in bold 

Models K logLik AICc ΔAIC ω 

Fox + Mean Temp + Year 8 4.95 7.85 0.00 0.23 

Fox + %Agr + Mean Temp + Year 9 6.15 7.92 0.07 0.22 

 

Table 1B. Model-averaged estimates for each explanatory variable (Variable) 

including relative effects (Estimate), standard error (SE), adjusted standard error 
(Adjusted SE), z value (z), and p-value (p, significance highlighted in bold) 

Variable Estimate SE Adjusted SE z p 

(Intercept) 8.186 0.724 0.734 11.148 <0.0001 

Fox -1.802 0.417 0.423 4.260 0.00002 

Mean Temp -0.234 0.049 0.05 4.693 0.000003 

Year 2014 -0.375 0.135 0.137 2.730 0.006 

Year 2015 -0.54 0.138 0.14 3.852 0.0001 

Year 2016 -0.208 0.138 0.14 1.483 0.138 

% Agr -0.291 0.189 0.191 1.520 0.128 

Mean Tick Res -0.003 0.008 0.008 0.356 0.722 

Age 0.002 0.005 0.005 0.441 0.66 

Mean Birth Kg 0.015 0.043 0.044 0.342 0.732 

 

Table 1C. The relative importance (Importance) of each variable and the number 
of models the variable is included in (N models 128, N individuals = 91) 

Variable Fox Mean Temp Year % Agr Mean Tick Res Age Mean Birth Kg 

Importance 1.00 1.00 0.99 0.48 0.24 0.23 0.23 

No of models 64 64 64 64 64 64 64 
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Table 2A. Model selection table on candidate models (Models) of the LMM 

analysis explaining home range size including the mother quality variables and 
Fox Index together with number of parameters (K), log likelihood estimate 

(logLik), corrected Akaike's Information Criterion (AICc), Akaike's Information 
Criterion (ΔAIC), and weights of models (ω). Selected model is highlighted in bold 

Models K logLik AICc ΔAIC ω 

Mother HR Size 4 2.04 7.25 0.00 0.23 

Fox 4 1.17 8.98 1.73 0.09 

(Null) 3 -0.67 9.18 1.93 0.09 

 

Table 2B. Model-averaged estimates for each explanatory variable (Variable) 
including relative effects (Estimate), standard error (SE), adjusted standard error 

(Adjusted SE), z value (z), and p-value (p, significance highlighted in bold) 

Variable Estimate SE Adjusted SE z p 

(Intercept) 5.404 2.137 2.203 2.453 0.014 

Mother HR size 0.004 0.002 0.002 2.070 0.038 

Fox -0.469 0.262 0.284 1.656 0.098 

Mother Body Mass -0.04 0.051 0.054 0.729 0.466 

Age -0.051 0.055 0.058 0.882 0.378 

Mean Birth Kg 0.065 0.102 0.112 0.579 0.563 

Mother Age -0.004 0.038 0.042 0.086 0.932 

Year 2014 0.188 0.345 0.361 0.522 0.602 

Year 2015 0.649 0.387 0.403 1.609 0.108 

Year 2016 -0.012 0.332 0.35 0.035 0.972 

 

Table 2C. The relative importance (Importance) of each variable and the number 

of models the variable is included in (N models = 128, N individuals = 17) 

Variable Mother HR 

Size 

Fox Age Mother 

Weight 

Mean Birth 

Kg 

Mother Age Year 

Importance 0.5 0.38 0.19 0.16 0.13 0.11 0.04 

No of models 64 64 64 64 64 64 64 
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Table 3A. Model selection table on candidate models (Models) of the LMM 

analysis explaining daily average movement including the site-specific variables 
Fox Index and Mean Temp together with number of parameters (K), log likelihood 

estimate (logLik), corrected Akaike's Information Criterion (AICc), Akaike's 
Information Criterion (ΔAIC), and weights of models (ω). Selected model is 

highlighted in bold 

Models K logLik AICc ΔAIC ω 

Fox + Mean Temp + Year 8 -731.37 1480.07 0.00 0.07 

Fox + Mean Temp + Mean Tick Res + Year 9 -730.53 1480.73 0.66 0.05 

Fox + Year 7 -732.89 1480.79 0.72 0.05 

Mean Temp + Year 7 -732.94 1480.89 0.82 0.05 

Mean Temp + Mean Tick Res + Year 8 -731.81 1480.93 0.86 0.05 

Fox + Mean Birth Kg + Mean Temp + Mean Tick Res + Year 10 -729.67 1481.39 1.32 0.04 

Fox + Mean Birth Kg + Mean Temp + Year 9 -730.96 1481.60 1.53 0.03 

Fox + Mean Birth Kg + Year 8 -732.19 1481.70 1.63 0.03 

Mean Birth Kg + Mean Temp + Mean Tick Res + Year 9 -731.12 1481.90 1.83 0.03 

Fox + Mean Temp + Sex + Year 9 -731.18 1482.04 1.97 0.03 

Fox + Mean Tick Res + Year 8 -732.36 1482.05 1.98 0.03 

Fox + Mean Birth Kg + Mean Tick Res + Year 9 -731.19 1482.05 1.98 0.03 

 

Table 3B. Model-averaged estimates for each explanatory variable (Variable) 
including relative effects (Estimate), standard error (SE), adjusted standard error 

(Adjusted SE), z value (z), and p-value (p, significance highlighted in bold) 

Variable Estimate SE Adjusted SE z p 

(Intercept) 923.514 380.172 381.835 2.419 0.016 

Fox -366.799 189.69 191.403 1.916 0.055 

Mean Temp -43.304 22.062 22.271 1.944 0.052 

Year 2014 -6.121 49.301 49.759 0.123 0.902 

Year 2015 -122.654 55.309 55.75 2.200 0.028 

Year 2016 -99.807 47.845 48.324 2.065 0.039 

Mean Tick Res 5.088 3.449 3.486 1.46 0.144 

Mean Birth Kg 21.206 19.279 19.479 1.089 0.276 

Sex (M) -15.142 22.401 22.649 0.669 0.504 

Age -0.313 0.98 0.991 0.316 0.752 
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Table 3C. The relative importance (Importance) of each variable and the number 
of models the variable is included in (N models = 128, N individuals = 118) 

Variable Fox Mean 

Temp 

Year Mean Tick Res Mean Birth Kg Sex Age 

Importance 0.93 0.68 0.67 0.47 0.37 0.28 0.25 

No of models 64 64 64 64 64 64 64 

 

  



59 
 

Table 4A. Model selection table on candidate models (Models) of the LMM 

analysis explaining daily average movement including the mother quality 
variables and Fox Index together with number of parameters (K), log likelihood 

estimate (logLik), corrected Akaike's Information Criterion (AICc), Akaike's 
Information Criterion (ΔAIC), and weights of models (ω). Selected model is 

highlighted in bold 

Models K logLik AICc ΔAIC ω 

(Null) 3 -143.20 293.67 0.00 0.18 

Mother Age 4 -142.11 294.45 0.78 0.13 

Age 4 -142.55 295.32 1.64 0.08 

 

Table 4B. Model-averaged estimates for each explanatory variable (Variable) 
including relative effects (Estimate), standard error (SE), adjusted standard error 

(Adjusted SE), z value (z), and p-value (p, significance highlighted in bold) 

Variable Estimate SE Adjusted SE z p 

(Intercept) 464.11 244.464 255.99 1.813 0.07 

Mother Age -16.8 11.234 12.034 1.396 0.163 

Age 4.844 3.3 3.537 1.370 0.171 

DAM Mother -0.165 0.227 0.242 0.681 0.496 

Fox -46.107 89.826 95.98 0.480 0.631 

Mean Birth Kg -7.242 51.266 54.908 0.132 0.895 

Mother Body Mass 1.174 13.021 13.931 0.084 0.933 

Year 2014 -33.642 96.564 102.874 0.327 0.744 

Year 2015 -73.523 90.568 97.121 0.757 0.449 

Year 2016 -137.148 82.301 88.783 1.545 0.122 

 

Table 4C. The relative importance (Importance) of each variable and the number 
of models the variable is included in (N models = 128, N individuals= 23) 

Variable Mother 

Age 

Age DAM 

Mother 

Fox Mother Body 

Mass 

Mean Birth 

Kg 

Year 

Importance 0.36 0.27 0.21 0.18 0.16 0.16 0.01 

No of models 64 64 64 64 64 64 64 
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