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”…Behold, seven ears of corn came up upon one stalk, 

rank and good. And, behold, seven thin ears and blasted 

with the east wind sprung up after them, and the seven 

thin ears devoured the seven rank and full ears. And 

Pharaoh awoke, and, behold, it was a dream.” 

”…the seven empty ears blasted with the east wind shall 

be seven years of famine.” 

 ”Behold, there come seven years of great plenty 

throughout all the land of Egypt: And there shall arise 

after them seven years of famine; and all the plenty shall 

be forgotten in the land of Egypt; and the famine shall 

consume the land; And the plenty shall not be known in 

the land by reason of that famine following; for it shall 

be very grievous.” 

Genesis 41:5-7, 27, 29-31 
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Popular scientific summary 

Small cereal grains like wheat, barley and oats can be affected by a nasty disease called Fusarium 

Head Blight. This disease damages the plants by producing a certain compound in the grains 

called Deoxynivalenol (DON) which can still be on the grain even after the plants have been 

harvested. This compound is rather toxic and when humans consume it they can experience 

symptoms like vomiting, diarrhea and loss of appetite.  

Every year large quantities of cereal grains are therefore thrown away because they are 

contaminated with this toxin. In recent years there have been extraordinary large quantities of the 

toxin in oats from Norway and Sweden. This in turn leads to problems for many people, the 

farmer will not be paid for his work and the price for oat grains increases which makes the 

breakfast porridge more expensive. 

The problem can be relieved by the use of pesticides. Still it is not that easy, the pesticides must 

be applied at the right time, since the pesticides for Fusarium head blight can cause severe side 

effects on the environment. They are also rather expensive.  However, despite the risk in some 

cases these pesticides must be applied if there is going to be any harvest at all.  

In this work I have constructed a prediction model in form of a computer program that could aid 

the farmers to know when they are supposed to use their pesticides. The model simulates a virtual 

field of oat plants that are supposed to mimic real oat plants. These virtual plants are in the 

simulation exposed to weather conditions provided from a weather station nearby a real oat field. 

The virtual plants become susceptible for Fusarium head blight during flowering, which occurs at 

a certain number of days after sawing depending on the temperature. The Fusarium head blight 

disease is developed in the virtual plants when the conditions are suitable for the mould fungus 

Fusarium to germinate and attach on the plant surface with enough time to puncture it. The 

disease development is depending on temperature, sun light, humidity and leaf wetness. DON 

contamination occurs in the virtual plants after infection at higher temperatures and during leaf 

wetness. The leaf wetness data itself are simulated by calculating when there is water on the 

virtual oat plants´ leaves after rain, fog and dew events since leaf wetness is rarely provided by 

weather stations.  

The model was tested in oat fields in Norway, to see if the virtual plants became contaminated 

with DON in the same extent as the real oat plants. The tests showed that the model so far is not 

capable to mimic DON contamination in real oat fields. Therefore it cannot be used with a 

weather forecast to make reliable predictions of DON contaminations. I tried to test other 

researchers´ models to see if their virtual plants became DON contaminated in the same extent as 

real oat plants. Unfortunately these models were not capable to mimic DON contamination either. 

Some of the reasons why the models are thought to make these errors are that they are not 

analysed for miscalculations. They neither take in to account if the mould fungi responsible for 

the disease are present or not nor that the plant might recover from the disease. 

Hopefully someone will enhance the models so the farmers will get proper support to answer the 

question “Should I use the pesticides or not?”.   
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Abstract 

In recent years there have been problems with unacceptable high levels of the mycotoxin contam-

inant Deoxynivalenol (DON) in oats in Sweden and Norway. This is due to infections of the fun-

gal pathogens Fusamium graminearum and Fusarium culmorum. The question which this thesis 

attempts to answer is: “Is it possible to predict these elevated levels of DON?” in order to time 

and conduct suitable countermeasures. A prediction model was created to answer this question. 

The model calculates a DON contamination risk index based on the likelihood of present germi-

nated spores, plants susceptible for infection, infection event and production of DON. The model 

needs hour based weather data input for relative humidity and global radiation. Also, the model 

uses a leaf wetness model and a temperature driven phenology model to predict input data for 

leaf wetness, leaf surface temperature and plant growth stages. The model indices were compared 

towards DON measurements in oats in Norway and a regression analysis was conducted. The 

model did in a few cases show a strong correlation towards the measurements, but in most cases 

there was no correlation or a negative correlation. Therefore, it is considered that the model is not 

capable to predict DON contamination. Alternative model applications were conducted to predict 

DON in oats. Among the alternative applications, the prediction model ENV also known as 

GIBSIM for Fusarium graminearum infections in Brazil was included. However, only two in-

stances with the ENV applications of all the alternative model applications showed strong posi-

tive correlation. Once again the models used failed to predict DON contamination. There is a risk 

that the models generated incorrect predictions due to calculation errors since no sensitivity anal-

ysis was conducted. The models might be capable to predict DON in oats if the study better com-

pensates for environmental variance and if the models take into account factors like recovery and 

spore density.   
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Acronyms to remember 

DON = Deoxynivalenol 

FHB = Fusarium Head Blight 

1. Introduction 

There have been several major outbreaks of Fusarium head blight (FHB) disease in oats in 

Norway and Sweden the last ten years. This is quite unusual since the disease is seen as 

unproblematic in oat cultivation.  

One of the associated problems with Fusarium head blight (FHB) is that the diseased parts of the 

plant start to produce a mycotoxin called Deoxynivalenol (DON). In both the Swedish and 

Norwegian yields there have been several reported cases with DON levels exceeding the Swedish 

national limits. 

The Swedish University of Agriculture Sciences, The Norway agriculture research institute 

“Bioforsk”, the Swedish farmers´ cooperative “Lantmännen” and the Swedish national food 

agency, are together with foundations from the Swedish Farmers' Foundation for Agricultural 

Research trying to find a way to once again have oat yields with low levels of DON.  

One of the ways to combat the problem is to predict the presence of Fusarium head blight (FHB) 

in oat and rapidly counteract it with fungicides in early development stages. In order to do so a 

prediction model must be constructed. This master thesis will attempt to construct this kind of 

model. 

1.1. Thesis disposition 

This thesis aims on predicting Deoxynivalenol in oat with a modeling approach. In order to carry 

out the aims, the thesis is structured in the following way: First, a literature study that covers the 

field of study is conducted, which also provides a background. In the background questions like 

“what is FHB and DON?”, ” what kind of problems are involved with FHB and DON?” and 

“how are FHB and DON linked together?” are answered. In the background, there is also a 

presentation of previous attempts to predict FHB and DON in other cereals, and a short section 

about leaf wetness which is one of the main predictor variables in the models used in the method. 

Second in this thesis structure the method part follows. The methods chosen for carry out the aim 

are to develop my own DON prediction model, use others prediction models and modify others 

prediction models. In the method section, there will be a detailed description of the models and 

the statistical methods used to evaluate them. 
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The rest of the report will consist of the sections results and discussion. In the results section the 

results from the methods are presented and in the discussion section, conclusions that can be 

drawn from the entire report are made.  
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2. Background 

2.1. Agriculture problems related to Deoxynivalenol (DON) 

Fusarium Head Blight (FHB) is a disease in small grain cereals and corn (Agrios 2005, p. 535). It 

causes yield and quality reductions due to damaged kernels and empty spikelets. The characteristic 

symptoms of the disease are brownish and pinkish colorations in the spikelets (Hörberg 2001, Tekle 

et al. 2013, Tekauz et al. 2004, Jansen et al. 2005). In oats however, the disease can be difficult to 

detect in field due to the oat morphology (Tekauz et al. 2004). The disease is also very problematic 

on a subclinical level, in which the symptoms are too weak to be detected. The problem is then, 

that mycotoxins are produced in the infected tissue- in this case the spikelets and kernels- without 

any visible symptoms. This thesis will focus especially on the FHB produced toxin Deoxynivalenol 

(DON) (Bottalico & Perrone 2002).  

Recently there have been major problems in oat cultivations in Norway and Sweden due to elevated 

levels of DON. Two Swedish agriculture news magazines mention that the Swedish farmers´ 

cooperative, Lantmännen, have had major problems with their deliveries from their contracting 

farmers due to elevated levels of DON. They also mention several reported cases of deliveries in 

which the DON level has been above the acceptable limit. (ATL.nu 2012, Jordbruksaktuellt 2010). 

On a global scale DON contaminated grains is considered a serious problem which can lead to 

severe economic damages striking at all levels of society (Farmers Guardian 2008). Contaminated 

grains can lead to elevated food prices caused by detoxification costs, increased veterinary costs in 

animal production, increased human medical costs and non-harvested crops. Sometimes it can even 

be economically motivated to destroy the crop rather than harvest it when contaminated (Charmley 

et al. 1995). 

2.2. Toxicological effects of DON 

DON, which is also called vomitoxin, is a potential lethal toxin. Petska (2010) has reviewed 

animal studies in pigs and rats on DON poisoning and mentions the following clinical symptoms: 

diarrhea, vomiting, weakened immune system, induced anorexia, cell death and instant death. 

DON can cause a paradoxal immune suppressing and enhancing effect by inducing a ribotoxic 

stress response in the leucocytes, leading to either positive defense gene up regulations or 

apoptosis depending on dose (Petska et al. 2004). How DON induces anorexia is still not 

completely clear but it is suggested by laboratory experiments with rats by Flannery et al. (2012) 

that DON somehow creates a hormonal imbalance in the gut. The diarrhea and vomiting 

symptoms might be referred to injuries in the intestinal part by oxidative stress and decreased 

intestinal barrier permeability, leading to higher risk of infection and toxification (Pinton et al. 

2009, Kouadio et al. 2005). In order to limit the problems associated with DON for humans and 

animals, some countries´ national authorities have put up limits for its maximum occurrence in 

small cereal grains. The Swedish National Food Agency has decided to limit DON occurrence in 

non-processed oat to 1250 μg/kg for human consumption and 8000 μg/kg for animal consumption 

(NFA 2012).  
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2.3. DON producing infections 

For an infection process to be successful, many steps need to be succeeded many times in certain 

sequences. For FHB, the disease cycle can be summarized by figure 1. In order to have DON 

contamination in the harvest, there has to be an FHB agent that infects the kernels. The infection 

is only possible after the start of anthesis. The infection itself is only possible in certain 

conditions. Although an infection has occurred there still are possibilities for the plant to recover. 

The infection might lead to DON contamination or mycelia growth, which leads to DON 

contamination. The different parts necessary for infection and DON production are described 

more thoroughly in the sections below. 

2.3.1. Pathogens 

In order for infectious diseases to occur, a pathogen is necessary. The pathogen in fungal cases is 

responsible for the disease by parasitizing or consuming the host. In some cases it might also be 

the other way around, it is the host who recognizes the pathogen but launches the wrong type of 

countermeasures ending in the pathogen´s favour, or the countermeasures are affecting the plant 

in undesirable ways. There is not only one pathogen responsible for FHB, most of them belong to 

the fungi genus Fusarium (Xu 2008). Those species considered more often responsible for FHB 

are F. avenacum, F. culmorum, F. graminearum, F.Poae, since they are most frequently found 

when screening field samples, based on two field studies together with over 100 fields by 

Waalwijk et al. (2004) and Yli-Mattila et al. (2004). Of these four pathogens only F. culmorum 

and F. graminearum are of interest in this thesis, because those two are the only two FHB 

pathogens that manage to produce DON when they infect a host plant. There is a third FHB 

pathogen that is known to have DON producing strains: “F.crookwellense”. This pathogen is 

omitted from this work since those strains are considered rare and the species is not known to be 

a problematic pathogen in Scandinavia (Bakan et al. 2002, Miller & Greenhalgh 1991, Bottalico 

& Perrone 2002). 

2.3.2. Spore germination 

In figure 1, it is possible to see the presence of inactive FHB pathogens in the spore cloud. In 

order to become infectious the spores need to germinate, which is the successive step to the spore 

cloud in figure 1. The Fusarium pathogens start their life cycle and become infectious on the 

plant or neighbouring plants by spore germination. The germination procedure is controlled by 

type of spore, quality of the spore, temperature, relative humidity (RH) and light. There are two 

types of spores (Agrios 2005, p. 388-389): 

 Asexual spores also called conidospores. 

 Sexual spores also called ascospores. 

F.graminearum  can germinate by both types of spores but F.culmorum has not yet any known 

sexual reproduction stage and is therefore only known to germinate through conidospores (Leslie 

& Summerell 2008, p158-159). 
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In order for a spore to germinate the following criteria need to be met: 

 Temperature between 4 °C to somewhere over 20 °C. 

 Relative humidity between 80% to 100%. 

 That the spore is alive. 

Also the germination is faster under darkness. The criteria are based on a laboratory experiment 

on F.graminearum conidospores by Beyer et al. (2004). According to the same experiment the 

germination procedure is completed after 2 to 6 hours at optimal conditions (20 °C, 100% RH, in 

darkness). The ascospores require similar criteria for germination as the conidospores, the only 

thing differing is that they need a relative humidity above 90%. The average time for ascospore 

germination at optimal conditions is slightly faster. These ascospore data are based on a 

laboratory experiment on F.graminearum ascospores by Beyer et al. (2005).  

 

Figure 1. Basic overview of essential needs for an FHB infection and the possible outcomes of an infection. The red arrows 
indicates process, the sections accompanied with biological hazards logo are infectious matter related states, the sections 
accompanied with oat plants are plant phenology related states, the sections accompanied with an caution logo are infection 
related states, sections accompanied with the star of life are recovery related states and sections accompanied with a death 
skull logo are related Deoxynivalenol production states. 
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2.3.3. Infection  

When studying figure 1, it shows that both germinated spores and susceptible tissue are needed 

for an infection to occur. This complicated process will therefore be more thoroughly described 

in the mechanisms necessary for infection both from a pathogen´s and a plant´s view in the 

subsections, “infection mechanisms” and the “susceptible host”. There will also be a short 

description of the necessary environmental conditions of an infection. 

2.3.3.1. Infection mechanisms 

After the pathogen, F.graminearum or F.culmorum, has germinated, it needs time to recognize 

the host, attach and colonize the host and form an apresoria. An apresoria is an infection 

structure, often composed of a needle like structure called an infection peg (Agrios 2005, p. 82-

86,). The apresoria penetrates the epidermis and cuticula by puncturing it with its peg. When the 

epidermis is penetrated, the fungus starts to invade the plant. The time to succeed with an 

infection after spore germination takes about 18 hours, according to cytological studies on 

F.graminearum infecting wheat plants by Wanjiru et al. (2002). For those who are interested in 

fungal infection procedures the following review for the model fungal pathogen organism 

Magnaporthe oryzae by Wilson & Talbot (2009) is recommended.  

2.3.3.2. The susceptible host 

Oat is susceptible to F.graminearum and F.graminearum infections related to FHB with the start 

of anthesis. That is because the pathway of infection is found to be through the floret mouth. This 

was discovered by Tekle et al. (2012) who inoculated oat plants with F.graminearum and then 

stained the pathogen with lactophenol blue and observed it in a microscope. In the same 

experiment it was also found that there was a particular high risk of infection when the anthers 

where extruded and present. Although the anthers are not essential for infection they seem to 

promote increased fungal hyphae development. They also seem to enhance the infection process 

according to an experiment by Kang & Buchenauer (2000) where the infection process in a wheat 

spikelet by F.culmorum was monitored in an electron microscope. Wheat and barley are also 

particularly susceptible during anthesis due to extruded and present anthers. In the latter two 

species, it seems like betaine, choline and another unknown substance present in the anthers are 

contributing to the infection, and it might be the same for oat (Strange et al. 1974, Yoshida el al. 

2007). It is rather unclear, but it seems like some oat cultivars never drop their anthers, therefore 

it is speculated that these cultivars always suffer from high risk of infection after start of anthesis. 

2.3.3.3. Environmental conditions for infection  

In order to infect the plant, the environmental conditions need to be right, this might be for 

activating infection mechanisms and/or making the pathogens enough dominant towards 

competing microbes enabling them to infect. The environmental conditions necessary for 

infection for the two pathogens F. graminearum and F. culmorum are stated in table 1.  
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Table 1. Necessary environmental conditions for FHB pathogens to infect. 

Species Temperature, °C Relative humidity, % 

F. graminearum 10-35 91-100 

F.culmorum 20-35 65-100 

 

The infectious conditions for F.graminearum in table 1, are based on laboratory experiments by 

Rossi et al. (2001), where wheat spikelets were inoculated at different temperatures and humidity. 

But according to those results is it possible for F.graminearum to infect at 85% relative humidity. 

The patoghen is despite Rossi et al. (2001) ´s experiments considered to infect only at 91-100% 

relative humidity. That is because those experiments were conducted at sterile conditions, 

whereas in field, there are no sterile conditions. The pathogen is rather sensitive towards 

microbial competition and manages to be dominant only at relative humidities above 91%. That 

is according to a revive article by Doohan et al. (2003) who refer to three different fungal 

competition experiments on different growth media, temperatures and moisture by Magan & 

Lacey (1984), Marín et al. (1998) and Marín et al. (1998). 

The temperature requirements for F.culmorum in table 1, are based on laboratory experiments by 

Rossi et al. (2001). The minimum humidity conditions are based on the same experiment by 

Rossi et al. (2001). The results were confirmed by Chandelier (2011) where 698 samples were 

collected during 6 years, where it seemed like F. culmorum is capable to infect in field at low 

relative humidity even if it is challenged by other microbes. The maximum humidity conditions 

are based on a field experiment by Lacey et al. (1999) with inoculated wheat plants in a mist 

irrigation system. 

2.3.4. DON production 

F.graminearum and F.culmorum are both necrotropic pathogens, meaning that they consume 

their host by killing its organic tissue. To do so, the pathogens trick the plant´s defensive system 

by making it think it is a biotroph trying to parasitize the plant. The plant is then activating a kind 

of suicide defense containing among many mechanisms the sacrifice of its own cells by reactive 

oxygen bursts. One of the compounds the pathogens use to trick the plant to conduct this suicide 

behaviour, is the DON (Jansen et al. 2005, Desmond et al. 2008).  Therefore, it is possible to see 

correlations between the pathogen´s capability of producing DON and injuries on the plant 

(Mesterházy 2002).    

The environmental requirements for both F.graminearum and F.culmorum are stated in table 2, 

based on laboratory experiments by Ramirez et al. (2006), Schmidt-Heydt et al. (2011) and Hope 

et al. (2005). In table 2, it is possible to see that both pathogens require a relative humidity in the 

leaf wetness regime (above 93% RH) in order to produce DON. But the fungi differ in one point 
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apart from their temperature requirements, the F.culmorum fungus is capable to produce 7 times 

more DON under optimal conditions (20 °C 99.5% RH) (Schmidt-Heydt et al. 2011). 

Table 2. Necessary environmental conditions for FHB pathogens to produce DON. 

Species Temperature, °C Relative humidity, % 

F.graminearum 15-30 99 

F.culmorum 20-30 93-99 

 

2.4 Modeling 

In order to predict DON contamination in oat yield all knowledge about how the contamination 

arise needs to be gathered in a model. Figure 1 is a form of a model where all necessary states for 

DON contamination are gathered. The stages are driven by processes, for example between the 

infected and DON contamination stages there is a DON production process. The processes are in 

turn driven by different driving variables. For example, the DON production process in figure 1 

is according to section “2.3.4. DON production” driven by temperature and humidity variables. 

One of those variables that will be used a lot in the modeling attempts in this study is leaf wetness 

which is described further down in the section “2.4.2. Leaf wetness”. 

2.4.1. Who benefits from modeling? 

Since it is difficult to observe both Fusarium infection and DON production in field, it is in the 

farmers´, buyers´/insurances´ and the researchers´ interest to create a model for the disease in 

order to monitor real time outbreaks, forecast outbreaks, countering the disease and learn more 

about it.  

 It is in the farmers’ interest to have a reliable prediction model for both estimating the 

status of real time infections and to predict future problems with DON. This provides 

information needed to combat the infections with an Integrated Pest Management (IPM) 

approach, where it is possible for the farmer to forecast upcoming problems and have 

time to develop sustainable fungicide strategies. Cooley & Autio (1997) conducted this 

kind of IPM strategy and applied fungicides in an apple orchard when it was the most 

economically and ecologically sustainable, resulting in a drop of fungicide usage with 

more than 30%. It is important to time the fungicides applications for FHB since there are 

few fungicides that are effective, and unjustified fungicide applications increase 

problems with resistance (Brent 2011). Those fungicides that are registered globally for 

FHB are often composed of triazole or benzimidazole compounds, but the results after 

treatments are often disappointingly bad (Mesterházy et al. 2011, Bradley & McMullen 

2008). Besides, in Sweden only a triazolinthion compound “Proline EC 250” is registered 

for FHB in oats (Swedish Board of Agriculture 2013, Swedish chemical agency 2013).  
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 It is in the buyers´ and insurance companies´ interest to know risk areas of disease 

outbreaks when contracting the farmer in order to negotiate countermeasures and prices.  

It is also in the buyers´ and insurance companies´ interest to have a high quality of 

harvest prognosis with the aid of a model before laboratory results from test samples are 

available. If the model is good the need of laboratory test might decrease (Myers et al. 

2010). The model might also be in the buyers´ interest in the way that it is possible to 

estimate and forecast the quality of competing buyers, and therefore it might be easier to 

conduct strategic business actions (Zajac & Bazerman 1991). 

 

 

 It is in the researchers’ interest to gain knowledge about the disease through modeling. 

Through the model, mathematical relations and mechanistic functions between 

pathogens, hosts and environmental factors provide a gathered knowledge (Van der 

Maanen & Xu 2003). 

2.4.2. Leaf wetness 

The term leaf wetness means that there is free water available on the leaf surface, this occurs 

when the relative humidity is above 91% or when water somehow intercepts the surface. Many 

agronomical and horticultural pathogens need leaf wetness to fulfill one or all infection stages to 

successfully infect their host (Huber & Gillespie 1992). For example, apple scab, mango 

malformation disease by F. mangiferae and Pseudomonas syringae infections on tomato require a 

certain amount of leaf wetness to complete the infection procedure (Hartman et al. 1999, 

Gamliel-Atinsky et al. 2009, and Preston 2000). 

As seen in table 3 both fungi F. graminearum and F. culmorum need leaf wetness at least in one 

of the stages that are required for DON production. F.culmorum is not that sensitive towards leaf 

wetness during infection phase. Both fungi can germinate from a conidospore which does not 

require direct leaf wetness but close to it. F. graminearum requires leaf wetness on all stages of 

infection stages; spore germination (when germinating as an ascospore), infection and DON 

production.  

Table 3. Which stages toward DON production requires leaf wetness for the fungi F.graminearum and F.culmorum. Leaf 
wetness=leaf wetness is required, No leaf wetness= leaf wetness is not an essential requirement. 

 F.graminearum F.culmorum 

Spore germination No leaf wetness, leaf wetness No leaf wetness 

Infection Leaf wetness No leaf wetness 

DON production Leaf wetness Leaf wetness 
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2.4.2.1. Leaf wetness prediction 

Leaf wetness can be measured on field level with leaf wetness sensors but it is difficult for the 

sensor to mimic the leaf canopy perfectly and therefore it is difficult to obtain true leaf wetness 

values, which can be seen in a leaf wetness comparison trial by Gillespie & Kidd (1970). There is 

seldom meteorological service providing forecasted leaf wetness data because the leaf wetness 

varies from crop to crop due to size of canopy etc. Therefore often a leaf wetness model for the 

specific crop and area is needed.  

2.4.3. Previous model approaches 

Since leaf wetness is such an important environmental requirement for DON production and FHB 

infections, it can be found as an important predicting variable in several FHB and DON 

predictions models. The models are either in the form of regression models or mechanistic 

models. The regression models are based on statistical correlations between the factors involved 

in the model. In the mechanistic models the functions of the pathogen and the host are 

considered, and not only the statistical relations between environmental factors and disease 

occurrence. Some of the models used for DON or FHB are presented below: 

 

De Wolf et al. (2003) and Bondalpati et al. (2012) used the duration in hours at temperatures 15-

30C and a humidity above 90% RH after anthesis in wheat in a regression model that predicted 

84% of all observed FHB infestations correctly. 

 

Moschini & Fortugo (1996) got a correlation of R2=0.886 at a 2 year old validation trial in 

Argentina. They used a regression model for FHB prediction in wheat using the combination of a 

rainy day with high relative humidity (≥81%) followed by a day with high relative humidity 

(≥71%) after anthesis, as a prediction variable. 

Rossi et al. (2003) constructed a mechanistic model for DON prediction in wheat and barley. The 

model requires leaf wetness in order to register DON occurrence or FHB infection. The model 

was validated in the Emilia-Romagna region of northern Italy and included 981 plots of wheat 

and 102 plots of barley providing a correlation of r=0.64 on a significance of P<0.001 (Rossi et 

al. 2007).  

Del Ponte et al. (2005) constructed a mechanistic model for FHB prediction in wheat. The model 

registers FHB infections when there are two rainy days or one rainy day followed by a day with 

high humidity. The model was validated in Passo Fundo in Brazil with parameter data from three 

years, providing a correlation of r=0. 84 on a significance level of P<0.01. 

Hooker et al. (2002) constructed a regression model for DON prediction in wheat based on 

temperature, relative humidity and precipitation. The model is commercialized on an 

international scale named as “DON cast” (WIN 2013) and has an 80-85% accuracy (Schaafsma 

& Hooker 2007). 
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Detrixhe et al. (2003) constructed a model specified on the relation temperature and leaf wetness 

duration. The model considers the combination of a temperature 12°C or above during leaf 

wetness 6 days before to 8 days after flowering and it registers increased risk of FHB when time 

of leaf wetness and temperature exceeds 50 hours. The model was validated on 43 wheat fields in 

Libramont in Belgium and managed to classify 32 of them correctly. 

There also exist regression models for DON prediction in oat by Elen et al. (2010) and Lindblad 

et al. (2012), but these models unfortunately only find correlations towards DON occurrence in 

certain geographical locations. 

3. Aims 

The objective of this thesis is to aid Swedish and Norwegian farmers to time fungicide 

applications, which in turn leads to less DON contamination and an agriculture based on IPM 

principles. To do so this thesis is focused on the following goal: 

 Predict DON contamination in oat with a modeling approach. 

 

 

 

 

 

 

 

 

 



19 
 

4. Methods 

4.1. Field samples 

The Norwegian Institute for Agricultural and Environmental Research “Bioforsk” has provided 

this thesis with field data from the work of Hofgaard et al. (2010). The data contain DON values 

from 64 field samples in two oat cultivars Belinda and Bessin from Norway between the years 

2004 to 2008, presented in table 4. 

Table 4. Number of DON measurement samples from each location and year. 

 2004 2005 2006 2007 2008 

Roverud 2  6   

Tjølling     2 

Øsaker   2 2 1 

Gvarv 1 1 1   

Hokksund  1 1   

Ramnes   2 2 3 

Rakkestad 2 4 4 3 4 

Ås 2 5 6 7  

 

4.2. Weather data 

Hourly weather data for mean global radiation per hour, precipitation per hour, mean relative 

humidity per hour, mean temperature per hour, leaf wetness at 2 meters´ height and mean wind 

speed per hour at 2 meters´ height were used for corresponding location and growing season for 

the field samples. The weather files were downloaded from Landbruksmeteorologisk tjeneste 

(LMT) operated by Bioforsk (2013). 

In the field sample data from the Norwegian Institute of Agricultural and Environmental 

Research it was noted that some samples were taken far away from the weather station. The 

longest noted distance between sampling site and corresponding weather station was 50km. 

4.3. Modeling strategy 

All models were constructed and run in the modeling program Powersim constructor Version 

2.51. Those who wish to repeat or inspect the constructed models can also use other software 

similar to Powersim, since modeling is based on conceptual thinking.  
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The main modeling strategy involved the use of the DON model together with the phenology 

model v.1 and a leaf wetness model.    

The DON model is a model for predicting DON contamination. The DON model requires 

relative humidity data and net radiation data from weather files and also leaf wetness and canopy 

temperature data from a leaf wetness model. For simulating infection under certain growth 

stages for the crop a phenology model for the host plant is required. 

Phenology model v.1 describes the oat development during the anthesis period and is taken from 

Del Ponte et al (2005) but is slightly modified by Persson et al (2013). To operate the model only 

ambient air temperature from weather files and sowing date for the crop are needed. 

The leaf wetness model predicts hour based canopy temperatures and leaf wetness occurrence 

from rain, fog and dew. The model requires net radiation, wind speed, ambient air temperature 

and relative humidity inputs from weather files to operate.  

4.4. DON model  

The DON model is developed on my own and based on the literature reviewed in section “2.3 

DON producing infections”. The model is designed for identifying spore germination, infection 

and DON production, which is illustrated in figure 2. The model calculates infection and DON 

production events for F. culmorum and F.graminearum separately. The final DON risk index is 

based on the accumulated sum of the DON production for the two pathogens. 
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Figure 2. Flow chart of DON model. First the spores germinate and becomes infectious matter. Second the infectious matter 
infects present susceptible tissue, this step requires input data from a phenology model. Third the infected oat plants starts to 
produce DON. All steps require data from a leaf wetness model. 

4.4.1. Spore germination 

The DON model starts with the first step in figure 2 “germination of spores” reviewed in the 

section“2.3.2 Spore germination”, which it assumes is always present. Spore germination in the 

model occurs either by ascospore (spore germa) or conidospore germination (spore germc) for 

F.graminearum, while germination for F.culmorum only occurs by conidospore germination 

(spore germc). The “spore germination process” used in the model is based on spore germination 

biology reviewed in section    

The ascospore germination (spore germa) is the most rapid and takes four hours at required 

conditions while conidospore germination (spore germc) needs five hours. The germination is 

reduced with one hour if it occurs during darkness (Rs<0), for both conido- and ascospores. The 
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environmental requirements are a canopy temperature (Tc) of 4-21°C and leaf wetness (Lw) 

during the germination. Conidospores can also germinate if the relative humidity (RH) is above 

80% if there is no leaf wetness (Lw). The conditions necessary for conidospore (spore germc) and 

ascospore germination (spore germa) are formulated in equation 1 and 2.  

 

spore germc= 1 IF Rs≥0 → ∫t=0→t≥4 4≤Tc≤21 AND (Lw=1 

OR RH>80), OR IF → Rs<0 ∫t=0→t≥5 4≤Tc≤21 AND 

(Lw=1 OR RH>80) ELSE =0 

Spore germ=1,indicates 

succesful germination, 

Spore germ=0 indicates 

failed germination 

1 

spore germa= 1 IF Rs≥0 → ∫t=0→t≥3 4≤Tc≤21 AND 

(Lw=1), OR IF → Rs<0 ∫t=0→t≥4 4≤Tc≤21 AND (Lw=1) 

ELSE =0 

 2 

where spore germc = indication of conidospore germination, spore germa = indication of ascospore germination, t= time (h), Tc 

=canopy temperature (°C), Rs = global radiation(W m-2), Lw = leaf wetness 

4.4.2. Infectious matter 

After spore germination (spore germ) the pathogen is according to figure 2 and the sections 

“2.3.3.2. The susceptible host” and “2.3.3.3. Environmental conditions for infection” 

supposed to infect the plant. If the conditions for infection are not suitable, there is a possibility in 

the model for the pathogens to survive as infectious matter (Inm) and infect at a later opportunity. 

This model process is based on infection biology reviewed in the sections “. 

The indication of present infectious matter (Inm) requires that there has been an indication of 

spore germination for respective pathogen. In order for the infectious matter (Inm) to survive, 

leaf wetness (Lw) is the only necessity. The infectious matter (Inm) of F.culmorum can instead of 

leaf wetness (Lw) also survive if there is a relative humidity (RH) above 65%. The requirements 

for pathogen survival as infectious matter (Inoc) are formulated in equation 3 and 4. 

Inmc= 1 IF (Lw=1 OR RH˃65) AND ∫t=0 spore 

germc=1ELSE = 0 

Inocc= 1, indicates present 

surviving infectious matter, 

Inocc= 0. indicates non present or 

perished infectious matter. 

3 

Inmg =1IF Lw=1 AND ∫t=0 (spore germc=1OR 

spore germa= 1) ELSE=0 

 4 

where Inmc = indication of F.culmorum infectious matter presence, Inmg = indication of  graminearum infectious matter 

presence, t = time (h), RH = relative humidity (%) 
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4.4.3. Infection 

As illustrated in figure 2 and explained in section “2.3.3. Infection” an infection requires both 

that the host has susceptible tissue and that there are pathogens ready to infect when the 

environmental conditions are suitable.  

If there is an indication of present infectious matter (Inm) at environmental conditions suitable 

for infections, an infection score is produced (Inf) scoring one point for each hour after 18 hours. 

This score indicates a risk for infection, the higher score the higher risk for infection. The reason 

why the scores are not produced until after 18 hours is that in order an pathogen to fulfill an 

infection process it needs 18 hours. 

 F. graminearum requires a canopy temperature (Tc) of 10 °C to 35 °C and leaf wetness (Lw) to 

succeed with the infection. F. culmorum requires a canopy temperature (Tc) of 20 °C to 35 °C, 

leaf wetness (Lw) or a relative humidity (RH) above 65% during the infection. The infection 

requirements are described in equation 5 and 6. 

Infg=n+t18 IF ∫t=0 → t=18+n Inocg=1AND 10<Tc<35 AND 

Lw=1ELSE =0  

Inf ≤ 1, indicates an 

elevated risk of succesful 

infections, Inf = 0. 

indicates no risk of 

succesful infection. 

5 

Infc=n+t18 IF ∫t=0 → t=18+n Inocc=1 AND 20<Tc<35 AND 

(Lw=1OR RH>65) ELSE = 0 

 6 

where Infg and Infc = infection score, t=time h, t18= time 18 hours (h), n = number of hours after 18 hours (h) 

If the infection scoring starts, but later one or more criteria are missing, the scoring is halted and 

reset.  

The infection score is multiplied with the relative total amount susceptible tissue (ST) and 

produces an accumulated disease score, according to equation 7 and 8. 

Risk infg = ∑(Infg * ST)  7 

Risk infc = ∑(Infc * ST)  8 

where Risk inf = disease score 

4.4.4. DON production 

The final step in the model is, as illustrated in figure 2 and explained in section “2.3.4. DON 

production”, the DON production. When the circumstances are favourable for DON production 

the model creates a DON risk index (Risk DON), which is based on the disease score produced 

during indications of possible infections. 
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 F.graminearum infected plants require leaf wetness (Lw) and a canopy temperature (Tc) of 15°C 

to 20°C for DON production. F.culmorum infected plants also need leaf wetness (Lw) but a 

canopy temperature (Tc) of 20°C to 35°C. F.culmorum can when the canopy temperature (Tc) is 

between 20°C and 21°C produce a sevenfold index value. The criteria’s for producing DON risk 

indices are summarized in equation 9 and 10. 

Risk DONg = Risk Infg IF 15<Tc<20 AND Lw=1 

ELSE =0 

Risk DON≤ 1 indicates risk of 

DON contamination, Risk 

DON=0 indicates minor risk 

of DON contamination 

9 

Risk DONc = Risk infc  (IF 20< Tc<35 AND Lw=1) 

OR Risk infc  * 7 IF 20< Tc <21 AND Lw=1  ELSE 

= 0 

 10 

where Risk DONg is the DON risk index for F.graminearum, Risk DONc is the DON risk index for F.culmorum. 

The hour based Risk DON production indices are added together and accumulated, seen in 

equation 11, making a summarized DON index based on both pathogens. 

Risk DONtot = ∑ (Risk DONg + Risk DONc)  11 

where DONtot = summarized DON index based on both pathogens 

4.5. DON sub models 

4.5.1. Phenology model v.1 

The phenology module predicts the time for heading and anthesis in spring wheat, and is made by 

Del Ponte et al. (2005). A couple of adaptions were made to make simulations resemble oat 

phenology better. The adaptations are based on observations in oats (cultivar Belinda) in a field 

experiment at Bjertorp in western Sweden in 2012. The module describes the crop development 

from the first panicle emergence (growth stage 55) (Zadoks et al. 1974) and is illustrated in 

figure 3. The phenology module is constructed in the following way: 
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Figure 3, Basic overview of the phenology model`s functions. It starts with a certain number of plants. When the first panicle 
emergence occurs the plants are divided into cohorts after which day their panicle emerges. Within the cohorts are groups of 
the plants entering and exiting anthesis every day until all plants have exited anthesis.  

 As seen in figure 3, the anthesis progression starts when the point of the first panicle is 

fully emerged (FPE). This occurs 445 day-degrees above 5 °C after sowing.  

 Not all plants´ panicles are emerged simultaneously. Therefore they are grouped into 

cohorts after their panicles` emerging day, as illustrated in figure 3, which means that 

each day after the start of the first panicle emergence (FPE) a new cohort will be formed. 

The proportion of plants which panicles are emerging under a day (PNG) is regulated by 

the elapsed time from first panicle emergence (FPE). This is formulated in equation 12 

originated by Del Ponte et al. (2005) who used a similar equation describing the total 

proportion of plants with emerged panicles per day. 

 

PNG=(1-(-0.0127(t-1)^2.4352))-(1-(-0.0127t^2.4352))   12 

where PNG = the proportion of plants which panicle is emerged under a day, t = time in days after first panicle emergence 

FPE. 
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 The extrusion of anthers (ANText) is the start of anthesis. This starts simultaneously with 

the first panicle emergence (PNG).  

 The proportion of extruding anthers (ANText) in a certain cohort of panicles follows a 

Weibull function formulated in equation 13, illustrated in figure 3. The function is 

regulated by a scaling and shape parameter that responds positively respective negatively 

to temperature, seen in equation 14 and 15.  

The following equations (2-4) are taken from Del Ponte et al. (2005). 

ANText=1-(at^b)   ∑(ANText-ANTdrop)=ANT 13 

a=0.255-0.029Ta +0.0009Ta
2  14 

b=5.773+0.966Ta–0.0278Ta
2  15 

where ANT = the daily proportion of present anthers, ANText = proportion of extruding anthers, ANTdrop = the proportion of 

dropping anthers, Ta = ambient temperature in °C 

 The anthers are attached to the plant for three days after extrusion. Thereafter they drop 

(ANTdrop) as seen in figure 3, which means that the amount of present daily proportions 

of anthers per cohort (ANT) is the accumulated sum of the subtraction of extruded and 

dropped anthers (ANText-ANTdrop) seen in equation 13. 

 The proportion of susceptible tissue per cohort (ST) during the flowering is set equal to 

the amount of daily proportions present anthers per cohort (ANT)  from the start and 

through the peak of the anthesis, and until ANT decreases to 0.25, according to equation 

16.  

 After peak flowering, when the amount of daily proportions of present anthers per cohort 

(ANT) has dropped below 0.25, the amount of proportions susceptible tissue per cohort 

(ST) is considered as 0.25, described in equation 17. 

 When the amount of daily proportions of present anthers (ANT) drops below 0.01 and a 

time period of seven days passes, the amount of susceptible tissue (ST) is considered as 

0.1, shown in equation 18.  

  If the daily proportions of anthers (ANT) values are lower than 0.01 for more than 14 

days, the amount of proportion susceptible tissue per cohort is considered to be non-

existing, shown in equation 19. 

ST=ANT IF ANT>0.25 16 

ST=0.25 IF ANT<0.25 AND IF ANT<0.01 AND t<7 17 

ST=0.1 IF ANT<0.01 AND 7<t<14 18 

ST=0 IF ANT<0.01 AND 14<t 19 

where ST = susceptible tissue and t = time in days when ANT value is constantly below 0.01.   
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 The relative total amount of anthers and susceptible tissue (ANTtot & STtot) is 

calculated by summarizing all cohorts´ daily proportions of present anthers (ANT) and 

proportions of susceptible tissue (ST), shown in equation 20. 

(ANT)1+ (ANT)2+(ANT)3+…(ANT)n=ANTtot  (ST)1+ (ST)2+(ST)3+…(ST)n=STtot 20 

where ANTtot = the relative total amount of anthers, STtot = the relative total amount of susceptible tissue  

4.5.2. Leaf wetness model v.1 

The leaf wetness model predicts the presence of leaf wetness per hour in the way of 0 or 1 which 

means that if there is only one second of leaf wetness the model registers it as there was leaf 

wetness the entire hour. The model recognizes leaf wetness from rain, fog and dew formation and 

is formulated in equation 21 and illustrated in figure 4 and more thoroughly explained in 

Appendix 1.  

The fog component predicts leaf wetness due to fog and depends on relative humidity as seen in 

figure 4 and is more described in the section “fog component” in Appendix 1. 

The rain component predicts the amount of leaf wetness due to rain. This component is, as seen 

in figure 4, depending on the amount of intercepted water after rain storms and how rapidly this 

is dried up. The amount of interception is in turn controlled by throughfall and canopy capacity 

factors and amount of precipitation. The drying up process is regulated by evaporation from the 

dew and evaporation component. The rain component is more detailed described under the “Rain 

component” section in Appendix 1. 

The dew component predicts evaporation and leaf wetness due to dew. This component is 

depending on input data inform of cloud coverage (cloudy), ambient temperature (Ta), global 

radiation (Rs), relative humidity (RH) and wind speed (u) to operate. This input data is as seen in 

figure 4 used in different ways and culminates in the so called energy balance that decides the 

formation of dew or evaporation. This is much more thoroughly described under the section Dew 

formation- and evaporation- component in Appendix 1.  
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Figure 4. Flow chart of the leaf wetness model. The boxes are process that lead to leaf wetness. The arrows describe how the 
processes are linked with each other. Doted arrows are input data inform of weather files.  

Lw=1 IF (E<0 OR IAcc>0 OR P>0 OR 

RH≥91) ELSE=0 

Lw=1, indicates occurence of leaf 

wetness. Lw=0 indicates no leaf 

wetness 

21 

where Lw = leaf wetness occurrence, E = evaporation (mm h-1),  IAcc = accumulated interception (mm) and RH = relative 

humidity (%) 

4.5.2.1. Validation of leaf wetness model 

To ensure that the leaf wetness model is simulating leaf wetness values correctly, the model is 

validated against the instruments measuring the leaf wetness observations. These instruments are 

leaf wetness probes of the type Model 237 Leaf wetness sensor (Campbell Scientific. Inc 2010). 

Following modifications in the leaf wetness model have been done to better mimic the leaf 

wetness sensor. 

 The canopy capacity value is set to 0.1mm after calibrating it for the weather data at Ås 

2004 to 2008.  

 The through fall coefficient is set to 0.5 which is calculated by the deployment of the 

sensor. The sensor is deployed at a 60° angle leading to the surface is halved when viewed 

from above compared to when it is deployed flatly.  

 The sensor measures 2m above soil surface therefore the crop height is also altered to 2m. 

 The latent heat term seen in equation 11 in Apendix 1 includes a term for stomata 

resistance which the sensor does not have. The latent heat term is therefore reformulated 

according to equation 22 where there is no term for stomata resistance. 
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The validation was conducted with two different methods: 

 All simulations after the leaf wetness model and the modifications stated above. This 

method is called RA1. 

 All simulations after the leaf wetness model, the modifications stated above and the 

way of calculating the aerodynamic resistance (ra) is altered. This method is called 

RA2. 

In the first validation the RA1 method was applied, and RA2 was applied in the second 

validation. 

The aerodynamic resistance in RA2 is altered because the one based on equation 17 in 

Appendix 1 is according to Monteith (1965) most suited for a uniform crop surface. The Leaf 

wetness sensor is not part of a uniform crop surface, it is rather more like a single leaf. There is a 

more accurate way of calculating the aerodynamic resistance for a single leaf. This is based on 

the convection around the leaf and differs depending on the size of it. Based on heat transferee 

calculations from wind tunnel and field experiments on plant leaves by Landsberg & Powell 

(1973), Monteith (1965), Thom (1968) and Thorpe & Butler (1977) is equation 23 therefore 

supposed to provide a more accurate aerodynamic resistance. 

where d = leaf length(longest side) (cm). 

The simulated values for all locations and years, for respective method are then compared with a 

matching method against actual leaf wetness instrument readings. 

4.6. Alternative modeling applications 

Other DON prediction attempts were conducted with following models:  

DON prediction models 

 DON model 

 ENVsim v.1 

 ENVsim v.2 

Phenology models 

 Phenology model v.1 

 Phenology model v.2 

LE=((Cp*ρ)(ecs-ea))/(γ*ra)  22 

ra2=2.25 (d/u)2/3  23 
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Leaf wetness models 

 Leaf wetness model 

Simulations were conducted for all three DON prediction models without phenology input in the 

following way:  

 DON model + Leaf wetness model 

 ENV v.1 

 ENV v.2+ Leaf wetness model 

Simulations were carried out for the two alternative models with phenology input from phenology 

model v.1, in the following way: 

 ENV v.1+ Phenology model v.1 

 ENV v.2+ Leaf wetness model + Phenology model v.1 

Last of all, all three DON prediction models were used together with phenology inputs from an 

alternative phenology model, in the following way: 

 DON model v.1+ Leaf wetness model + Phenology model v.2 

 ENV v.1+ Phenology model v.2 

 ENV v.2+ Leaf wetness model + Phenology model v.2 

The alternative models are stated and summarized below and are explained more in detail under 

its corresponding heading further down in this report: 

ENV v.1 is a Fusarium infection model for wheat by Del Ponte et al. (2005). The model is 

designed for predicting FHB related infections by F.graminearum. However in this thesis the 

indices are calculated from the model used for predicting DON contamination, which is tightly 

linked with Fusarium infections. The model needs relative humidity, precipitation and ambient 

air temperature data to operate. To operate under certain growth stages for the crop also input 

from a phenology model is needed. 

ENV v.2 is a modified version of ENV v.1. The model needs leaf wetness and canopy 

temperature data from a leaf wetness model to operate. To operate under certain growth stages 

for the crop also input from a phenology model is needed. 

Phenology model v.2 is a slightly modified version of Phenology module v.1 with a modification 

related to an extended flowering period. To operate the model needs input data about ambient air 

temperature from weather files and sowing date for the crop.  
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4.7. Alternative DON model “ENV v.1” 

The alternative model ENV v.1 illustrated in figure 5 is developed for spring wheat by Del Ponte 

et al (2005). 

 

Figure 5. A basic overview of the alternative model applications. When there are simultaneously present susceptible tissue, 
wet conditions in form rain or high relative humidity and high temperatures. There are an increased risk of FHB infections.  

In order for a plant to be infected by F.graminearum it needs to carry anthers or to have 

susceptible tissue, illustrated as the first step in figure 5. The knowledge about the plants´ 

phenology stages is provided by a phenology model that predicts the relative total amount of 

anthers and susceptible tissue which is used in this model.  
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The model is working in a two day moving window.  If one of the environmental conditions 

stated below is met, the model registers that a proportion of plants suffer a risk of F.graminearum 

infection: 

 Precipitation> 0.3mm  and mean daily RH ≥ 80% two days in a row 

 Precipitation> 0.3mm and mean daily RH ≥ 80% one day, non-rainy day and mean daily 

RH ≥85% one day. 

The size of the proportion plants risking to be infected is regulated by an infection frequency 

formula based on the work of Rossi et al. (2001) viewed in equation 24 and depends on the 

temperature during the potential infection event. Since only plants that carry anthers or have 

susceptible tissue can be infected, the relative total amount of anthers and susceptible tissue is 

multiplied with the infection frequency shown in equation 25 and 26. This part of the model is 

illustrated as the last step in figure 5. 

The following equations (8-11) are taken from Del Ponte et al. (2005). 

INF=0.001029(0.1957 T
a
)           24 

ANT*INF=GIB2  25 

ST*INF=GIB3  26 

where INF = the size of the proportion of plants that risk being infected under an infection event, GIB2 and GIB3 = the 

proportion of anther carrying respective plants with susceptible tissue that risk being infected under an infection event.  

Finally an infection risk index over the risk for FHB is calculated. The calculation is done by 

multiplying the sum of the proportions plants with anthers and susceptible tissue that risk being 

infected under every infection event (GIB2 & GIB3) with one hundred and then accumulate it, as 

in equation 27. 

Σ((GIB3+GIB2)*100)=GIB  27 

GIB = FHB risk index 

4.8. Alternative DON model “ENV v.2” 

This alternative DON model works in the same way as the ENV v.1 model but has the following 

modifications: 

 The precipitations and humidity requirements, seen as step two in figure 5, were replaced 

with minimum 12 hours of leaf wetness during a 24 hours´ period, which means that in 

order for an infection to be registered, 12 hours of leaf wetness per day for minimum two 

sequential days are necessary. 

The temperature requirements are originally given in ambient air temperature (Ta), (step 3 in 

figure 5). In this modified version the canopy temperature (Tc) is used instead, since the infection 
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occurs on the canopy surface. The canopy temperatures (Tc) are imported from the leaf wetness 

model described further down. 

4.9. Alternative sub model Phenology model v.2 

This phenology model functions in the same way as the phenology model v.1 apart from one 

point. This model simulates an oat cultivar, which anthers do not drop after flowering. Therefore 

the anthers are not dropped 3 days after extrusion in this model.  

4.10. Statistical methodology 

4.10.1. Comparison between simulated and measured leaf wetness values 

The simulated leaf wetness values are compared towards their corresponding measured leaf 

wetness value in the following way: 

 The measured leaf wetness values are processed so that the presence of leaf wetness per 

hour is registered in the 0 and 1 method like the simulated values. Meaning that although 

a specific hour only has one minute of measured leaf wetness, it is registered as if the leaf 

wetness occurred the entire hour. 

 The simulated and their corresponding measured values are compared and the number of 

matching and non-matching results are registered. 

 The comparison is redone for the model´s individual components, rain, fog and dew, in 

order to estimate their contribution to the model. 

4.10.2. Alternative aerodynamic resistance calculations 

The results for the two leaf wetness modeling methods using alternative aerodynamic resistance 

(explained in section “4.5.2.1. Validation of leaf wetness model”, involving equation 23 and in 

Apendix 1 equation 11) are compared by a two tailed paired T-test to find a significant 

difference.  

 The ratio for matching leaf wetness is calculated for both methods between simulated 

and measured values for each simulation. 

 The difference for the ratios between the two methods (d) is calculated according to 

equation 28. 

 The variation between the methods (Sd
2) is calculated. This is done by:  

Step 1. Summarize the differences as squared values (Ʃd2).  

Step 2. Subtract the squared difference per simulation ((Ʃd)2/n) from the calculated sum (Ʃd2 

– ((Ʃd)2/n)).  

Step3. Divide the calculated sum with the number of simulations minus one (n-1). All steps 

are given by equation 29. 
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 A score (z) for the comparison is calculated according to equation 30. In the 

denominator the standard error is calculated by calculating the root of the variation and 

the number of simulations ((Sd
2/n)0.5). In the numerator the difference between the mean 

values for each method is subtracted (μ1-μ2) from the median difference (d̅). 

To summarize the t-test method you can say it scores (z) the amount of variation between two 

samples, where the score (z) of one points stands for the absolute smallest variation. In this 

comparison, it is thought that one of the methods is better than the other (H1: μ1 ≠ μ2) leading to 

the null hypothesis that they are both equally good (H0: μ1 = μ2), formulated in equation 32. The 

null hypothesis (H0: μ1 = μ2) is then tested since it is easier, making the difference between the 

mean values for the methods (μ1-μ2) becoming 0.  

To determine if the hypothesis is correct equation 31 is used. The equation describes the 

probability that the differences of the comparison are a random accident. If the score turns out to 

be higher than the equation, the comparison is called to show a significant difference meaning 

differences are less probable to be due to randomness. The necessary scores for defining the 

comparison significant depends on how certain the probability is supposed to be and can be found 

in statistical tables for determining significance. In this thesis a table in Olsson et al. (2005) p281 

has been used, with the probability set to 99,5%. 

The t-test is rather tricky to explain shortly in a master thesis and those wishing to understand 

more are recommended to read Olsson et al. (2005). 

d = x1 – x2  28 

Sd
2 = (Ʃd2 – ((Ʃd)2/n))/(n-1)  29 

z = (d̅-(μ1-μ2)/( Sd
2/n)0.5  30 

z>z(1-a/2|n-1)  31 

H1: μ1 ≠ μ2   →     H0: μ1 = μ2     32 

Where x = leaf wetness matching ratio for respective method and simulation, d = difference for leaf wetness matching ratio 

for each simulation between the methods, n = number of simulations, Sd
2 = variation between the two methods leaf wetness 

matching ratio, μ = mean leaf wetness matching ratio for respective method, d̅ = the median difference for leaf wetness 

matching ratio between the two methods, z = amount of t-test scores, a = probability, H = hypothesis  

4.10.3. Regression and correlation analysis 

The indices from the models are plotted with their corresponding measured DON values by 

regression and correlation analyses. The regression analysis calculates a pattern among the 

plotted values. The kind of pattern it calculates follows a straight line function also called y = 

kx+m pattern. This function is calculated in the following way: 
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 Calculate the difference from the summed squared indices values (∑xi
2) and the squared 

sum of indices divided with the number of simulations (∑xi)
2/n), (SSx), formulated in 

equation 33.  

 This difference (SSx) is then divided with the difference of the summed product of both 

measured and index values (∑xiyi) and the product between summed measured vales and 

index values divided with amount of simulations(((∑xi)*(∑yi))/n), (SPx), as formulated in 

equation and equation 34. 

 This quota (β1) is the inclination factor of the regression equation seen in equation 35 

and equation 37. 

 The difference between the mean measured value (yi) and the product of inclination 

factor (β1) and the mean index value (xi) is how much of measured values there are when 

the index is zero (β0), formulated in equation 36. 

SSx = ∑xi
2 – (∑xi)

2/n  33 

SPxy = ∑xiyi – ((∑xi)*(∑yi))/n   34 

β1 = SPxy / SSx  35 

β0 = y̅ - β1 x̅  36 

yi = β0  + β1 * xi  37 

where β0 = primary expected value, β1 = the slope of the function, the xi values = indices values, the yi values = measured DON 

values, x̅ = mean index value, y̅ = mean measured value, SPxy, SSx = different kinds of sums related to the xi and yi values, n = 

the number of simulations 

The data points will not always be fully aligned with the calculated regression line. That is 

because the regression analysis is not perfectly consistent with the plotted values. In other words 

there is not a perfect correlation. To find out the correlation a so called R2 value is calculated.  

This is done by calculating the squared quota of the SPxy from equation 34 and the root of the 

product of the SSx factor from equation 33 and the SSy factor which is principally equal the SSx 

factor but is based on the measured values yi, all formulated in equation 38 and equation 39.  

More detailed explanation about the regression and correlation methods are found in Olsson et al. 

(2005) p 235-252.   

SSy = ∑yi
2 – (∑yi)

2/n  38 

R2=(SPxy / √( SSx SSy))
2  39 

where R = the correlation coefficient, SPxy, SSx and SSy = different kinds of sums related to the xi and yi values, n = the number 

of simulations. 
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5. Results 

5.1. The DON model predictions 

The results from the DON modeling are presented in the following subsections. 

5.1.1. Visualization of simulations 

The DON model provides output in the form of the following information: 

 When infectious matter is present 

 When there is infectious matter present and for a sufficiently long period with suitable 

environmental conditions for an infection to occur 

 When environmental conditions for DON production are suitable 

 When susceptible tissue and extruded anthers are present 

The bullets above are visualized in the two figures 7 and 8. Both pictures are from the same 

region, same cultivar (cv Belinda) but different dates and sowing times. One can see in the 

figures that there are many occasions of present infectious matter and sometimes there are even 

occasions suitable for infections but the infection is not registered if there are not any anthers and 

or susceptible tissue. In the red encircled areas all requirements necessary for the model to 

register a potential infection are fulfilled. When a potential infection has been registered the 

model enables the possibility of DON production to occur, and those events can be seen after the 

red encirclements.  

 

 

 

 
Figure 7, Visualized simulation of the Belinda cultivar at a sample site in Roverud in 2004 with the sowing date14th of June 
and the harvest date 10th of October. The index value produced for the simulation is 502.29.. The yellow lines indicate 
presence of infectious matter, the green lines indicate presence of infectious matter and for a sufficient long period suitable 
environmental conditions for infection, the purple lines indicate suitable conditions for DON production, the red line indicate 
the relative presence of anthers, the blue line indicate relative presence of susceptible mater and the red encircled areas are 
point of time when the model registers a potential infection (Note that the time line does not start from 0). 
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Figure 9, Visualized simulation of the Belinda cultivar at a sample site in Roverud 2006 with the sowing date 14th of June and 
the harvest date 19th of August. The index value produced for the simulation is 349.26. The yellow lines indicate presence of 
infectious matter, the green lines indicate presence of infectious matter and for a sufficient long period suitable 
environmental conditions for infection, the purple lines indicate suitable conditions for DON production, the red line indicate 
the relative presence of anthers, the blue line indicate relative presence of susceptible mater and the red encircled areas are 
point of time when the model registers a potential infection. (Note that the time line does not start from 0.) 
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5.1.2. Regression and correlation analysis 

The regression and correlation results from the DON modeling turned out to show a small but 

negative correlation of R2=0.044 (where R2 close to 1 means perfect correlation meanwhile R2 

close to 0 means randomness) for the Belinda cultivar at all locations and years in Norway, seen 

in figure 9.  

 

Figure 9. Showing the measured DON values plotted against their corresponding model indices for all Belinda cultivar at all 
sampling sites for all years. The regression analysis is shown as a trend line and its corresponding regression equation is 
shown in the lower right corner.  

When scaling down to regional scale results from Tjølling and Hokksund, are lacking because 

those locations contained too few (less than three) measured DON samples for making any 

regression and correlation analysis. Strong correlations were found for the Belinda cultivar for all 

years in Gvarv and Øsaker (R2=0.925 respective R2=0.675), but there are only three samples 

from each location and the correlation found in Øsaker was negative. 

For all years in Rakkestad a negative correlation of R2=0.407 was found. It can be seen in figure 

10 that although the measurements reveal low DON levels the model registers them as more 

potentially contaminated then the measured samples that actually contain elevated levels of DON.    
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Figure 10. Showing the measured DON values plotted against their corresponding model indices for all Belinda cultivar 
samples in Rakkestad for all years. The regression analysis is shown as a trend line and its corresponding regression equation 
is shown in the lower right corner.  

When all years in Rakkestad were included no correlation R2=0.011 was found for the Bessin 

cultivar.  

When including all years in Roverud a strong positive correlation of R2=0.86 was found for the 

Belinda cultivar, seen in figure 11. 

 

Figure 11. Showing the measured DON values plotted against their corresponding model indices for all Belinda cultivar 
samples in Roverud for all years. The regression analysis is shown as a trend line and its corresponding regression equation is 
shown in the lower right corner. 
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Including all years in Ramnes resulted in a weak positive correlation of R2=0.308 for the Belinda 

cultivar. When examining figure 12, one outlier encircled with red seems to lower the 

correlation. When removing the outlined measurement in the red circle the correlation increases 

to R2=0.979. 

 

Figure 12. Showing the measured DON values plotted against their corresponding model indices for all Belinda cultivar 
samples in Ramnes for all years. The regression analysis is shown as a trend line and its corresponding regression equation is 
shown in the lower right corner. The sample encircled with red is counted as an outlier. 

When all years in Ås were included a weak correlation of R2=0.302 was found for the Belinda 

cultivar. The correlation increases to 0.58 when removing three outliers seen in figure 13. 

 

Figure 13. Showing the measured DON values plotted against their corresponding model indices for all Belinda cultivar 
samples in Ås for all years. The regression analysis is shown as a trend line and its corresponding regression equation is shown 
in the lower right corner. The samples encircled with red are counted as outliers. 
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5.1.3. Leaf wetness validation 

The leaf wetness validation resulted in a high matching frequency between the estimated leaf 

wetness hours from the models and actual leaf wetness hours from the sensor. The results are 

summarized in table 5. The RA2 method scored highest frequency between estimated and actual 

leaf wetness hours.  

The RA2 method estimates dew with a significant higher matching ratio between registered and 

matched leaf wetness with a z value on 3.234 than the RA1 method. Still the final difference 

between the results for the two methods is small and the T-test shows an insignificant z value on -

0.96311. The rain module does differ when comparing the two methods, but the difference is not 

significant with a z value on 0.18, meaning that the RA2 method matches better than the RA1 

method, but it cannot be proven on a statistical level. 

 

Method Simulation 

time (h) 

Number 

of 

matches 

Matches 

in percent 

of 

simulation 

time (%) 

Ratio between 

registered and 

matched leaf 

wetness due to 

dew 

Ratio between 

registered and 

matched leaf 

wetness due to 

rain 

Ratio between 

registered and 

matched leaf 

wetness due 

to fog 

RA1 81880 70925 86.62 8855/11288 13628/16093 15141/18832 

RA2 81880 71198 86.95 7610/9142 13596/15960 15141/18832 

Table 5. The results from the leaf wetness model validation towards the leaf wetness sensor. The results are both for method 
RA1 and RA2 and the individual components in the model.  

5.2. Alternative modeling applications 

For the alternative modeling strategies the strongest correlation between all measured DON val-

ues and their corresponding indices was R2= 0.0255 for the ENV V.2 model coupled with the 

Phenology model V.1. 

 

When scaling down to regional scale results from Tjølling and Hokksund, are lacking because 

those locations contained too few (less than three) measured DON samples for making any 

regression and correlation analysis.  

Strong negative correlations ranging R2=0.682 to R2=0.925 were found for the Belinda cultivar 

Øsaker for all years and all alternative model applications except for ENV models coupled with 

the Phenology V.2 model. It is important to note that there are only three samples from Øsaker. 

For all years in Gvarv a strong correlation was found R2=0.725 and R2=0.945 for the ENV V.1 

respective ENV V.2 models coupled with the Phenology V.1 model. The other alternative model 

applications yielded inferior correlations ranging between R2=0.61 and R2=0.023. It is important 

to note that there are only three samples from Gvarv. 
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In Roverud a weak correlation was found R2=0.534 for the ENV V.2 model coupled with the 

Phenology model V.2. The other alternative model applications yielded inferior correlations rang-

ing between R2=0.001 and R2=0.4254. When studying figure 14, it seems like the outlier encir-

cled in red lowers the correlation. When the outlier is removed the correlation increases to 

R2=0.676. 

 

 

Figure 14. Showing the measured DON values plotted against their corresponding model indices for all Belinda cultivar 
samples in Roverud for all years. The regression analysis is shown as a trend line and its corresponding regression equation is 
shown in the lower right corner. The sample encircled with red is counted as an outlier. 
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For all years in Ramnes weak correlations were found R2=0.394 and R2=0.371 for the ENV V.1 

respective ENV V.2 model coupled with the Phenology V.1 model. When studying figure 15 it 

seems like the outliers encircled in red lowers the correlation. When the outliers are removed the 

correlation increases to R2=0.979 for both model couplings. The other alternative model 

applications yielded inferior correlations range between R2= 0.024 and R2= 0.333. 

 

Figure 15. Showing the measured DON values plotted against their corresponding model indices for all Belinda cultivar 
samples in Ramnes for all years. The regression analysis is shown as a trend line and its corresponding regression equation is 
shown below the corresponding name of the model. The samples encircled with red are counted as outliers. 

For the Belinda cultivar for all years in Rakkestad and Ås and also the Bessin cultivar for all 

years in Rakkestad no correlation of level worth mentioning were found for any model 

application.  

The results from the alternative modeling applications are summarized in table 6. In the table the 

correlations in form of R2 values between measured DON values and their corresponding model 

indices values for all cultivars, regions and years are mentioned.   

Region 

and 

cultivar 

DON 

model + 

Phenology 

V.2 

DON 

model 

ENV V.2 

+Phenology 

V.2 

ENV V.1 + 

Phenology 

V.2 

ENV 

V.1 

ENV 

V.2 

ENV V.1 + 

Phenology 

V.1 

ENV V.2 

Phenology 

V.2 

Belinda 

cultivar in 

Rakkestad 

0.409 0.523 0.211 0.319 0.125 0.360 0.187 0.195 
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Belinda 

cultivar in 

Ramnes 

0.211 0.333 0.024 0.027 0.295 0.332 0.394 0.371 

Belinda 

cultivar in 

Øsaker 

0.833 0.742 0.001 0.143 0.718 0.925 0.682 0.699 

Belinda 

cultivar in 

Gvarv 

0.61 0.023 0.050 0.201 0.102 0.591 0.725 0.945 

Belinda 

cultivar in 

Roverud 

0.021 0.091 0.534 
 

0.001 0.003 0.34 0.425 0.081 

Bessin 

cultivar I 

Rakkestad 

0.028 0.004 0.260 0.188 0.119 0.111 0.169 0.119 

Table 1. R2 values for the all model couplings in all regions and cultivars. 
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6. Discussion 

6.1 The DON model, potential errors 

The results from the DON model indicate that it was not possible to predict the presence of DON 

in oat with the models and observations included in this thesis. Although there were promising 

results in Gvarv, Roverud and Ramnes, the model clearly failed to estimate DON presence in 

Øsaker, Rakkestad and Ås. Also the positive results from Gvarv, Roverud and Ramnes contain 

too few samples in order to draw any statistically firm conclusions. The reasons why the main 

modeling strategy failed to estimate DON are many and it is not known what error sources 

contributed the most but some of them are presented below and discussed in the following 

subsections: 

 Errors with the DON model. The current DON model does not take into account:        

the plant`s capability to recover from the disease, incubation periods during infection, the 

influence of Mycelia growth on DON production and the lack of infectious spores. Also, 

the model assumes that oat responses in the same manner as wheat when exposed to 

F.graminearum and F.culmorum which might be incorrect. 

 Errors with the leaf wetness model. The model has a high accuracy when validated 

towards the leaf wetness sensors, but the model does not necessary need to be highly 

accurate towards the oat crops.  

 Errors with the phenology model. The phenology model is still based on previous 

studies on wheat and might not be compatible for oat. 
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Figure 16 On the top basic overview of essential needs for an FHB infection and the possible outcomes of an infection, 
explanations to that part of the figure are found in the description for figure 1. The Boxes are similarities between the top of 
the figure with the DON model. Explanations for the DON model figures are found in the description for figure 2. 

 

6.1.2. DON model uncertainties 

When studying figure 16 which illustrates a comparison between the essential needs for an DON 

producing FHB infection from figure 1 with the steps from the DON model in figure 2 one can 

see that the DON model has omitted some parts for an DON producing infection. Those parts 

omitted are the spore cloud density, infection process, recovery process, the recovered plants, the 

deterioration process after recovery and the mycelium influence on DON production. 

6.1.2.1. Are there any spores present that are capable to infect? 

When examining the figures in the result section for the main modeling strategy it looks like 

there actually were high risk regions, but there were still no infections. As it was for the Belinda 

cultivar in Rakkestad where some of the highest indices are corresponding to some of the lowest 



48 
 

measured DON values. This makes me wonder if there were any spores present and capable to 

infect in this region? 

Plant pathogens like human pathogens often need more than just one piece of infectious matter to 

start an infection (Cohen 1977, Komiya et al. 2008). It is hypothetically possible that one piece of 

infectious matter can infect the plant, but most probably it will fail since it is “not so simple” for 

the pathogen to infect its host. There are many factors influencing an infection procedure, like 

environmental conditions, host susceptibility, competition from other microbes, activation of 

pathogenicity, activation of host target susceptibility, density of pathogens (quorum sensing 

(strategy discussion among pathogens) ), entry point of infection etc.  

In figure 16 there is a factor for spore densities. This factor is not included in the simulations 

with the DON model. The simulations assume that there are enough spores to infect the plant and 

this might be incorrect in many cases. Therefore it is suggested that the strategy is enhanced with 

a spore density model which provides values of the spore density. 

Both Rossi et al. (2003) and Del Ponte et al. (2005) have created spore models but they differ a bit. 

Rossi et al. ´s (2003) spore model is designed for F. graminearum, F. culmorum, G. avenacea and 

M. nivalis. Del Ponte et al. ´s (2005) spore model is only designed for F.graminearum. Also Rossi 

et al. ´s (2003) model is based on mathematical relations regarding environmental factors that are 

favorable for sporulation, meanwhile Del Ponte et al. (2005) module is based on infected crop 

residues in surrounding environment from previous crop season. For developing a spore model a 

combination of these two previous models might be the best alternative, since there is a need of 

both crop residues and favourable environmental conditions for sporulation. 

To know at which spore densities infection is possible and the actual importance of a spore model 

it is important to know the minimum required infectious dose. This minimum infection dose can 

be determined by testing how oat plants responds toward different densities of Fusarium spores 

and see how many plants get sick at different densities and at which density only one plant gets 

sick. This kind of test would also answer the question “can oat plants get infected by Fusarium if 

only the spore density is enough high regardless of the environmental conditions?”.  

If the minimum required infectious dose turns out to be very low it might be possible to presume 

that enough infectious matter is always present and a sporulation model is not necessary. 

Alternatively, a very high density of infectious mater is needed and then perhaps the sporulation 

model is even more important than the other models. In other words the DON model might need 

to compensate for spore density. 

6.1.2.2 Disease recovery 

The DON model does not consider that a plant can recover from a FHB infection and therefore it 

misses the recovery process, the amount recovered plants and the deterioration process found in 

figure 16. 
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The model assumes that if a plant is infected, it will keep being infected until harvest, but this is 

not completely true. Depending on the defense genes in the plant, the pathogenic genes in the 

pathogen and the surrounding environment, there always exists a possibility of recovery. Some of 

the recovery mechanisms might be an activation of systemic defense genes, aborting infected 

tillers or negative competition between the pathogen and other microbes. 

The F.graminearum and F.culmorum pathogens are of the type necrotrophic meaning that they 

live on dead host tissue. The plant often responds to an infection by ordering infected cells and 

their closest neighbouring cells to activate apoptosis mechanisms, meaning that they conduct 

suicide. This defensive strategy is controlled by the so called “SA defensive system”. However 

this kind of defense does not work on necrotrophic pathogens it only makes the situation worse 

for the plant, since it supplies the pathogen with dead cells. The plant must activate the so called 

“JA- ET defensive systems” to hinder the necrotrophic pathogens. This system makes attacked 

cells produce antibiotic products like phytolaxins which are toxic to the pathogens, it makes the 

cells produce a denser cell wall hindering the pathogen to kill it and it makes the plant stop 

conducting cell apoptosis (Glazebrook 2005). In the specific case with FHB it has been found in 

wheat that the JA-ET system enhances resistance towards F.graminearum (Li & Yen 2008, 

Gottwald et al. 2012, Makandar 2012). To activate the “JA- ET defensive systems” the plant 

either needs to recognize an ongoing necrotrophic pathogen attack (which it does not always do) 

or get damaged or attacked by an insect (Dodds & Rathjen 2010, Pieterse et al. 2009). The plant 

might activate the “JA- ET defensive systems” both quicker and with more strength if it gets 

stimulated by beneficial microbes (Pieterse et al. 2009).      

I would suggest that a recovery process would be added to the simulated DON prediction model 

which activates when there are dry, cold (below 20 °C) and gently windy conditions. The dry 

conditions will make the pathogens susceptible towards antagonistic microbes, and it will also, 

according to a plant hormone signaling review by Pieterse et al. (2009), promote the “JA- ET 

defensive systems” and simultaneously affect the “SA defensive system” negatively. However it 

is important that the plant does not sense any shortage of water since that can according to 

another plant hormone signaling review by Fujita et al. (2006) lead to a shutdown of the “JA- ET 

defensive system”. The cold temperatures below 20 °C will slow down the pathogen´s progress. 

The gently windy conditions will affect the pathogen negatively by increasing the evaporation.   

This suggested recovery process could be tested in a laboratory experiment. The oat plants would 

be infected with photo-fluorescent Fusarium strains, and thereafter exposed to the suggested 

environmental conditions and monitored for eventual recoveries.  

6.1.2.3. Incubation period  

When comparing the DON model with all models from the “2.4.3. Previous model approaches” 

section, the ENV v.1 infection model by Del Ponte et al. (2005), the model by Detrixhe et al. 

(2003) the infection model by Rossi et al. (2003) and the model by Moschini and Fortugo (1996), 

there is one thing differing; That is the necessary time for an infection to be registered.  
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The DON model only needs about 21 hours at optimal conditions for a potential infection to be 

registered, whereas the other models require 48-50 hours. The models by Detrixhe et al. (2003) 

and Moshini & Fortugo (1996) base the necessary time for infection on statistic knowledge, 

which means that the models are based on the knowledge that after 48 hours there is often an 

infection. The models by Del Ponte et al. (2005) and Rossi et al. (2003) are based on an 

experiment by Rossi et al. (2001). In that experiment seeds are exposed to different moisture and 

temperature regimes and later screened for infections. However, the screening only detects 

clinical symptoms, which are visible after a short incubation period. Based on the presence of 

infections alone, even subclinical infections the DON model on the other hand does not taken any 

incubation period in account. 

When a potential infection can occur there is actually an infection risk and it should be accounted 

for. However, the incubation period should be considered since an infection is rather weak in 

early stages. To improve the DON model the event of a potential infection followed by an 

incubation period with favourable environmental conditions would register a more elevated risk 

of infection than the current version. 

6.1.2.4. Mycelia growth 

The DON model does not explicitly simulate the effects of mycelia growth and presence of 

mycelia inside the kernels as seen in figure 16. It is tempting to think that if the fungus becomes 

larger by producing more mycelia, perhaps it would be capable to produce more DON. In 

laboratory experiment Lori et al. (1990) found that infected kernels with no visible mycelia 

growth had higher DON concentrations than infected kernels with a lot of mycelium growth. This 

suggests that mycelium growth has no or a negative linkage to DON production. However, this is 

a bit contradicted by a laboratory experiment by Wang et al. (2012) who found that parts of the 

amt gene group are linked to both mycelia growth and DON production. Some connection 

between mycelia growth and DON concentrations might therefore exist, especially as, according 

to Hope et al. (2005), mycelia growth and DON production occur during the same temperature 

and humidity regimes. More research in this field would be necessary to understand its 

importance in a DON prediction model.  

6.1.2.5. Pathogenic response  

Many of the data for the DON model are based on wheat and barley data. In principle all studies 

in the two sections “2.3.3.3. Infection requirements” and “2.3.4. DON production” are done on 

wheat, and these two sections define the infection- and DON production- processes in the model. 

Therefore it might be a risk that the model is not compatible with oat since wheat and barley have 

different pathogenic response towards Fusarium, than oat. 

Walter et al. (2010) mention in a review that wheat plants sometimes detect the Fusarium 

pathogen and primes  their defenses inducing a so called type 1 resistance, meaning that initial 

infection is hindered. Certain cultivars of barley also have a natural type 1 resistance against 

Fusarium infection, due to physiological barriers to infection because they flower with a closed 
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flower (Yoshida 2007). Oat has no known type 1 resistance against Fusarium infection, and 

chemical analyses show that it does not have any passive effective antibiotic or quorum 

quenching effect against F.graminearum (Bahriminejad et al. 2008). These differences between 

oat, wheat and barley might mean that the infection and DON production processes for oat are 

slightly different but enough for making the model unsuitable for oat.  

6.1.2.6. Type two resistance  

Although evidence are lacking it is speculated that oat has a strong Type II resistance towards 

infections, meaning that infections cannot spread systemically within the panicle. Systemic 

spread in oat only occurs when the wind speed is high, since the infected kernels can spread the 

disease by direct contact between mycelia in infected kernels with non-infected kernels 

(Bjørnstad & Skinnes 2008, Yan et al. 2010. Teckle et al. 2012). In wheat systemic spread occurs 

after 5 days of infection when the fungal growth reaches the vascular system in the rachis nodes 

(Kang & Buchenauer 2000). Barley has a prolonged systemic spread at early dough stages 

(Skadsen & Hohn 2004). 

The systemic spread of Fusarium in oats can be tested by a laboratory experiments. By dividing 

plants into different groups that are exposed to different wind speeds. The plants are supposed to 

be planted in normal field density. A couple of plants in each group are by purpose infected with 

photo-fluorescent Fusarium strains in some of their spikelets. Then it is possible to observe how 

and if the infection spreads within the infected plants and towards adjacent not primary infected 

plants. If it is true that oat has a Type II resistance, the current model might overestimate the 

infection, giving indications that the entire plant is infected when only one kernel is infected. 

With the enhancement of a systemic spread function more correct indices might be produced.  

6.1.3. Phenology model uncertainties 

The output in form of time periods with available anthers and susceptible tissue from the 

phenology model is a key component for the DON prediction to be correct. However, the 

phenology model has not yet been fully validated and calibrated towards field data. There might 

therefore be some inaccuracy in its outputs regarding amount and start and stop period of present 

anthers that are potentially susceptible to infections. 

The model only recognizes the extruded anthers as susceptible tissue, there might be other tissue 

parts that can be susceptible. Skadsen and Hohn (2004) found in a laboratory experiment with gfp 

F. graminearum strains in barley that the infection process is enhanced due to the hair on the top 

of the seeds. Wheat and oat also have hair on the top of their seeds, but it is unknown what role it 

has in the infection process. This might explain occasions of late infections. A similar experiment 

similar to what Skadsen and Hohn (2004) performed in wheat is also suggested in oats . 

6.1.4. Leaf wetness model uncertainties 

Both methods for the leaf wetness model provided good results when validated towards the leaf 

wetness sensors. The two methods “RA1 and RA2”, described in the section “4.5.2.1. Validation 

of leaf wetness model”, did not show any significant difference between their results. Although 
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the way of calculating the aerodynamic is the same, still there are many differences between the 

leaf wetness sensor and oat crops. For example the leaf wetness sensor does neither have any 

stomata nor any real canopy rain interception capacity. Therefore it is suggested the model 

validation is redone towards leaf wetness sensors that are located in a field of oat crops at the 

highest canopy layer. The type of sensors should be changed for a type that is placed on a Gore-

Tex film with the other side sticky. The sensor could then be placed on a leaf where Gore-Tex 

which enables the leaf´s stomata to operate. The sensor itself is suggested to be an open circuit 

made by thin gold wires with a small current which registers leaf wetness when the circuit closes.   

It was not expected that the matching frequency would be so high in the model´s validation 

towards the leaf wetness sensor since the model is quite simple. The sensors were according to 

Campell scientific. Inc (2010) not suitable for plant pathology purposes, since they are not 

efficient enough to register dew. This might explain some of the models overestimations 

regarding leaf wetness due to dew and fog, still it seemed like the sensors were capable to detect 

some of the model´s estimated dew and fog. However, the model would need to be enhanced in 

order to be fully suitable for use in oat crops.  

6.1.4.1. Soil surface evaporation 

The leaf wetness sensors were placed on a two meters´ height meanwhile the oat crops are up to 

one meter high. At the height of the oat cultivars there is another factor that contributes a great 

deal to leaf wetness “Soil surface evaporation” Monteith (1957). Soil surface evaporation is when 

water fumes from the soil. There is a formula by Monteith (1957) confirmed by Burrage (1971) 

seen in equation 40, that describes the soil surface evaporation process. One problem with 

including this component in the model is that soil surface evaporation is strongly depending on 

the temperature 1cm above the soil, which is difficult to measure. 

D=Kv(Tc-Tsoil)(∆ᵡ/∆Tc)  40 

Where Kv is a diffusion coefficient (cm2 s-1), Tc is canopy temperature (°C), Tsoil is temperature 1cm above soil surface (°C), 

(∆ᵡ/∆T) is the change of absolute humidity due to canopy temperature(g m-3 °C-1 cm-1). 

6.1.4.2. Cloud coverage 

The cloud coverage variables in equation 7 in Appendix 1 which are important for dew 

formation and evaporation are in the model forced to be a constant value even if they in reality 

vary a lot. In some cases, this can have influenced the transpiration and dew formation; how 

much is unknown. There are digital produced cloud charts from radar and satellite observations 

from the Swedish Meteorological and Hydrological Institute or the Norwegian Meteorological 

Institute that could be used as input data for clear sky and cloud coverage.  

6.1.5. Summarizing main modeling strategy discussion 

To summarize the main modeling strategy, one can say that the strategy is not capable to estimate 

and predict DON contaminations. Neither the individual models nor the entire modeling strategy 
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has been sensitivity analyzed, meaning that it is unknown how big the consequences are for 

miscalculations. 

The models involved in the strategy might also need to be improved to better estimate and predict 

DON contaminations.  

 The DON model might need data regarding spore densities from a spore model. It might 

also need functions that estimate recovery, incubation, mycelia growth and systemic 

spread processes. 

 The Phenology model needs to be fully validated and calibrated to oat plants. The 

enhancement of available susceptible tissue in the end of the growth season due to seed 

hair needs to be evaluated. 

 The Leaf wetness model needs to be validated against observations on actual oat plants. 

The model also might need to include a component estimating leaf wetness due to soil 

evaporation. The model would also need to use cloud coverage as an input to better 

estimate evaporation and dew formation. 

6.2 Alternative modeling applications 

The alternative modeling applications did not manage to estimate DON contamination either. 

Many of the reasons are similar to the main modeling strategy. The strategies have not had any 

sensitivity analysis and none of the models has taken any of the following factors into account: 

 Disease recovery 

 Spore densities  

 Mycelia growth influences on DON production 

 Systemic spread of infection 

The ENV models are also suspected to be incompatible with oat since they only have been 

developed and validated towards wheat and not oat. 

The problems with the phenology model v.2 are the same as for phenology model v.1. The model 

has not been fully validated and calibrated towards oat plants. Therefore it is difficult to specify 

any exact problem with the model.   

6.3. Alternative perception of the results for both main and alternative modeling 

strategies 

There is actually a risk that results are perceived negative on a false basis. The DON model and/ 

or at least one of the alternative modeling applications might actually at current state estimate and 

predict DON contamination correctly. This is because there are errors in the DON measurement 

sampling strategy. These errors are environmental variation and measurement errors and are 

described in the subsections below. 
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 6.3.1. Environmental variation 

When examining the figures in the result section for the DON model, it is possible to see that the 

index value on the y axis for a certain measured DON value differs a lot depending on the 

measurements´ corresponding location. For example in figure 11 for the Belinda cultivar in 

Roverud the indices values vary between 150 to 300 for DON measurements at 75μg/kg 

meanwhile in figure 10 and 13 for the Belinda cultivar in Rakkestad and Ås the indices values 

vary between 0 to 5000 for the same DON measurement value. This indicates that the Belinda 

cultivar plants for some reason often are more sensitive in Roverud than in Rakkestad and Ås. 

This might be because the site specific environmental conditions in Rakkestad have a positive 

impact on FHB infection and DON production and therefore the weather conditions are less 

important. The DON measurement sites might be on locations with poor drainage and/or a 

topography where the soil is wet most time of the growth season. In total this suggests that index 

values produced for the specific DON measuring site only can be compared with locations with 

similar environments. In this thesis this has not been taken in to account and no correlation might 

have been found because it has been assumed that all fields have the same risk to get infected as 

long as only the weather conditions are equal. 

Also, some of the DON measurements sites were noted to be far away from the regional weather 

station. This increases the risk that there actually is different weather at the sampling site than at 

the weather station. 

In future experiments it is recommended that it should be possible to track down the measured 

DON values to the individual field and make regression and correlation analysis on field level to 

limit environmental variation. Another way would be to find fields in the region that are close to 

the weather station and resemble each other.  

6.3.2. DON sampling uncertainties 

It is often quite difficult to conduct a fair sampling of DON. The harvested oat is often very 

heterogeneous and it is difficult to obtain a representative sample from the sampling procedure. It 

is not at all impossible that a relative contaminated harvest might be missed since it is difficult to 

sample the contaminated parts of the harvest. On the other hand a harvest that is almost clean can 

be counted as heavy contaminated since by accident, a few but heavy contaminated kernels are 

sampled. The indices might in some instances actually be correct but have not been proven due to 

difficulties to sample the harvest. This error source alone is not enough to defend the prediction 

models and probably only affects a couple of samples though.   

6.4. Summarizing discussion  

None of the modeling strategies could estimate DON contamination correctly and therefore it is 

doubted that they can be used for prediction purposes. The reason why they failed to predict 

DON might be because it is difficult to conduct a correct statistical analysis due to environmental 

variability. This is because of the DON measurement strategy, where the distance between the 

fields and the weather stations leads to a risk of deviation between the weather station data and 
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the actual field conditions. However, this is probably not the only reason why the strategies 

failed. No sensitivity analysis was done on individual model or on entire strategies making it 

possible for small miscalculations to impact disproportionately much. In addition, most models 

need enhancement on several points and a spore model estimating the spore density might be 

necessary.  

7. Final Conclusions 
This thesis which goal is to “Try to predict Deoxynivalenol in oat with a modeling approach” can 

be concluded by the following statement: 

 There is lack of evidence that this thesis´ attempts to create Deoxynivalenol predicting 

model strategies actually can predict DON contaminations in oat. 
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8. Other fields of usage for the leaf wetness module 

The leaf wetness model is mainly constructed for Fusarium infections and DON production in 

oat. However the model can easily be used for other plant pathological reasons in oat or other 

small grain cereals without any major modifications. If it is used during early growth stages 

before the canopy is fully developed enhancements adjusting the throughfall and canopy capacity 

are needed.  

For trees, bushes and larger crops like maize other models like the storm models by Gash et al. 

(1995) and Gash (1979) are better suitable. Those models include everything in the rain 

component but are more focused on the number of storm events and their effect on partly wetting 

and drying the canopy. These factors were not included in the leaf wetness model since the 

canopy structure differs greatly between a forest and a small grain crop, and the model also 

should be kept as simple as possible.  

The dew component in the leaf wetness model is probably not suitable for big organic tissue like 

big fruits since those can store more heat and a thermal lag calculation needs to be considered. 

There is a dew model by Monteith and Butler (1979) that compensates for thermal lag and is 

therefore more suitable for that purpose. 

9. Future 

If any of these modeling strategies would be enhanced enough to predict DON contamination and 

FHB infections it could be used in an alarm system. For this future alarm system it is suggested 

that a couple of fields in the region that are representative for the majority of all fields are chosen. 

DON measurements and predictions should be conducted each year for calibrating and validating 

the model. Farmers that wish to subscribe for the service should be able to do it at their regional 

authorities or extension services. The service evaluates the farmers’ field with help of GIS 

(Geographical Information Systems) tools and decides if they resemble the representative fields 

enough. If the fields do not reassemble the representative fields enough the differences could be 

accounted for with the help of GIS tools. When the model predicts risk of FHB infection and or 

DON contamination a sms, prerecorded telephone call or email is sent to the subscribing farmer. 

The farmer can then with the help from local extension services or regional authorities develop a 

countermeasure plan towards the FHB infection or the DON contamination.    

Even if this kind of alarm system combined with biological (for example viral active 

components) or chemical fungicide sprays, plant defense priming agents and preventive fungal 

infection sprays is a strong weapon towards FHB infections, the alarm system must continually 

be updated. The FHB pathogens can adapt quickly towards the system. For example the 

pathogens could gain the ability to infect or produce DON at other environmental conditions and 

they can also become more aggressive and produce more DON. Therefore it is important to 

validate and calibrate the model strategy towards the disease to detect if the pathogen starts to 

alter its behaviour and then quickly compensate for it. 
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Appendix 1 Leaf wetness model 

Rain component 

Leaf wetness (Lw) due to rain is strongly depending on the amount of precipitation (P) and 

evaporation (E). Basically, the model registers leaf wetness (Lw) when the precipitation (P) 

intercepts (Iacc) the canopy, illustrated in figure 1 as boxed part 2. Not all precipitation (P) is 

registered as intercepted rainfall (IAcc) due to the following two reasons: 

 Breached canopy capacity. During heavy rainfalls, the amount of intercepted water 

(IAcc) is more than the canopy can carry and the so-called canopy capacity (S) is breached. 

If that happens, the excess water will be drained from the leaves, illustrated in boxed part 

4 in figure 1. In this model the canopy capacity (S) is set to 4 mm according to 

observations by Butler and Huband (1985).  

 

 Throughfall. Some of the precipitated water simply misses the canopy and hits the soil 

surface directly or hits the stems and is pulled down by gravity (steam flow). This is 

called throughfall (F) and is illustrated in figure 1 as boxed part 3. The throughfall factor 

(F) in wheat is around 40% according to a field experiment by Butler and Huband (1985) 

and is in this case considered to be the same for oats.  

When the canopy gets wet the model will dry up the wetness by evaporation (E) which is 

illustrated in figure 1 as boxed part 5. This evaporation process (E) for drying up the canopy is 

controlled by Penman’s equation under the section for Dew formation. When all intercepted 

water (IAcc) has been evaporated from the canopy the registration of leaf wetness (Lw) stops. The 

model can be summarized with equation 1 and 2. 
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Figure 1. Basic overview of the rain component in the Leaf wetness v.1 model. The first boxed part illustrates precipitation 
that has not yet intercepted the plant or the soil surface (P). The second boxed part illustrates precipitation that is 
intercepting and have intercepted a plant leaf (IAcc).The third boxed part illustrates precipitation that misses the plant and 
becomes throughfall (F).The forth boxed part illustrates a leaf where the canopy capacity has been breached and the excess 
water is being drained (IAcc ≤S). The fifth box  illustrates the evaporation of intercepted water.  

IAcc = ∑ t→ t’ (P - F*P – E) IAcc ≤ S 1 

where t = start of rainfall, t’ = when canopy is dried after rainfall (h), F = the throughfall coefficient (%) and S = the canopy 

capacity (mm). 

To avoid the risk of the module not showing any indications of leaf wetness (Lw) due to higher 

evaporation (E) than precipitation (P) during a rainfall, it classifies the precipitation (P) event 

alone as leaf wetness (Lw).  Although, since the wetness in reality is drought up rapidly, a 

moment of leaf wetness has occurred (Lw), otherwise the weather station would not have 

registered any precipitation (P). How the model indicates leaf wetness (Lw) during periods of 

precipitation (P) is formulated in equation 2.  
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Lw = 1 IF IAcc>0 OR P>0 ELSE = 0  2 

 

Fog component 

When relative humidity (RH) is high, spontaneous leaf wetness (Lw) formation is possible. When 

relative humidity (RH) reaches above 90%, fog is formed due to the high water saturation leading 

to water droplet formations on particles in the air. The model gives an indication of leaf wetness 

(Lw) due to fog when relative humidity (RH) is 91% or higher, which is formulated in equation 

3, since Monteith (1957) observed that leaf wetness (Lw) occurred when relative humidity (RH) 

spanned between 91-99%. The results from Monteith (1957) are confirmed by Sentelhas et al. 

(2008) who states that relative humidity (RH) is a valuable leaf wetness indicator according to 

regression analyses in USA, Canada, Italy and Brazil.  

Lw = 1 IF RH≥91 ELSE = 0  3 

 

Dew formation- and evaporation- component 

Dew formation works in the same way as when a glass of cold beverage is brought out in a warm 

summer day and small water droplets are condensed on the glass surface. This is a reversed 

evaporation process and happens when the surface temperature is cooler then the surrounding. 

This is rather tricky to predict since it is necessary to know how much cooler the surface 

temperature must be and how to predict this surface temperature. 

Energy balance 

Evaporation is an endothermic process meaning that heat which is a kind of energy is taken from 

the surroundings 2.4518 x 106 Joule is needed to evaporate one kg of water (L). This energy in 

turns comes from the sun. The model is therefore using the energy balance, formulated in 

equation 4. This equation describes how much of the energy from the sun is distributed to heat 

the canopy surface directly so called sensible heat (H) and to evaporate the transpiring water from 

the plants so called latent (LE). It is called latent heat (LE) because the energy needed for 

evaporation (E) is stored in the water until it condensates and the heat is transformed to sensible 

heat (H), because condensation is an exothermic process meaning that heat is spread to the 

surrounding. 

The following equations (4 and 5) are taken from Karlsson & Karlberg (2004). 

0≈ Rn -(H+LE)  4 

where Rn = net radiation (W m-2), H = sensible heat (W m-2) and LE = latent heat (W m-2) 
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Radiation balance 

The net radiation (Rn) in equation 16 is the sum of long way net radiation (Ln), incoming global 

short way radiation (Rs) mostly from the sun and how much of it is reflected by the crop (Rs*α), 

this is described by the so called radiation balance in equation 5. 

Rn=Ln+Rs-(Rs*α)  5 

where Ln = net long way radiation (W m-2), Rs = global radiation (W m-2) and α = the albedo. 

The values for Global radiation (Rs) are in the model obtained from the weather files previously 

described. The amount of reflected global radiation (Rs) is regulated by the crop´s albedo (α). The 

albedo is a reflection coefficient and is in the model set to 0.25 according to a field measurement 

with solarimeters in oats by Impens & Lemeur (1969) and double checked by values from Sellers 

(1965 cited in Karlsson & Karlberg 2004). 

The net long way radiation (Ln) term from equation 17 consists of incoming (L↓) and outgoing 

long way radiation (L↑), shown in equation 6. This describes how the earth emits long way 

radiation and how this radiation is absorbed by clouds and partly reemitted back to earth. The 

incoming long way radiation (L↓) is calculated according to a dew model by Madeira (2002), 

where the incoming radiation (L↓) varies due to cloudy and clear sky (cloudy sky, clear sky) and 

their respective temperature (Tcloud, Tclear), formulated in equation 7, 8 and 9. Since there is no 

data about cloudiness from the weather stations when running the simulations, the amount of 

cloudiness and clear sky is constantly set to 50% in the model. The emission of long way 

radiation (L↑) is calculated according to Stefan Boltzmann´s blackbody law, described in 

equation 10. Since the oat fields are not perfect blackbodies the emissitivity (ε) of them are set to 

0.98 according to a field experiment by Humes et al. (1994) and also double checked by values 

from Sellers (1965 cited in Karlsson & Karlberg 2004). 

The following equations (18-21) are taken from Madeira (2002). 

Ln = L↑+L↓  6 

L↓=(σ*clear sky*Tclear
4)+(σ*cloudy sky*Tcloud

4)  7 

Tcloud=Ta-15   8 

Tclear=Ta-20  9 

L↑= ε σTa
4  10 

where L↑ = outgoing long way radiation (W m-2), L↓ = incoming long way radiation (W m-2), σ = the constant of Stephan 

Boltzman (J m-2 s-1 K-4), ε = emissivity, clear sky = percentage of clear sky  (%), cloudy sky = percentage of cloudy sky (%), Tcloud 

= cloud temperature (C°), Tclear = the sky temperature (c ). 
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Latent Heat 

The latent heat term alone describes the energy necessary to evaporate water. Apart from the 

resistance variables the latent heat term is controlled by the difference between saturated canopy 

vapor pressure and ambient vapour pressure seen in equation 11. This difference between vapour 

pressure gives an indication if there is room for water to evaporate at the canopy surface. If the 

difference turns out to be positive it indicates that there is room and perspired water is 

evaporated. If the difference turns out to be negative, there is no room for evaporation on the 

surface and water is condensed from the ambient air. The greater difference the more water is 

evaporated or condensed.  

The ambient vapour pressure in equation 11 is the product of the relative humidity and the 

ambient saturated vapour pressure, formulated in equation 13. The relative humidity is obtained 

from the weather files. The saturated vapour pressure for both the canopy and the ambient air is 

calculated by the empirical Tetens´formula formulated in equation 12, where the canopy 

temperature for respective canopy surface and ambient air is used. The Tetens´formula was 

supposed to be most suitable for calculating saturated vapour pressure according to Anyadike 

(1984) who tested seven different empirical formulas for that purpose. 

The following equations (23-25) are taken from Eckersten et al. (2004) and Monteith (1981). 

LE=((Cp*ρ)(ecs-ea))/(γ*(ra+rc))  11 

es = 0.611*10(7.5T/(T+237.3))  12 

ea=(RH x esa) / 100  13 

where Cp = the specific heat capacity for air (1004 J kg-1 K-1), ρ = the density of moist air ( 1.2047 kg m-3), ecs = saturated 

canopy vapour pressure (hPa), ea = ambient vapour pressure (hPa), γ = the psykrometer constant (0.67 hPa K-1), ra = the 

aerodynamic resistance (s m-1) and rc = the canopy resistance (s m-1). 

Stomata resistance 

The stomata resistance (rc) in equation 11 describes the leaf transpiration. When the stomata are 

open they evaporate water which increases the latent heat (LE). When they close, they hinder 

evaporation and the latent heat (LE) becomes more dependent on the aerodynamic resistance (ra). 

The stomata resistance (rc) depends on gathered stomata conductance (g) in the canopy, which is 

described in equation 14. The gathered stomata conductance is calculated only for each layer in 

the canopy and therefore the leaf area index (LAI) value is necessary in equation 14. In the 

model the leaf area index (LAI) value is set to 4 according to Best & Harlan (1985). The stomata 

conductance itself is according to Lindroth (1985) correlating to the increasing conductance due 

to increasing global radiation and decreasing conductance due to decreasing vapour pressure 

deficit. The relation can be formulated according to the Lohammar equation in equation 15. 

Equation nr 29-30 are taken from Lindroth (1985) who bases the equations on the work of 

Lohammar et al. (1980). 
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rc = 1 / (g*LAI) rc = 0 IF Rs>0 OR 

Lw=0 ELSE rc =  1 / 

(g*LAI) 

14 

g  = Rs*gmax / ((Rs + aris)(1+(ecs+ea) / avpd))   15 

where g = stomata conductance in (m s-1), LAI = leaf area index, gmax = the highest possible stomata conductance, aris = 

stomata response coefficient towards radiation and avpd = response coefficient towards vapour pressure deficit. 

The highest conductance value (gmax) in equation 15 describes the highest conductance possible 

and is 0.016 m/s according to field observations in oats by Müller et al. (1986). The aris 

coefficient describes the affect increasing levels of radiation have on stomata opening for 

photosynthesis. aris is set to 460 according to stomata conductance measurements in oat due to 

changes of photosynthetic active radiation flux by Fay & Knapp (1993). The coefficient avpd 

describes when the stomata conductance (g) is halved due to vapour pressure deficit. avpd is set to 

7 according to measurements on stomata conductances due to vapour pressure deficit in oat in a 

work by Polley et al. (1992) and calculated stomata changes by vapour pressure deficit in wheat 

by Yuan & Luo (2012).  

In theory, the stomata on the leaves are supposed to be fully opened during leaf wetness. 

However equation 15 is not always capable to detect leaf wetness on its own. Therefore there is 

a rule in equation 29 that sets stomata resistance to 0 during leaf wetness. There is also a rule in 

equation 29 which sets stomata resistance to 0 if global radiation is zero or below, this rule is to 

avoid negative stomata values. 

Sensible Heat 

The sensible heat term (H) in equation 4, describes the amount of energy from the net radiation 

which heats the canopy surface. The term is then regulated by the difference between the canopy 

(Tc) and ambient temperature (Ta), as seen in equation 16. The term also depends like the latent 

heat term (LE) on the aerodynamic resistance (ra). The formulation of the sensible heat term (LE) 

is found and described in both Eckersten et al. (2004) and Monteith (1981).   

H = (Cp*ρ(Tc-Ta))/ra  16 

 

Aerodynamic resistance 

How well the sun manages to warm the plant surface and the plants´ perspired water is depends a 

lot on the current wind speed. If the wind speed is low, the plant surface temperature tends to rise 

since it is not mixed with the surrounding air. This is like when dropping pieces of ice in a glass 

of water, when spinning them around in the water make them melt faster and all the water gets 

cooler, when not spinning them around they take longer time to melt and only the top layer of the 

water gets cooler. This phenomenon is called the aerodynamic resistance and depends on the 

logarithmic wind law, which is formulated in equation 17. The law describes wind speed (u) 

differentiations depending on the height above the soil. The differentiations are due to turbulence 
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in the air formed by friction from the soil and canopy surface, which is illustrated in figure 2 

where the speed of a wind front is differentiating due to turbulence over an oat field. The formula 

therefore uses information of zero plane displacement (zd) which is used to describe the height of 

the crop, and the roughness factor (zo) which describes the roughness of the crop, the formulas 

are described in equations 18 and 19. The crop height (zh) for oats is estimated to be 1 m.  

 

Figure 2, Illustration of the logarithmic wind law, where the wind front in the red circle gets weaker the closer to the oat crop, 
due to turbulence in the red squared area. 

The following equations (23-25) are taken and reviewed by Eckersten et al. (2004), Lindroth et 

al. (2004) and Oke (1978). 

ra = (ln((z – zd) / zo))
2 / (k2u) Where MIN u=0.3 17 

zd = 0.67zh  18 

zo  = 0.1zh  19 

where z = the height above ground where wind measurements take place (m), zd = the zero-plane displacement (m), zo = the 

roughness factor (m), k = von Karmans´ constant (0.41), u = measured wind speed (m s-1) and zh = the height (m). 

If there is almost no wind, the aerodynamic resistance will increase towards infinity. If that would 

actually be the case the plant would be incinerated because the canopy temperature would also 

increase towards infinity. This does not happens since the warm leafs will form air turbulence by 

heating air at the leaf surface that will go upward, so called buoyancy forces (Monteith 1965). 

Therefore there is a rule that makes the wind speed to never undergo 3 m s-1.   
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Canopy temperature 

The canopy temperature (Tc) which is a necessary component for the sensible and latent heat 

terms (H and LE) is rarely measured at meteorology stations. Therefore the canopy temperature 

(Tc) is calculated by the energy balance in equation 4. In this thesis a combination between a 

graphical and a numerical solution has been used to obtain the canopy temperature (Tc). 

According to a leaf-air temperature difference study by Eckersten & Kowalik (1986), the canopy 

temperature (Tc) seldom differs largely from the ambient air temperature (Ta). This knowledge is 

used when calculating the canopy temperature, which is done in the following way: 

 Fictional canopy temperatures (Tc) are created, differing with 0.1°C from each other and 

differing 0°C to 10.5°C from the ambient air temperature (Ta), formulated in equation 20.  

 The energy balance formula is formulated as a function depending on the fictional canopy 

temperatures as seen in equation 21. The fictional canopy function is equal to 0 as much 

as possible seen in equation 21 and figure 3.  

 The achieved canopy temperature is adjusted by halving excess or deficit from the energy 

balance and adding it to the sensible heat term.  

 The final canopy temperature is calculated breaking it out from the sensible heat term 

seen in equation 22. 

Tc1= Ta-(10.6-(0.1*1)), Tc2 = Ta-(10.6-(0.1*2)), Tc3=Ta-

(10.6-(0.1*3)…Tcn =Ta-(10.6-(0.1*n)) 

Where MAX n=210 20 

f(Tcn)=Rn-(((Cp*ρ(Tcn-Ta))/ra)+(((Cp*ρ)(ecns-

ea))/(γ*(ra+rc)))), ecns = 0.611*10(7.5Tcn/(Tcn+237.3)) 

f(Tcn)≈0 21 

(H/((Cp*p)/ra))-Ta=Tc  22 
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Figure 3. illustrating the graphical calculation of the canopy temperature. The canopy temperature is detected by screening 
after which fictional canopy temperature that can make the energy balance become equallent to  0 W m-2.   

Evaporation and Dew 

The evaporation (E) and dew formation is calculated by Penman’s equation, seen in equation 23. 

The equation combines all the terms of the energy balance and is therefore depending strongly on 

the radiation balance (equation 5), aerodynamic resistance (ra), vapour pressure deficit (ecs-ea) 

and the slope of the saturated vapour pressure at the mean of both the canopy and ambient 

temperature (s) formulated in equation 24. When Penman’s equation shows positive results, it is 

used as evaporation data for drying up the canopy in the rain model. When the equation shows 

negative results it means that dew is present, since that is the opposite from evaporation, seen in 

equation 25. 

E=((Rn*s+((ρ*Cp*(ecs-ea))/ra))*1/(s+γ))/L  23 

s=(ecs-es)/(Tc-Ta)  24 

Lw=1 IF E<0 ELSE=0  25 

where s = the slope of the saturated vapour pressure (hPa °C-1), L = the energy necessary for transformation of water from 

liquid to gas (2.4518 x 106 J Kg-1) 
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Appendix 2 Tooken list 

α albedo  

β0 primary expected value  

β1 slope of function  

∆ᵡ/∆Tc change of absolute humidity 

due to canopy temperature 

 

ε emissivity  

ρ density of moist air 1.2047 kg m-3 

σ the constant of Stephan 

Boltzman 

J m-2 s-1 K-4 

γ psykrometer constant 0.67 hPa K-1  

μ mean leaf wetness matching 

ratio for respective method 

 

a scaling parameter  

a probability  

ANT daily proportion of present 

anthers 

Plants Plants-1 (Total amount 

of plants-1)-1 

ANText proportion of extruding 

anthers 

Plants Plants-1 (Total amount 

of plants-1)-1 

ANTdrop propotion of dropping anthers Plants Plants-1 (Total amount 

of plants-1)-1 

aris stomata response coefficient 

towards radiation 

 

avpd response coefficient towards 

vapour pressure deficit 

 

b shape parameter  

clear sky percentage of clear sky % 

cloudy sky percentage of cloudy sky % 
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Cp specific heat capacity for air 1004 J kg-1 K1 

d active leaf length cm 

d difference for leaf wetness 

matching ratio for each 

simulation between the 

methods 

 

d̅ the median difference for leaf 

wetness matching ratio 

between the two methods 

 

E evaporation mm h-1 

ea ambient vapour pressure hPa 

ecs saturated canopy vapour 

pressure 

hPa 

es saturated vapour pressure hPa 

F throughfall coefficient % 

g stomata conductance m s-1 

GIB FHB risk index  

gmax highest possible stomata 

conductance 

m s-1 

H hypothesis  

H sensible heat W m-2 

IAcc accumulated interception mm 

INF proportion of plants that risk 

being infected under an 

infection event 

Plants Total amount of 

plants-1 

Infc infection score F.culmorum  

Infg infection score 

F.graminearum 
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Inmc indication of F.culmorum 

infectious matter presence  

0 OR 1 

Inmg indication of  F.graminearum 

infectious matter presence 

0 OR 1 

k von Karmans´ constant  0.41 

kv diffusion coefficient cm2 s-1 

L energy necessary for 

transformation of water from 

liquid to gas  

2.4518 x 106 J Kg-1 

LAI leaf area index  

LE latent heat W m-2 

Ln net long way radiation W m-2 

Lw leaf wetness 0 OR 1 

L↑ outgoing long way radiation W m-2 

L↓ incoming long way radiation W m-2 

n number of simulations  

R ccorrelation coefficient  

ra aerodynamic resistance s m-1 

RH relative humidity % 

Risk DONc DON risk index for 

F.culmorum 

 

Risk DONg DON risk index for 

F.graminearum 

 

Risk DONtot summarized DON risk index  

Risk infc disease score for F.culmorum  

Risk infg disease score for 

F.graminearum 
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rc canopy resistance s m-1 

Rn net radiation W m-2 

Rs global radiation W m-2 

P precipitation mm 

PNG proportion plants which 

panicles are emerging under a 

day 

Plants Total amount of plants-

1 

S canopy capacity mm 

s slope of saturated vapour 

pressure 

hPa °C-1 

Sd
2 variation between the two 

methods leaf wetness 

matching ratio 

 

Spore germc indication of conidospore 

germination 

0 OR 1 

Spore germg indication of ascospore 

germination 

0 OR 1 

SPxy sum related to the xi values  

ST susceptible tissue Plants Plants-1 (Total amount 

of plants-1)-1 

SSx sum related to the yi values  

SSy sum related to the yi value  

Ta ambient air temperature °C 

Tc canopy surface temperature °C 

Tcloud cloud temperature °C 

Tsoil temperature 1 cm above soil 

surface 

°C 

u measured wind speed m s-1 
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z amount of t-test scores  

x leaf wetness matching ratio 

for respective method and 

simulation 

 

xi indices values  

x̅ mean index value  

yi measured DON values  

y̅ mean measured value  

z height above ground where 

wind measurments take place 

m 

zd zero-plane displacement  m 

zh height m 

zo roughness factor m 

 

 


