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Abstract 
 

Lyckeby Starch AB is a farmer-owned company that produces products based on potato 

starch. In order to increase their production efficiency and their international competitiveness 

the company is investigating the possibilities of keeping their factories open longer. To 

achieve this, potato has to be stored for a longer period of time than what is practiced today.  

Starch potato is usually stored in large piles covered by straw and plastic, either in the field or 

on the farmyard.  

The objective was to examine in what way starch yield (starch content*tuber weight) in 

three different potato varieties was affected by storage in two different types of storage piles. 

The potato was stored for three months in total and starch content and tuber weight were 

controlled throughout the period. Stored tubers were also visually examined and prescense of 

mechanical damage as well as wet rots and dry rots was recorded. Bacteria and fungi were 

isolated and identified. 

In general, varietal differences were greater than differences between the storage piles. 

Loss of starch yield was greatest during the first weeks of storage, and there was a strong 

correlation between presence of mechanical damage on tubers and incidence of wet rots and 

dry rots. Several bacteria and fungi were identified and there was a tendency of difference in 

bacterial diversity between the different potato varieties, which indicates that the different 

varieties select for different bacterial species. In order to minimize the loss of starch yield 

during storage it is important to choose good potato varieties and to harvest them at the right 

time and under appropriate circumstances in order to avoid mechanical damage. 
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Sammanfattning 
 

Lyckeby Starch AB är ett medlemsägt företag som tillverkar produkter baserade på 

potatisstärkelse. För att öka företagets produktionseffektivitet och konkurrenskraft på den 

internationella marknaden undersöker man möjligheterna att hålla fabrikerna öppna under en 

större del av året i framtiden. Eftersom att lagringsmöjligheterna i anslutning till fabrikerna är 

begränsade behöver potatis då kunna lagras under en längre tid hos lantbrukarna. 

Stärkelsepotatis lagras vanligen i stukor som täcks med halm och plast, antingen i fält eller 

hemma på gården. 

Syftet med uppsatsen var att undersöka hur stärkelskörden (stärkelsehalt*knölvikt) hos tre 

olika sorters stärkelsepotatis påverkas av lagring i två olika typer av stukor. I ett fältförsök 

jämfördes en traditionell stuka med en bättre isolerad variant. Lagringen sträckte sig över tre 

månader och provsäckar togs upp kontinuerligt för kontroll av stärkelsehalt och vikt. 

Kvaliteten på de lagrade knölarna undersöktes dessutom okulärt med avseende på mekaniska 

skador och andel knölar med torra respektive blöta rötor. Bakterier och svampar renodlades 

och identifierades. 

Reultaten visade att skillnaderna generellt var större mellan de olika potatissorterna än 

mellan de båda stukorna. Stärkelseskörden minskade som mest under de första 

lagringsveckorna, och det fanns ett starkt samband mellan mekaniska skador och såväl torra 

rötor som blöta rötor. Sortdiversiteten för bakterier skiljde sig åt mellan de olika 

potatissorterna, vilket indikerar att de är olika mottagliga för olika bakterier. För att lyckas 

med lagringen av stärkelsepotatis är det viktigt att välja lämpliga potatissorter, att skörda dem 

varsamt, i rätt tid samt under torra och förhållandevis varma väderförhållanden för att 

minimera risken för mekaniska skador på knölarna. 
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1. Background 
 

The farmer-owned company Lyckeby Starch AB (Kristianstad, Sweden) produce and sells 

starch products such as potato fiber, potato protein, glue products and construction materials 

(Lyckeby, 2011). The company has four production industries located in southern Sweden 

(three in Skåne and one in Blekinge) that are open for production during the autumn, usually 

from September to the end of December, depending on the amount of starch potato produced. 

In order to increase the efficiency of the production and to become more competitive on the 

international market, Lyckeby investigates the possibilities of keeping the factories open for a 

longer period of time. Since storage capacity within the factories is limited most of the potato 

tubers are stored in field. An extended production period leads to longer storage periods 

which introduces greater risks of loss of starch yield and put higher demands on the storage 

management (Ekelöf, personal communication, 2012).  

As stated in the literature review in this thesis, appropriate temperature and humidity are 

crucial to maintain tubers quality during storage. Presence and growth of pathogenic 

microorganisms is also very important, and depends on the environmental conditions within 

the storage pile. There might also be differences between different potato varieties. During the 

summer of 2011, meetings were held with farmers participating in the companies advisory 

service where starch potato storage techniques were discussed (ERFA, 2011). Some of the 

participating farmers shared their experiences, and a number of questions concerning 

improvements in storage were raised. As a result a storage field trial was set up in 

Listerlandet, Blekinge, during the autumn/winter 2011-12 where storage quality parameters of 

three different potato varieties in two different types of storage piles were compared. Studies 

were complemented by laboratory experiments performed at Swedish University of 

Agricultural Science (SLU), Uppsala. 
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2. Litterature review 

2.1 Storage of potato  

Storage of starch potatoes is generally not prioritized by farmers (ERFA, 2011). Many 

growers of starch potato also grow ware potato for consumption, and since the quality 

demands on ware tubers are higher than on starch tubers, farmers usually put more efforts into 

storage of ware potato.  However, storage conditions are highly important for the quality of all 

potato tubers (Bodin & Svensson, 1996). Starch potato is usually stored in piles, placed 

directly on the ground either in the field, or the farmyard. The potato pile is covered with 

straw and plastic to protect the tubers from frost and rain. The straw also absorbs 

condensation produced by the tubers respiration, which might otherwise enhance the presence 

of microorganisms (Pringle et al., 2010). 

In order to be able to store the tubers for a long period of time it is important to keep the 

question of storage in mind throughout the cultivation season. Crop rotation, choice of 

variety, fertilization and crop protection are highly important factors for producing storable 

tuber yield. Excessive nitrogen fertilization and neglected protection measures against potato 

late blight can have devastating effects on the storability (Johansson, 1983). A shortage of 

potassium might decrease the storage capacity of the tubers, although, according to Mulder 

(1955), this is most likely due to the fact that a deficiency of potassium increases the tubers’ 

sensitivity to mechanical damage, rather than conferring a direct effect on the storage capacity 

in itself.  The maturity rate of the tubers at harvest might affect their storage capacity, but to 

what extent there are variety dependent differences is not known. However, this effect might 

be very important for the result of the storage (Driskill et al., 2007). 

Tubers should be undamaged, clean, healthy and dry when placed in a storage pile. To 

minimize the loss of starch, weight and quality during storage it is important to harvest the 

potato when the weather is dry and warm. If so, the tubers do not need to be dried before 

storage, and at temperatures above 10˚C the risk for mechanical damage on the tubers is 

reduced (Dansk Kartoffelstivelse, 2007). According to Johansson (1983) wet tubers should be 

handled separately and are not suitable for storage. However, drying of wet potatoes for two 

weeks after harvest has been found to decrease the severity of several commonly occurring 

post-harvest diseases. The effect was more evident after early harvest than after late harvest 

(Hide and Boorer, 1991). If the tubers are to be stored for more than 2 to 3 weeks it is 

recommended to harvest them in September (Dansk Kartoffelstivelse, 2011). 

2.2 Temperature and humidity  

Respiration of harvested tubers is a process that consumes carbohydrates. At 5˚C the 

respiration  is at its lowest, the intensity increases at higher and lower temperatures (Bodin & 

Svensson, 1996). To enable respiration, a gas exchange with the surrounding air must be 

possible. The exchange of gases takes place through small openings in the potato skin, called 

lenticels. If the potato is covered with e.g. water the respiratory process is impaired. As early 

as in the 1920’s it was shown that the respiratory activity in potato tubers is high directly after 

harvest, especially if the tubers are harvested before complete maturity has been reached. 

After 3 to 6 weeks, respiration decreases and stabilizes, even if tubers are stored at high 

temperatures. Sudden changes in storage temperature have shown to result in temporary 

increase in respiration intensity. However, the respiration intensity is then reduced again after 

a short period of time (Kimborough, 1925; Appleman and Miller, 1926). 
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Table 1. Starch and sugar content (fructose, glucose and sucrose) measured in tuber tissue before 
and after storage at different temperatures. All tubers were held at 9 ˚C during 28 days, thereafter they 
were held at different temperatures for 160 days. Means within a row with the same letter are not 
significantly different from each other at P=0,05 (after Olsen et al., 2003) 

 Pre storage 3˚C 7˚C 9˚C 

Starch (μg/mg dry weight) 550,8 a 455,9 b 545,5 a 518,4 a 
Total sugars (mg/g dry weight) 25,3 b 69,7 a 34,2 b 15,1 c 

 

At low temperatures sugars are accumulated in the stored tubers. The overall conversion of 

starch into sugar is a reversible process, and Isherwood (1973) showed that when cold stored 

potato with accumulated sugar levels were held at temperatures above 10˚C, the sugar was 

recondensated to starch. Olsen et al. (2003) examined the impact of different storage 

temperatures on the content of starch and sugars in tuber tissue before and during storage 

(Table 1). They found that tubers stored at low temperatures contained significantly lower 

concentrations of starch than tubers stored at higher temperatures. The authors explained this 

by the impact of high temperatures on starch transformation, increased respiration losses and 

the fact that sugar had been used for germination by tubers stored at high temperatures. 

Increased storage temperature results in decreased accumulation of sugar, but it also shortens 

the life of the potato tubers since high storage temperatures activate the physiological 

processes within the tubers and increase their ability to start germinating (Bodin & Svensson, 

1996, Fogelfors, 2001).  

The relative air humidity is largely regulated by the potato tubers themselves, at or around 

94-97%, and is generally difficult to control (Pringle et al., 2009). According to Fogelfors 

(2001) a temperature of 4˚C and a relative air humidity of 92-95% are considered optimal 

once the wound healing period is over. At high temperatures the air humidity generally 

decreases, which causes the tubers to dry out. As water is lost from the tubers they lose weight 

and become soft. If the air humidity exceeds 95% there is an increased risk for water 

condensation from the tubers (Fogelfors, 2001). The risk for attacks by post-harvest 

pathogens increases both at too high and too low air humidity, since many pathogenic 

microorganisms thrive under warm and moist conditions (Bodin & Svensson, 1996; Pringle et 

al., 2009). 

2.3 Mechanical damage and wound healing 

Mechanical damage on the potato tubers usually consists of cuts, crush damage and bruises 

caused by wounding during harvest and handling of the tubers. Mechanical wounds cause a 

direct loss of quality, and also constitute entry sites for disease-causing microorganisms 

(Johansson, 1983). The fungi Phoma spp. and Fusarium spp. exemplify pathogens that take 

benefit of mechanical damage (Agrios, 2005). Mechanical damage can also activate latent 

infections in the tubers. According to Pringle et al. (2009), large and long tubers tend to be 

more sensitive to damage. 

Uninfected wounds generally heal during the wound healing period under suitable storage 

conditions. Wound healing is a rapid process where a layer of cork tissue, suberin, is formed 

in the undamaged tissue at the  wound site. The suberin layer provides a durable barrier which 

protects the tuber from bacterial and fungal infections (Taiz and Zeiger, 2006). The protection 

seems to be greater against bacteria than against fungi, and the level of protection has been 

found to vary between different potato varieties (Escande and Echandi, 1988).  

During the process of wound healing it is important to maintain favorable environmental 

conditions. Good air circulation, relative humidity higher than 90% and a temperature above 

10˚C are important factors for successful wound healing (Loria, 1993). An optimum 

temperature between 10-15˚C can compensate for deficient humidity (Johansson, 1983; Bodin 



11 

 

& Svensson, 1996). The wound healing process is more rapid in younger than in older tubers, 

and it is therefore important to minimize handling and damage of the tubers during storage. 

The development of suberin and wound periderm is at its slowest 5 to 6 months after harvest 

(Pringle et al., 2009). Cuts heal more rapidly than damage caused by crushing and bruising 

(Bodin & Svensson, 1996). Tubers that have not undergone the wound healing process are 

very sensitive to condensation and temperatures above 15˚C. Unhealed potatoes also face a 

high risk of suffocation (Johansson, 1983). 

Wound healing is an energy demanding process that might cause a decrease of yield 

(Dansk Kartoffelstivelse, 2007). Lutman (1926) investigated the effect of mechanical damage 

on the respiration intensity of potato tubers. He found that the respiration intensity increased 3 

to 4 times during the first three days after the tuber got damaged. The respiration intensity 

decreased after another couple of days, but remained 1.5 to 2 times as high as the respiration 

intensity of undamaged tubers. Cracks and outs in the tubers also caused increased respiration 

intensity, while damage caused by bruising did not increase the respiration intensity, as long 

as the skin was intact. 

Immature tubers are especially sensitive to mechanical wounding, and it is therefore 

desirable not to harvest until the tubers are fully mature (Appleman and Miller, 1926; Dansk 

Kartoffelstivelse, 2007). During the first weeks after harvest even gentle handling causes a 

loss of water from the tubers three times greater per time unit than during the subsequent  

storage period. Wounded, unhealed tubers can lose more than 300 times as much water as 

intact tubers (Bodin & Svensson, 1996). 

2.4 Microorganisms associated with potato tubers 

Endophytic bacteria, i.e. bacteria that live within the plant tissue, are ubiquitous in the nature 

and their colonization does not necessarily cause harmful effects to plants. De Boer and 

Copeman (1974) investigated the endophytic bacterial flora in potato and found that the 

bacterial populations varied significantly between different plants, which was thought to be 

due to the onset of senescence predisposing plants to bacterial colonization of differing 

degrees. All bacteria found were non-pathogenic, and infection of the tuber tissue was thought 

to be due to contamination from the soil micro-flora. Weinert et al. (2010) investigated the 

impact of variety on the bacterial colonization of the tuber surface and of the potato 

rhizosphere. They found that the the colonization of tuber-associated bacteria in general was 

only weakly affected by the plant genotype. However, some varieties used in their trial 

significantly affected the size of bacterial population and the size of their antagonistic 

bacterial population. Several bacteria associated with soft rot on potatoes were also listed by 

Hooker (1981). In general, Bacillus and Pseudomonas seems to be common bacterial 

associates of potato tubers (Table 2). 

Table 2. Different types of bacteria found associated with potato tubers in three different studies 

Genus de Boer & Copeman (1974) Hooker (1981) Weinert et al. (2010) 

Agrobacterium x - - 
Bacillus x x x 
Clostridium - x - 
Erwinia - x - 
Flavobacterium - x x 
Micrococcus x - - 
Pseudomonas x x x 
Streptomyces - - x 
Xanthomonas x - - 
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An endophytic lifestyle is beneficial for the bacteria as it confers stable temperature and 

protection from the competition from the surrounding microflora and from the grazing soil 

microfauna. In order to live inside the plants tissue, however, endophytic bacteria have to 

overcome the defense system of the plant, and this might confer beneficial effects of the 

bacteria on the host plant. The beneficial effects of endophytic bacteria have been measured 

as plant growth promotion (Kloepper et al., 1991; Höflich et al., 1994). This growth 

promoting effect can be direct through their production of growth stimulatory compounds 

and/or through their ability to facilitate the uptake of certain nutrients from the environment. 

The effects can also be indirect through decrease or prevention of infections of one or several 

pathogenic organisms (Agrios, 2005). 
 

Amylases are starch-degrading enzymes produced by all kinds of micro-organisms and 

commonly occurring in nature (Sarian et al., 2011). Potato starch granules are quite resistant 

to degrading enzymes (Taniguchi et al., 1982). As the tubers sprout, however, starch granules 

are degraded, which indicate that there are infact degrading enzymes produced in the tubers. 

Taniguchi et al. (1982) identified Bacillus circulans that was able to degrade potato starch 

granules. B. subtilis, and B. amyloliquefaciens along with Microbacterium aurum and 

Streptomyces sp.  are other examples of amylase producing bacteria (Hayashida et al., 1988; 

Primarini & Ohta, 2000; Sarikaya et al., 2000; Sarian et al., 2011). There are also fungal 

species, e.g. Aspergillus, known to produce amylolytic enzymes (Ueda et al., 1974; Sarian et 

al., 2011). 

Storage at 3˚C increases the activity of β-amylase in potato tubers (Nielsen et al., 1997). 

However, this increase was explained to occur due to a general stress response in the tubers 

that coincides with cold sweetening, but the enzyme was not directly involved in the 

degradation of starch. The biological process of starch degradation in potato tubers is 

generally poorly understood (Taniguchi et al., 1982; Nielsen et al., 1997). 

 

During short periods of storage bacteria are considered to cause more harm than fungi, since 

their growth is faster (Pringle et al., 2009). Dry rots are usually caused by fungi and wet rots 

are generally caused by bacterial infections (Andersson, personal communication, 2012). 

Post-harvest disease development is generally promoted by high moisture in combination with 

warm temperature (Pringle et al., 2009). Global losses due to postharvest bacterial and fungal 

soft rots are estimated to vary between 15 to 30% of harvested crop (Agrios, 2005). There is a 

difference, however, in sensibility towards diseases and pathogens between different potato 

varieties. Synthesis of pathogen-suppressive compounds and production of thick protective 

surface layers around damaged areas are some of several mechanisms to acquire disease 

resistance. Since potato tubers are usually stored at low temperatures it may take weeks or 

even months before disease symptoms are visible on the tubers (Pringle et al., 2009). 

 

2.4.2.1 By bacteria 
Some bacteria cause post-harvest soft rot in potato. Soft rot is due to secondary infections 

which infect tubers that are already infected with other primary pathogens such as fungi 

(Pringle et al., 2009). The bacteria are able to survive in infected tuber tissue, in soil, on 

contaminated equipment and containers. Artificial wounding of subsoil plant tissue 

contributes to an increased colonization of endophytic bacteria within plants (Gagné et al., 

1987). Wounds do not only serve as entry sites for bacteria, they also enable leakage of plant 

exudates, thus creating a favorable and nutrition-rich environment. Once infection has 

occurred, the bacteria multiply in the intercellular spaces of the tuber tissue and produce 

2.4.1 Starch-degrading microorganisms 

2.4.2 Post-harvest diseases 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257434/#CR31
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257434/#CR41
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degrading enzymes that enables their further spread. Symptoms of bacterial soft rot often 

begin as small watery lesions. The lesions grow rapidly and enlarge in size and depth, the 

infected tissue becomes soft and decayed. The process is rapid and a whole tuber may be 

decayed within 3 to 5 days (Agrios, 2005). There are no direct control measures against 

bacterial soft rot in potatoes other than to keep the crop healthy throughout the growing 

season and to to minimize mechanical damage during harvest. The tubers should be dry, and 

humidity and temperature should be low during storage (Pringle et al., 2009).  

Black leg on potato is caused by Pectobacterium atrosepticum, (syn. Erwinia carotovora 

subsp. atroseptica), P. carotovorum subsp. carotovorum, (syn. E. carotovora subsp. 

carotovora) and  Dickeya spp. (syn. E. chrysanthemi) (Persson, 2010). These bacteria produce 

pectolytic enzymes to degrade the plant tissue. Infection can occur on the tuber surface in the 

soil as bacteria spread with water. Black leg can cause patches of dry, dark rot spreading from 

the stem end of the tuber. A lighter zone often surrounds the darker part of the rot, and is seen 

when the tuber is cut in half. There is a characteristic smell associated to the rot. Sometimes 

the rot appears as a brown discoloration and the tuber is then firm and without smell. The 

severity depends on the time of infection and the conditions during growth and storage. Under 

appropriate storage conditions a corky barrier can be formed that restricts attacks (Persson, 

1990; SMAK a), 2006). 

 

2.4.2.2 By fungi 
Various Fusarium spp. cause dry rot on potato (Schöber and Turkensteen, 1992; Olvång, 

2000). Fusarium infection usually starts in wounds or cuts in the field before or during 

harvest and develops during storage. Dry rot may cause heavy losses in potato that is stored 

for a long period of time. Lesions appear moist and light brown at first, but become darker 

and somewhat dry with time. As the area of affected tissue enlarges, it often becomes sunken 

and the skin shows concentric wrinkles (Olvång, 2000). White, pink or yellow mold may 

appear and eventually parts of the tuber or the entire tuber is destroyed. There seems to be 

some resistance to dry rot in young tubers, and the disease usually progresses remarkably 

faster towards the end of the storage season (Loria, 1993). Chemical fungicides can be used to 

control dry rot, although integrated crop management is preferred to control the disease, and 

successful protection is achieved by careful crop management. Choosing potato cultivars with 

high levels of resistance to dry rot and to minimise the mechanical damage are some control 

means (Schöber and Turkensteen, 1992).  

Gangrene is caused by Phoma exigua var. foveata, which is a secondary pathogen that 

requires damage on the tuber to infect (Agrios, 2005). The disease is problematic in areas 

where potato tubers are harvested and stored at low temperatures. The pathogen can be soil- 

or seed-borne. Healthy looking seed tubers may still carry a latent infection, which might 

spread in the tuber if wounded,  and/or transmit the disease to developing tubers. Soil-borne 

infections increase when potato crop is grown in monoculture (Bång, 1989). The disease 

usually spreads  during harvest (Olvång, 2000) but it can also be transmitted to healthy tubers 

during storage (Schöber and Turkensteen, 1992). Gangrene used to be problematic in Sweden 

during 1970-80, but is now less frequent since the production system for seed potato changed 

in 1984 to laboratory meristem-based cultivation. The mother plant originating from the 

meristem is then free from viruses, bacteria and fungi and thus forms healthy tubers that can 

be used as seed (Jönsson, 1987). However, the disease still occurs occasionally and may cause 

major losses during storage (Bång, 1989). Its symptoms differ depending on variety and age 

of the rot, but in advanced stages the affected tissue is generally hollow and sharply defined 

from surrounding healthy tissue, while the infected peel often is wrinkled (Olvång, 2000).  

The oomycete Phytophthora infestans is devastating to potato cultivation as it infects both 

plants and tubers. Tubers generally get infected in the field when sporangia are transported 
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with water from late blight infected leaves through the soil or when the tubers come in contact 

with contaminated leaves (Andersson and Sandström, 2000). The earliest symptoms of tuber 

blight are small reddish or brownish patches under the skin of the potato. The affected tissue 

grows darker and somewhat depressed as the rot progresses. A cut through the diseased tissue 

shows an irregular brown dry rot, which can spread in the entire tuber. The blight develops 

strongly at high temperatures and often serves as entry for soft rot bacteria (SMAK b), 2006). 

Pythium spp. is another oomycete that infects potato tubers and causes watery wound rot. 

Tubers are usually resistant to the pathogen as long as they are healthy and intact, but get 

easily infected when wounded. In warm and moist environments symptoms are visible a few 

days after infection. The risk of infection is high when tubers are harvested under moist 

conditions and can lead to heavy losses of the yield. Watery wound rot develops inside the 

tuber and is visible when the tuber is cut in half. Infected tissue is light grey and darkens when 

exposed to air. The rotted, central portion of the tuber is dark-brown to black. A sharp line 

distinguishes healthy tissue from the infected tissue. The infection sometimes develops 

towards the surface of the tuber and can then be seen through the potato skin. Tubers infected 

by Pythium spp. are often infected by secondary pathogens, such as pathogenic bacteria 

(Twengström, 2003). 

2.5 Storage in field piles 

It is important to place the storage pile in a good location where it can remain until the tubers 

are delivered to the factory. In order to prevent water from gathering underneath the pile it is 

important to choose a location with permeable soil. To minimize the risk of stagnant water 

under the pile during storage, the surface of the ground should be higher in the middle of the 

pile (Dansk Kartoffelstivelse, 2007). The surfaces of the pile should be as even as possible in 

order to minimize the risk for accumulation of condensed water vapours and frost. The 

storage pile should be placed in a north-south direction in order to maximize the air flow 

(Dansk Kartoffelstivelse, 2011). During night time and when there is a risk of rain the pile 

should be covered with plastic or other suitable material. However, during day time and when 

the weather is good the storage pile should preferably be uncovered. When the temperature 

decreases it is important to protect the tubers from cold and frost. Hence, the storage pile 

should be covered with a thick layer of straw. One of the purposes of the straw layer is to 

absorb moisture moving upwards as the tubers respire and during the period of wound 

healing. Hence, the depth of the straw should be largest at the top of the pile. If the straw gets 

wet it should be replaced. In order to facilitate uncovering a net could be placed between the 

tuber pile and the covering straw (Persson, 1997). 

Farmers should be aware of the condition of the tubers throughout the period of storage to 

ensure that the quality of the tubers is good enough when they are taken out of storage. There 

is a higher risk for the tubers to get destroyed due to too high temperatures than to be 

destroyed by damage caused by frost. An ideal temperature inside the storage pile is 3-4˚C 

(Dansk Kartoffelstivelse, 2007). 

Field trials with storage piles in Denmark during 2003 and 2004 showed that the highest 

risk factors for storage in piles were that the tubers were too cold at time of harvest, limited 

ventilation in the piles and tuber infection by Phytophthora infestans. Hence, it is important to 

harvest the tubers at appropriate time, which in the Danish trials was before October 10
th
, and 

that the tubers are dry when placed in the piles. The trials in Denmark also showed that the 

piles should be covered during night time in order to minimize changes in temperature, and 

that it is important to choose suitable potato varieties (AKV, 2004). 
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3. Objective 
 

The objective with this thesis was to investigate to what extent starch yield (starch 

content*tuber weight) in potato tubers is affected by storage. A comparison was made 

between three different potato varieties stored in two different types of field storage piles.  

The hypothesis was that changes in starch yield depend on storage temperature, relative 

humidity within the storage pile and prescence and growth of starch degrading bacteria and 

fungi. Since the period of storage was relatively short, bacteria were considered to be mainly 

responsible for reduction in tuber quality. 
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4. Materials and methods 

4.1 Field trial 

Two different types of storage piles, A and B, were constructed on a farmer’s field in 

Blekinge, Sweden. Figure 1 illustrates pile A in the dome shaped manner it is usually 

constructed for field storage of starch potato. Harvested tubers were placed directly on the 

ground, covered with a net and an approximately 20 cm thick straw cover and thereafter 

covered with perforated plastic. Pile B was somewhat more advanced and formed in a way 

recommended by crisp processing companies and is illustrated by Figure 2. Tubers were 

placed on the ground in a rectangle shape formed by square bales of straw. The tubers were 

then covered with a net and thereafter an approximately 60 cm thick cover of straw. Finally 

the pile was covered with perforated plastic.  

 

 
Figure 1. Illustration of a typical dome shaped pile for storage of starch potato in field. Pile A. 

 

 
Figure 2. Illustration of a rectangular pile usually recommended by commercial companies for 
field storage of tubers meant for crisp production. Pile B. 
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Figure 3. Perforated bags with potato tubers placed in storage pile B (left). The pile was then 
filled up with potato tubers (approximately 30 cm) and covered with a net, straw and plastic 
cover (right). 

The three starch potato varieties Kuras, Merano and Novano were included in the study. 

Kuras is a late maturing variety with potential for a high starch yield. Merano is a very late 

maturing variety, which is still not well known under Swedish conditions, but it is said to 

have potential for high starch yields as well. Novano is a fairly early maturing variety, also 

with potential for high starch yield (Nordström, personal communication, 2012). All three 

varieties were grown in a variety trial in a field nearby the site where the storage field trial 

was set up under identical growing conditions. All tubers were harvested on October 17
th

 

2011 under identical conditions. After harvest potato tubers of the cultivar Kuras was stored 

in both piles. Perforated bags with Kuras, Merano and Novano respectively, containing 

approximately 10 kilos each, were then placed in both piles (Figure 3) and covered with 

approximately 30 cm of potatoes of the variety Kuras. Each storage pile contained four blocks 

corresponding to the different occasions on which the sample bags were going to be collected 

from the pile (Figure 4 ). The sample bags were randomly placed within each block. 
 

 Storage pile A    Storage pile B   

Block I Novano Merano Kuras Block I Kuras Merano Novano 
 Merano Kuras Novano  Novano Kuras Merano 
 Kuras Novano Merano  Merano Novano Kuras 
 Novano Kuras Merano  Merano Novano Kuras 

Block II Kuras Novano Merano Block II Kuras Novano Merano 
 Merano Novano Kuras  Merano Novano Kuras 
 Merano Novano Kuras  Novano Kuras Merano 
 Novano Merano Kuras  Kuras Merano Novano 

Block III Merano Kuras Novano Block III Merano Kuras Novano 
 Kuras Merano Novano  Novano Kuras Merano 
 Kuras Novano Merano  Novano Merano Kuras 
 Novano Merano Kuras  Merano Kuras Novano 

Block IV Novano Merano Kuras Block IV Merano Kuras Novano 
 Novano Kuras Merano  Kuras Merano Novano 
 Kuras Merano Novano  Merano Novano Kuras 
 Kuras Merano Novano  Novano Merano Kuras 

 

Figure 4. Experimental set up of the storage trial in field. Net bags containing 10 kg potato 
tubers of each of the varieties Kuras, Merano and Novano respectively were randomly placed 
within four different blocks in the storage piles A and B. 
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4.2 Tuber weight and starch content 

Starch content was measured for each of the varieties at time of harvest on October 17
th
  2011. 

The sample bags were collected from the storage piles on four occasions: October 25
th
, 

November 9
th

, November 24
th

 2011 and January 17
th
 2012. At the time of collection the bags 

were weighed and starch content was measured in order to compare changes in weight and 

starch content over time. Starch yield, i.e. the amount of starch (kg) present in the tubers, was 

calculated by multiplying the actual starch content with the weight at the time of 

measurement. 

4.3 Temperature and relative humidity during storage 

Sensors that registred temperature and relative humidity sensors (USB Temperature and 

Humidity Data Logger, Claes Ohlsson) were placed within the two storage piles. Six sensors 

were placed in each storage pile. Weather data for the area during the period of storage was 

gathered from LantMet at SLU/Fältforsk. 

4.4 Mechanical damage on tubers 

At the time of harvest four bags of each potato variety were sent to SLU, Uppsala, for visual 

inspection of tuber quality. Incidence of mechanical damages, i.e. number of damaged tubers, 

was recorded. Additional examinations of number of tubers with mechanical damage were 

made on November 24
th
 2011 and January 25

th
 2012. 

4.5 Wet rots and dry rots on tubers 

Incidence of wet rots and dry rots, i.e. number of infected tubers, and severity, i.e. area of 

infected tuber tissue, were recorded visually at two occasions: of November 24
th

 2011 and  

January 25
th

 2012. At the final quality assessment after three months of storage, ten tubers 

from each of the 24 trial bags (three varieties*four repetitions) were randomly sampled and 

stored at 6˚C.  
 

    

Figure 5. Potato peels were plugged out in a uniform manner from ten randomely chosen 
tubers of each treatment and replicate. 

 

Three plugs of peel tissue (5 mm diameter) were taken from each tuber (Figure 5). In total, 

thirty plugs resulted from each sample bag, they were pooled together and thoroughly 

blended. The suspensions thus obtained were diluted serially in phosphate buffered saline 

solution (PBS/l destilled water; 8.0 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4, 0.24 g KH2PO4). 

Appropriate dilutions were spread aseptically on sterile diluted trypticase soy broth agar 

(TSA/l destilled water; 20 g TSA broth (Oxoid Microbiology Products), 7.5 g agar (Oxoid 

4.5.1 Characterisation of culturable bacteria associated with tubers   
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Microbiology Products)) for assessing culturable bacterial populations and on potato dextrose 

agar (PDA; 39 g PDA (Oxoid Microbiology Products)/l distilled water) for fungal 

populations. Each dilution was spread in two replicates and all agar plates were incubated at 

12˚C.  

Bacterial colony forming units (CFU) were counted 48 hours after spreading (Figure 6) 

and the data was transformed to calculate CFU per gram dry weight of potato tissue. 

Morphologically different colonies were selected and transferred to new agar plates for 

purification and further analyses (Figure 6). This procedure resulted in 72 pure isolates of 

bacteria. The plates were kept at 4˚C for storage. 

 

    

Figure 6. Counting of bacterial colonies (left), purification of morphologically differing bacterial 
colonies (middle and right). 

 

4.5.1.1 DNA extraction and amplification 
The bacterial DNA was amplified by polymerase chain reaction (PCR), which enables 

particular segments of DNA to replicate by nucleic acid synthesis (Saiki, 1990). Double-

stranded DNA is denatured by heating and converted into single strands. During an annealing 

period two primers; one corresponding to the 5’ end and one corresponding to the 3’ end of 

the DNA, bind to the nucleotides flanking the targeted DNA sequence. The primers serve as 

starting points for synthesis of new DNA strands complementary to the target DNA sequence. 

Finally, a heat-stable DNA polymerase binds nucleotides to the primers and produces a 

double-stranded copy of the target DNA sequence (Klug et al., 2007). 

Fragments of 16S rRNA gene sequences were PCR amplified by using the universal 

bacteria-specific primers 27F (5´-AGA GTT TGA TCM TGG CTC AG-3´) and 907R (5´-

CCG TCA ATT CMT TTR AGT TT-3´). The PCR solution consisted of: 11.25 µl sterile 

H2O, 5 µl PCR buffer (RB), 5 µl deoxynucleoside triphosphate (dNTP) [0.2 mM], 1.5 µl 

MgCl2 [20mM], 0.25 µl of DreamTaq
TM 

DNA Polymerase (Fermentas Molecular Biology 

Products) [5u/µl], 1 µl of each primer and 25 µl bacteria sample at a concentration of 1
-10

. The 

2720 Thermal Cycler (Applied Biosystems
®
) was used as follows: initial DNA denaturation at 

94˚C for three minutes; 28 cycles of 94˚C for 45 seconds; 52˚C for 30 seconds; 72˚C for 30 

seconds; and a final extension step at 72˚C for seven minutes. Thereafter the samples were 

cooled down to 4˚C, all according to the method described by Saiki (1990). Following this, 4 

µl of each of the PCR samples were used to screen for amplification efficiency and amplimer 

size by electrophoresis of 250 voltage for 30 minutes on a 1.2% agarose (Agaros Standard, 

Saveen Werner AB)-sodium boric acid buffer (Brody and Kern, 2004 [4.6 mM]) gel. The gels 

were stained with ethidium bromide and visually analysed under UV light (GelDoc 2000, 

BioRad laboratories). 

 

4.5.1.2 Purification of PCR products 
In order to get rid of salts, unincorporated dNTPs and unused primers the PCR-products were 

purified with Agencourt® AMPure Xp® (Beckman Coulter Inc.). In this method DNA is 
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bound to small magnetic beads, and by using a magnet it is possible to wash and dry the 

DNA. Thereafter the DNA can be extracted from the beads. The PCR-products (50 μl) were 

mixed with 85 μl AMPure® magnetic bead solution and incubated at room temperature for 5 

minutes. The samples were then placed on a magnetic plate for 10 minutes, after incubation 

the plate was turned upside down to get rid of the liquid. Following this 200 μl 70% ethanol 

was added to each sample and incubated for 30 seconds at room temperature. When liquid 

had been removed the plate was removed from the magnet and the samples were dried at 37˚C 

for 60 minutes. When dry, 50 μl of elution buffer was added according to recommendation to 

each sample and carefully mixed. Finally 45 μl of each sample was transferred to a new plate 

and dried over night at 37˚C. 

The dry samples were then sent to Macrogen Inc., South Korea, for sequencing. 

 

4.5.1.3 Species diversity analyses 
In order to compare the composition of the bacterial communities in the three varieties in two 

piles Shannon’s diversity index was calculated. Shannon’s diversity index measures the 

species diversity in a community; higher values of H represent greater diversity (Ricklefs, 

2007). The species richness, i.e. number of species present, as well as the relative abundance 

of the different species is taken into account. 

 

 
 
H = Shannon´s diversity index 
Pi = fraction of the entire population made up of species i 
S = number of species encountered 
Σ = sum from species 1 to species S 

 

4.5.1.4 Estimation of starch degrading bacterial population 
With an aim to estimate proportion of tuber associated bacteria with starch hydrolyzing 

ability, all the 72 isolates were examined in vitro by using Gram´s iodine solution. Starch 

amended agar was prepared by adding 0.44% soluble wheat starch (Sigma-Aldrich®) to TSA 

(Oxoid Microbiology Products). Bacteria were inoculated on the starch amended agar and 

incubated for 72 hours. The agar surface was flooded with Gram´s iodine (1 g iodine, 2 g 

potassium iodine, 300 ml sterile water) and incubated in dark for ten minutes. The iodine 

reacts with starch and forms a dark blue-colored complex. A clear yellowish halo formed 

around the bacterial colony after flooding with Gram´s iodine solution was considered as a 

positive reaction indicating that starch had been hydrolyzed by the bacteria (Figure 7). 
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Figure 7. Starch hydrolysation by four tuber associated bacteria  in vitro (yellow halo) (left). In 
vivo examination of starch hydrolysing ability of bacterial isolates by inoculation of potato slices 
(right). 

 

In vitro tests were complemented with an in vivo assay to ascertain the starch hydrolysing 

ability of the bacteria. Half a cm thick slices of a commercial ware potato variety Melody 

were co-inoculated with each bacterial isolate. Tubers were surface-sterilised with ethanol 

before cutting slices. Care was taken to retain moisture and minimise oxidation of sliced 

tissue during inoculation. Each isolate was suspended in 1 ml PBS, and 20 µl of each 

suspension was applied in a shallow well (1.5 cm in diameter*5 mm depth) made in the centre 

of each potato slice. Each combination was prepared in three replicates and in a uniform 

manner. The inoculated slices were incubated in moist environment and dark at 20˚C for one 

week after which the affected tuber tissue was estimated qualitatively as a measure of the 

starch-hydrolyzing ability (Figure 7). 

 

Apparently morphologically different fungi appearing on TSA or PDA (Oxoid Microbiology 

Products) were selected and purified for the purpose of identification by aseptical inoculation 

on sterile diluted PDA (20 g PDA/l destilled water, 7.5 g agar/l destilled water) amended with 

antibiotics (Rifampicin [5 ppm] and Streptomycin [50 ppm]) followed by incubation at 12˚C. 

Reinoculation was carried out to ensure the purity of the fungi. Fungal mycelium was later 

harvested directly from the agar surface and placed in small plastic vials together with four 

glass pearls before lyophilizing the fungal tissue at -60 ˚C for 18h until further analyses. 
 

4.5.2.1 DNA extraction and amplification 
The mycelia was homogenized by mixing for 20 seconds. To each of the homogenized 

samples 1 ml CTAB-buffer [3%] was added and the samples were incubated at 65˚C for one 

hour. The samples were shaken every 20-30 minutes during incubation. The samples were 

then centrifuged at 13 000 rpm for five minutes and the supernatants (approximately 800 μl) 

were transferred to new 1.5-ml Eppendorf tubes. One volume of chloroform was added and 

the solution was mixed by shaking the tubes carefully. The samples were then centrifuged at 

8000 rpm for 10 minutes and the upper phase (approximately 500 μl) was transferred to new 

Eppendorf tubes. DNA was precipitated by adding 1.5 volumes of cold isopropanol-mix and 

the samples were kept at -22˚C for one hour. After freezing the samples were centrifuged at 

13 000 rpm for 20 minutes, and the supernatants were carefully poured out. The DNA had 

then formed a pellet which was washed by adding 200 μl 70% cold ethanol and centrifuged at 

6500 rpm for five minutes. The ethanol was then poured out and the tubes were left up-side 

down on absorbent paper for one hour in order for the pellets to dry. When dry, the pellets 

were resuspended in 50 μl sterile water. 

4.5.2 Characterisation of culturable fungi associated with tubers   
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The DNA solutions were run through a Spectophotometer (NanoDrop, ND-1000) in order 

to evaluate the concentration of DNA in the samples. The samples were then diluted with 

sterile water according to their concentration in order to reach final concentrations as even as 

possible, approximately 0.5 ng/μl. 

The PCR solution consisted of: 11.25 µl sterile H2O, 5 µl PCR buffer (RB), 5 µl 

deoxynucleoside triphosphate (dNTP) [0,2 mM], 1.5 µl MgCl2 [20 mM] 0.25 µl of 

DreamTaq
TM 

DNA Polymerase (Fermentas Molecular Biology Products) [5u/µl], 1 µl of each 

of the primers ITS IF (5´-CTT GGT CAT TTA GAG GAA GTA A-3´) and ITS 4 (5´-TCC 

TCC GCT TAT TGA TAT GC-3´) and 25 µl fungal DNA sample at a concentration of 0.5 

ng/μl. The samples were run through PCR in a 2720 Thermal Cycler (Applied Biosystems
®
) 

at the program ITS 55; initial DNA denaturation at 94˚C for five minutes; 35 cycles of 94˚C 

for 30 seconds; 55˚C for 30 seconds; 72˚C for 30 seconds; and a final extension step at 72˚C 

for seven minutes. Thereafter the samples were cooled down to 10˚C, according to the method 

described by Saiki (1990). Following this, 4 µl of the PCR samples were used to screen for 

amplification efficiency and amplimer size by electrophoresis of 250 voltage for 30 minutes 

on a 1.2% agarose (Agaros Standard, Saveen Werner AB)-sodium boric acid buffer (Brody 

and Kern, 2004 [4.6 mM]) gel. The gels were stained with ethidium bromide and visually 

analysed under UV light (GelDoc 2000, BioRad laboratories). 

 

4.5.2.2 Purification of PCR products 
The fungal PCR products were purified with Agencourt® AMPure Xp® (Beckman Coulter 

Inc.), in the same way as the bacterial PCR products (see above; 4.5.1.2).  

The dry fungal samples were then sent to Macrogen Inc., South Korea, for sequencing. 

 

4.6 Statistical analyses 

All statistical analyses were performed with JMP, version 10.0.0. 
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5. Results 

5.1 Starch yield  

Starch yield measured after three months of storage, on January 17
th

 2012, did not differ 

significantly between storage pile A and B, but there were significant differences between the 

three varieties within the different piles (Figure 8). The reduction in starch yield was 

significant in all three varieties during the first three weeks of storage. Starch yield tended to 

reduce continuously in all three varieties, but these reductions were no longer significant. The 

initial starch yield was reduced with 7% in the potato variety Kuras, 8% in the variety Merano 

and 5% in Novano after three months of storage (Table 3, Figure 9). 

The starch content in the tubers at harvest, on October 17
th
 2011, differed significantly 

between the three potato varieties, the variety Novano had the highest initial content of starch 

and Kuras the lowest (Table 3). Starch reduction was not affected by type of storage pile and 

there was no statistical correlation between change in starch content and time of storage 

(Figure 9). 

Tuber weight decreased rapidly during the first weeks of storage, probably due to loss of 

water. After this initial loss there were no significant differences in losses between the 

subsequent measurements. There were no significant differences in weight loss between the 

two piles, except for Kuras on November 24
th
, where there was a significant difference 

between pile A and B. Significant differences between the two piles were found only during 

the process of storage. After three months of storage no significant differences in starch 

content and weight loss were found between storage pile A and B (Table 3). 

 

 

 

 
Figure 8. Starch yield (kg) from three different potato varieties, Kuras, Merano and Novano 
stored for three months in storage pile A and B. Calculations were based on percentage of 
weight loss and starch content (weight loss calculated from an initial amount of 10 kg tubers of 
each variety). Within each storage pile, bars marked with different letters are significantly 
different at P > 0.001. 
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Figure 9. Change in starch yield (kg) over three months of storage in three different potato 
varieties. 

 

 

Table 3. Starch yield, starch content and tuber weight loss in three potato varieties stored in two types 
of storage piles during a period of three months. Starch content was not measured on October 25

th
. 

No statistical analyses were made on the initial values (October 17
th
) 

    Starch yield (kg) p-value Starch content (%) p-value Weight loss (%) p-value 

  Sampling Pile A Pile B   Pile A Pile B   Pile A Pile B   

Kuras 2011-10-17 1.91 1.91 - 19.12 19.12 - 0 0 - 

 2011-10-25 - - - - - - 4.91 4.07 0.1427 

 2011-11-09 1.81 1.83 0.1724 17.80 18.00 0.4198 5.53 4.40 0.1453 

 2011-11-24 1.82 1.79 0.0149* 18.72 17.88 0.0047* 6.09 5.14 0.0323* 

 2012-01-17 1.77 1.79 0.3995 18.40 18.02 0.1239 7.91 7.41 0.5017 

           

Merano 2011-10-17 2.05 2.05 - 20.45 20.45 - 0 0 - 

 2011-10-25 - - - - - - 4.57 5.09 0.0903 

 2011-11-09 1.93 1.92 0.0344* 19.22 19.65 0.4445 6.00 6.20 0.4873 

 2011-11-24 1.93 1.94 0.7311 19.02 18.92 0.8532 6.25 5.44 0.7061 

 2012-01-17 1.89 1.89 0.9721 19.50 19.40 0.8471 7.87 7.95 0.9419 

           

Novano 2011-10-17 2.21 2.21 - 22.08 22.08 - 0 0 - 

 2011-10-25 - - - - - - 3.34 4.26 0.2799 

 2011-11-09 2.10 2.13 0.1148 21.22 20.88 0.2946 5.05 3.61 0.1431 

 2011-11-24 2.10 2.12 0.4249 20.92 21.35 0.2743 4.89 3.87 0.3920 

  2012-01-17 2.08 2.12 0.2035 21.82 21.42 0.4310 5.87 4.09 0.2156 

-  Not measured 

* Statistically significant difference between piles within a variety 
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5.2 Temperature and relative humidity during storage 

There was a correlation between the temperatures in storage pile A and B throughout the 

period of storage (Figure 12). The temperature decreased with time in both storage piles. The 

temperature in pile A fluctuated more than in pile B during the entire period. Figure 12 and 13 

also show that the decrease in temperature within the storage piles was closely correlated with 

the decrease in air temperature.  

The relative humidity was constantly high in both piles, although it reached 100% earlier 

in pile A than in pile B (Figure 12). There seems to be no correlations between the relative 

humidity within the storage piles and the relative air humidity (Figure 12 and 13). 

 

 
 

Figure 12. Temperature and relative humidity during three months in potato piles A and B 
stored at field site, Listerlandet. Data from LantMet vid SLU/FältForsk. 

 
 

Figure 13. Air temperature and relative air humidity during three months in potato piles A and B 
stored at field site, Listerlandet. Data from LantMet vid SLU/FältForsk. 
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5.3 Estimation of mechanical damage on tubers 

In average for all three varieties 67% of the tubers showed mechanical damage. The levels of 

mechanical damage was assessed as number of tubers with mechanical damage, and did not 

include the amount of tuber tissue damaged (Figure 10). As shown in Figure 11, the three 

different varieties of potato differed significantly from each other, where Merano carried the 

highest percentage of damaged tubers (82%), followed by Kuras (69%) whereas Novano 

carried the lowest percentage of damaged tubers (59%). 

 

    
Figure 10. Mechanical damage on potato tubers. 

 

 

 

 

 

 

 

 
Figure 11. Percentage tubers with mechanical damage at harvest. Bars marked with different 
letters are significantly different from each other (p<0.0001). 
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5.4 Wet rot and dry rots on tubers 

There was no significant difference in the number of tubers affected by wet rots or dry rots 

between storage pile A and B. Significant differences were evident, however, between the 

different varieties (Figure 14). The variety Novano showed significantly lower incidence of 

wet rots than the other two varieties irrespective of the type of pile. The severity of wet rot 

infections was also significantly lower in the variety Novano in pile A, but not in pile B. 

There were significant differences in incidence of dry rots in storage pile A between the 

varieties Merano and Novano, where Novano had the lowest amount of infected tubers. The 

varieties Novano and Kuras also showed lower severity of dry rots in storage pile B than the 

variety Merano.  

Incidence of wet rots or dry rots rot did not increase significantly in the two storage piles 

during the period of storage. The severity of dry rots increased significantly from November 

24th to January 17th in storage pile B. The severity of dry rot in storage pile A, as well as wet 

rots in both storage piles, tended to increase during the period of storage, but the increases 

were not statistically significant. 

 

    
 
Figure 14. Incidence (number of infected tubers) and severity (area of infected tuber tissue) of 
wet rots and dry rots respectively in three different potato varieties and two different types of 
storage piles, measured after three months of storage. Bars within each group marked with 
different letters are significantly different at p=0.05. 

 

5.4.2 Wet rots and dry rots in relation to mechanical damage 
A significant positive correlation was observed between incidence of mechanical damage on 

tubers and incidence of wet rots in the variety Merano. Similar tendency was observed in the 

variety Kuras but the correlation was not significant. No significant correlation between 

incidence of mechanical damage and wet rots was found in the variety Novano (Figure 15). 

Incidence of mechanical damage on tubers in relation to incidence of dry rots did not differ 

significantly between the two piles. Again the correlation between the two parameters differed 

between the varieties. The correlation was significant in the varieties Kuras and Merano, but 

not significant in Novano (Figure 16). 

No correlations were established between incidence of dry rots and incidence of wet rots in 

either of the potato varieties. 
 

5.4.1 Incidence and severity 
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Figure 15. Incidence of wet rots (number of infected tubers) compared to incidence of 
mechanical damage (number of damaged tubers); from left to right potato variety Kuras 
(p=0.0722, R

2
=0.21), Merano (p=0.0042, R

2
=0.45) and Novano (p=0.9679, R

2
=0.00) 

respectively. Shadowed areas indicate the 95% confidence interval. 

 

 
Figure 16. Incidence of dry rots (number of infected tubers) compared to incidence of 
mechanical damage (number of damaged tubers); from left to right potato variety Kuras 
(p=0.0042, R

2
=0.45), Merano (p=0.0438, R

2
=0.26) and Novano (p=0.1691, R

2
=0.13) 

respectively. Shadowed areas indicate the 95% confidence interval. 

 

5.4.3.1 Bacterial population size 
Bacterial population size as estimated on TSA by the culture-dependent approach differed 

statistically between the three varieties in pile B, with the variety Merano harbouring the 

highest population (5 x Kuras and 24 x Novano, Figure 17). The population size in the variety 

Merano also differed between the two storage piles (Table 4). There was a general tendency 

of higher bacterial counts in the varieties Kuras and Novano in pile B but the differences were 

not significant. 

Estimation of bacterial population on PDA also showed the same pattern as on TSA. In 

general the bacterial counts were lower on PDA than on TSA. 
 

         
Figure 17. Bacterial colonies appearing after 48 hours on TSA in from left to right potato variety 
Kuras, Merano and Novano. 

 

5.4.3 Culturable bacterial and fungal communities in stored tubers 
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Table 4. Number of viable bacterial cell counts (colony forming units, cfu x10
6
) per gram dried potato 

peel tissue on TSA. Tubers were stored for three months in field in two pile types, pile A and B. Values 
followed by different letters indicate significant differences between varieties in each storage pile. P-
value shown in table indicate statistical significance between the piles  

 Storage pile A  Storage pile B  p-value 

Kuras 2.73 A  8.73 B  0.1234 
Merano 3.67 A  47.32 A  0.0173 
Novano 1.76 A  1.95 B  0.8883 

 

5.4.3.2 Bacterial species diversity 
In total, 27 different genera and 19 different species from ten different bacterial families were 

identified from the stored potato tubers. All bacterial species isolated and identified are listed 

in Table 5. Bacteria known to be pathogenic to potato, such as Pectobacterium atrosepticum 

that cause Blackleg on potato (Persson, 2010) were among the identified species. Among the 

identified bacteria Pseudomonas flourescens and P. putida were also found present.  

The bacterial diversity (those identified) seemed to be higher in the varieties Merano and 

Novano than in Kuras (Table 6). A tendency of higher diversity was also seen in pile B. It is 

possible that the higher diversity was due to a higher number of culturable bacterial 

populations obtained from tubers stored in pile B than from A. 
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Table 5. Bacterial families identified from tubers of the potato varieties Kuras, Merano and 
Novano three months after storage in two different piles in field. The quantity of identified 
species within each potato variety is indicated by number 

   Kuras Merano Novano 

Family Genus Species Pile A B A B A B 

Bacillaceae Bacillus simplex     2  

Enterobacteriaceae Erwinia spp.  1     

Enterobacteriaceae Erwinia billingiae     1 1 

Enterobacteriaceae Enterobacter amnigenus   2 2   

Enterobacteriaceae Pectobacterium atrosepticum   1    

Enterobacteriaceae Rahnella aquatilis 1    2  

Enterobacteriaceae Serratia proteamaculans  1     

Enterobacteriaceae     4    

Flavobacteriaceae Chryseobacterium balustinum 1   1  1 

Flavobacteriaceae Chryseobacterium spp.   1 1   

Flavobacteriaceae Chryseobacterium  piscicola      2 

Flavobacteriaceae Flavobacterium spp.      1 

Flavobacteriaceae      1   

Leuconostocaceae Leuconostoc gasicomitatum    1   

Leuconostocaceae Leuconostoc mesenteroides      1 

Micrococcineae Arthrobacter spp. 2  1   1 

Micrococcineae Cellulomonas spp.   1    

Moraxellaceae Acinetobacter iwolffii      1 

Moraxellaceae Acinetobacter spp.      1 

Oxalobacteraceae Janthinobacterium spp.      1 

Propionibacterineae Propionibacterium acnes      1 

Pseudomonadaceae Pseudomonas spp. 2 3 1  1 4 

Pseudomonadaceae Pseudomonas brenneri   1    

Pseudomonadaceae Pseudomonas fluorescens    2  2 

Pseudomonadaceae Pseudomonas fragi 1      

Pseudomonadaceae Pseudomonas grimontii 1      

Pseudomonadaceae Pseudomonas lundensis    1   

Pseudomonadaceae Pseudomonas putida 1 1  1   

Xanthomonadaceae Stenotrophomonas maltophilia 1  1 1 1 1 

Unidentified bacterial isolates   1  2 1 4 

 

Table 6. Bacterial diversity (based on 72 cultured isolates) in potato tissue of three varieties three 
months after of field storage in two pile types in field. Only bacterial isolates identified at genera level 
were included in the Shannon diversity index, bacterial isolates identified only at family level were 
counted as unidentified bacterial isolates 

 Kuras Merano  Novano Storage pile A Storage pile B 

Number of isolates counted  10 13 15 15 20 
Shannon diversity index 3,07 3,65 4,32 4,23 5,03 
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5.4.4.3 Proportion of starch hydrolyzing bacterial population 
The variety Kuras seemed to harbour a smaller starch degrading bacterial population than 

Merano and Novano, when tested in vitro and in vivo (Table 7). In vitro the populations of 

starch degraders constituted about 1/3rd of the total bacterial population in Kuras while the 

ratio was 2/3rd in Merano and Novano. However, these differences were not statistically 

significant. No significant difference was noticed between the population sizes in the two 

piles independent of the method of analysis. 

Table 7. Percentage starch hydrolyzing bacteria of total bacteria isolated from three different potato 
varieties after three months of storage in two pile types in field 

 Storage pile A Storage pile B 

 In vitro In vivo  In vitro  In vivo  
Kuras 31 11 40 11 
Merano 67 29 70 36 
Novano 71 33 66 27 

 

5.4.4.4 Fungi 
Results from fungi cultured from the three varieties on PDA and TSA are summarised in 

Table 8. No attempt was made to calculate diversity index for fungi as a total 11 species were 

identified and this was considered to be too small material to give conclusive results as 

regards varietal and pile differences. Most fungi identified are common soil inhabitants but 

some are also reported to be common plant inhabitants. Fungi with known pathogenic 

potential were identified, such as Cladosporium cladosporioides, Colletotrichum coccodes, 

Colletotrichum gloeosporioides, Mucor hiemalis, Mucor racemosus, Phoma eupyrena and 

Phoma herbarum. 

Table 8. Fungi isolated on PDA and TSA from three potato varieties stored for three months in piles in 
field 

Species Occurrence Source of information 

Cladosporium cladosporioides Soil, plants Domsch et al. (1980) 

Colletotrichum coccodes Soil, potato, tomato Ingram et al. (2011) 
Colletotrichum gloeosporioides Fruits, post-harvest diseases Phoulivang et al. (2010) 

Galactomyces geotrichum Plants, soil, insects, mammals Fungal Biodiv. Centre (2012) 

Mucor hiemalis  Soil Domsch et al. (1980) 

Mucor racemosus Wood, soil, dung, litter Agrios (2005) 

Penicillium freii Cereals Intern. Mycol. Assoc. a) (2000) 

Phoma eupyrena Soil, plants Q-bank a) (2011) 
Phoma herbarum  Soil, air, water Q-bank b) (2011) 

Scytalidium lignicola Plants, decaying wood Intern. Mycol. Assoc. b) (2000) 

Umbelopsis sp.  ?? ?? 

 

http://www.myco.biota.biodiv.tw/
http://www.mycobank.org/
http://www.q-bank.eu/
http://www.q-bank.eu/
http://www.mycobank.org/
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6. Discussion 
 

The major objective with this study was to compare the storage efficiency between two 

different types of field storage piles and three different varieties of starch potato. In general, 

the differences between the two piles were small, but the differences between the three potato 

varieties were significant. The variety Novano was found to be the best suited, and Kuras the 

least suited variety for long-term storage.  

That the differences between the two piles were not as great as expected in terms of storage 

capacity indicates that the form of the pile has no impact on the final storage result. Another 

more likely explanation behind the results is that the weather during the experimental period 

was unusually mild. With such weather it becomes unnecessary to insulate the piles in the 

way pile B was done. 

6.1 Starch yield 

The final starch yield after three months of storage differed significantly between the three 

potato varieties (Figure 8), which was also found in Danish starch potato storage trials (AKV, 

2004).  This indicates that the choice of variety is highly important in order to ensure a high 

starch yield in the end. The loss of starch yield increased throughout the period of storage. 

The largest losses, however, occurred during the first weeks of storage (Table 3) which might 

be due to wound healing (Dansk Kartoffelstivelse, 2007). The starch content also decreased 

during the first few weeks, which was probably due to increased respiration directly after 

wounding of the tuber (Lutman 1926). The second recording of starch content in the tubers 

was done after 23 days of storage. The decrease in starch content probably occurred earlier. 

The level of starch content got stabilized after a few weeks, and in some cases it even 

increased again (Table 3). The increase in starch content towards the end of the storage period 

was probably caused by the loss of tuber weight due to loss of water through respiration and 

thus leading to a concentration of the starch content in the tubers. 

6.2 Temperature and relative humidity during storage 

There was a co-variation in temperatures between pile A and B throughout the storage period 

(Figure 12). However, the temperature in pile A was constantly lower than in storage pile B, 

and reached at its coldest almost 0˚C. The internal fluctuations were also less pronounced in 

pile B, which was very likely due to its extended insulation. Initially the temperature in pile B 

was on average 10˚C which seems to have been high enough to promote the wound healing 

process. The relative humidity at >90% was also appropriate for wound healing. The average 

temperature in pile A was slightly lower than in pile B but also appropriate for wound healing. 

Temperature decreased strongly in both piles around November 14
th

 (Figure 12) which 

coincided with an intense decrease in air temperature (Figure 13). Following this decrease the 

air temperature tended to decrease but fluctuate strongly for the rest of the storage period. 

This fluctuation had no practical impact on the pile temperatures, although the average 

temperature declined continuously in both piles. After the period of wound healing a 

temperature of 4˚C is considered to be optimal (Fogelfors, 2001; Dansk Kartoffekstivelse, 

2007), which indicates that the temperature in pile A probably was more appropriate for 

potato storage. It should be noticed, however, that the autumn of 2011 was unusually warm. If 

the weather would have been colder pile B would probably have had a temperature more 

suitable for storage of potato. At lower temperatures, i.e. about 3˚C, there would have been an 

increased risk for starch degradation due to the transformation of starch into sugar (Marquez 
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and Añon, 1986; Olsen et al. 2003). Such low temperatures were reached only occasionally in 

this field trial. 

The relative humidity within the piles was high throughout the period of storage (Figure 

12) and there was no effect of the fluctuation in air moisture (Figure 13), both piles seems to 

have been satisfactoryily insulated. It reached to 100% sooner in pile A than in pile B. Storage 

pile B was better insulated, which was probably the cause of the slower increase of relative 

humidity. The greatest humidity affecting factor seems to have been the tubers own 

respiration (Pringle et al. 2009). 

6.3 Mechanical damage on tubers 

Tubers of all three potato varieties carried high incidence of mechanical damage, on average 

67%. According to Pringle et al. (2009), large and long tubers are extra sensitive to 

mechanical damage. Starch potato tubers are usually quite large which partly explains the 

high incidence of damages in tubers. At the time of harvest there had also been a few cold 

nights and the tubers were probably affected by frost, which most likely made them 

vulnerable to handling. The same problem occurred in storage trials in Denmark (AKV, 

2004). Despite the high damage frequency in all varieties there was a significant varietal 

difference (Figure 11). Since all potato tubers were harvested under identical conditions this 

indicates that the variety Merano is more sensitive to mechanical damage than the other 

varieties which may be because it sets the tubers shallower than others and thus makes the 

tubers more vulnerable to cold temperatures. Merano might also have larger tubers, thus more 

sensitive to mechanical damage (Pringle et al., 2009). Another possible explanation might be 

that Merano matures slower than the other two varieties. Immature tubers are more sensitive 

to mechanical damage than fully mature ones (Appleman and Miller, 1926; Dansk 

Kartoffelstivelse, 2007). 

Mechanical damage often constitutes entry gates for pathogens, and increased damage 

hence likely leads to increased incidence of rots (Johansson, 1983). Latent infections might 

also get activated by mechanical damage on the tubers. The variety Merano had high 

incidence of both wet rots and dry rots in both piles (Figure 14), and there was a significant 

positive correlation between percentage of damaged tubers and incidence of rots (Figure 15 

and 16). The total culturable bacterial population size was significantly higher in Merano in 

pile B than in the other varieties (Table 4), which was probably due to the favorable 

microclimate for bacterial colonization and survival that was created in the damaged potato 

tubers. The tubers of Novano showed a lower percentage of tubers with mechanical damage 

and low incidence of rots, indicating that these factors are important for the final starch 

quality in the tubers. 

 

6.4 Wet rots and dry rots on tubers 

Presence of primary pathogens, such as fungi, is likely to increase the incidence of bacteria 

and wet rots (Andersson, personal communication, 2012). In this study, however, there were 

no correlations between incidence of dry rots and incidence of wet rots in any of the varieties, 

or in the two storage piles. It is possible that the experimental period of three months in this 

study was too short. Ware potatoes are usually stored up to 12 months, and fungi and dry rots 

then become more problematic.  

Incidence (number of infected tubers) of wet and dry rots, did not increase significantly 

during storage in either of the storage piles in the field trial, but rot sverity (the area of 

infected tuber tissue) did increase. These results indicate that pathogenic infection occurred 

prior to storage and that the post-harvest diseases at harvest did not infect new tubers during 

storage. The disease intensity increased with time, however, and since mechanical damage on 
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tubers generally increased the presence of both types of rots it therefore  becomes important to 

harvest the tubers intact and to avoid damage during harvest and handling (Figure 15 and 16). 

In general, the estimation of bacterial population size was lower on PDA than on TSA, 

indicating that TSA is better for measuring bacterial diversity than PDA. Furthermore, the 

diversity as calculated on the basis of identified species was lower in the variety Kuras than in 

the other two varieties, which indicates that certain bacteria are selected by certain potato 

varieties. A tendency of higher species diversity was observed in pile B than in pile A which 

was possibly due to a warmer microclimate and hence a higher bacterial population size in 

tubers in pile B. 

The results of estimation of starch hydrolyzing population differed when performed in 

vitro which is an environment that lacks competition compared with the in vivo slice assay 

(Table 5) in which the test organism has to face competition from the surrounding endophytic 

microflora. In vitro assay was based on hydrolysis of wheat starch while in the in vivo assay 

the bacteria were tested for degradation of potato starch, which is considered to be more 

difficult (Taniguchi et al., 1982) and hence one reason for low correlation between the two 

assays. The potato variety Melody was chosen to enable comparison of the isolates which 

originated from three different potato varieties mentioned above.  

Several of the tuber associated fungal species identified in this study are ubiquitous in soil 

(Table 7). No attempt was made to quantify their population size and it is not known if the 

different potato varieties selected for different fungi and to what extent the isolation procedure 

favoured only certain genera. Choice of nutrient media other than TSA and PDA might have 

facilitated detection of oomycetes, such as Phytphthora infestens and Phytium spp., if present. 

Fungi such as Phoma spp. and Fusarium spp. benefit easily from mechanical damage 

(Agrios, 2005), and were therefore expected to occur in abundance in the tubers. Phoma spp. 

were detected in the tuber samples, but no attempt was made to quantify its population in 

relation to other microorganisms in this experiment. Some Fusarium spp. are also common 

potato pathogens. However, no Fusarium species were found in the tubers samples in this 

study. A likely explanation is that young tubers have some resistance to Fusarium, and hence 

the dry rot develops after a longer period of storage than was used in this study (Loria, 1993). 

If Fusarium was present it would have appeared during isolation on agar plates, even if it was 

latent. Schöber and Turkensteen (1992) mention control of Fusarium spp. by antagonistic 

organisms. Tricoderma fungi are mentioned as potential biocontrol agents, as well as 

Pseudomonas flourescens and P. chlororaphis (Leben et al., 1987; Chatterton et al., 2003; 

Pringle et al. 2009; Jaya Prakash et al., 2009). Bacetria such as Pseudomonas flourescens and 

P. putida were found to occur in the tubers of Merano and Novano. The role of such bacteria 

in tubers in terms of restricting populations of e.g. Fusarium remains to be investigated. Non-

pathogenic microorganisms will probably have an increased importance as biocontrol agents 

in the future, either in the soil during potato cultivation, or as tuber surface treatments before 

storage (Pringle et al., 2009). 
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7. Conclusions 
 

 Starch yield was significantly reduced after three months of storage, due to loss of 

weight in combination with loss of starch content in the tubers. The largest losses 

occurred during the first weeks of storage 

 

 There were generally greater differences between potato varieties than between the 

two storage piles. It should be noticed however that the weather during the autumn 

of 2011 was unusually mild 

 

 There were great differences between the three potato varieties in initial starch 

content, sensibility to mechanical damage, prescense and growth of 

microorganisms and final starch yield. This implies the importance of choosing 

good varieties 
 

 There was a positive correlation between mechanical damage on tubers and 

incidence of wet rots and dry rots. Tubers seemed to get infected by rots before 

they were placed in the storage piles and it is therefore important to keep tubers 

undamaged before storage 

 

 Both pathogenic and beneficial micro-organisms were isolated and identified in the 

stored potato tubers. The importance of varietal effect on endophytic populations at 

harvest and during storage needs further attention in order to obtail high starch 

yields in the future 
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